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TD 7: Emptiness Test for Büchi Automata,
Partial-Order Reduction

Exercise 1. Consider the labeled Kripke structureK shown below with actions {a, b, c, d, e}
and one atomic proposition q, where q holds only on state 4.
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1. Determine a maximal independence relation I.

(Recall that I ⊆ A × A is an independance relation for K if it is irreflexive, sym-

metric, and for all (a, b) ∈ I and s ∈ S, if a, b ∈ en(s), s
a−→ t, and s

b−→ u, then

there exists v ∈ S such that a ∈ en(u), b ∈ en(t), t
b−→ v, and u

a−→ v.)

2. Determine the maximal invisibility set U .

(Recall that U is an invisibility set if for all a ∈ U and (s, a, s′) ∈ →, ν(s) = ν(s′).)

Exercise 2 (Stuttering and LTL(U)). Fix a set of atomic propositions AP, and Σ = 2AP.
Recall that σ, ρ ∈ Σω are stuttering equivalent when there exists infinite integer sequences
0 = i0 < i1 < · · · and 0 = k0 < k1 < · · · such that for all ` ≥ 0,

σ(i`) = σ(i` + 1) = · · · = σ(i`+1 − 1) = ρ(k`) = ρ(k` + 1) = · · · = ρ(k`+1 − 1)

A language L ⊆ Σω is stutter-invariant if for all stuttering equivalent words σ, ρ ∈ Σω,
we have σ ∈ L iff ρ ∈ L.

1. Prove that if ϕ is an LTL(AP,U) formula, then L(ϕ) is stutter-invariant.
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2. A word σ = a0a1 · · · in Σω is stutter-free if, for all i in N, either ai 6= ai+1, or ai = aj
for all j ≥ i. We note sf(L) for the set of stutter-free words in a language L.

Show that, if L and L′ are two stutter-invariant languages, then sf(L) = sf(L′) iff
L = L′.

3. Let ϕ be an LTL(AP,X,U) formula such that L(ϕ) is stutter-invariant. Construct
inductively a formula τ(ϕ) of LTL(AP,U) such that sf(L(ϕ)) = sf(L(τ(ϕ))), and
thus such that L(ϕ) = L(τ(ϕ)) according to the previous question.

Exercise 3 (Büchi Emptiness Test). Consider an execution of Algorithm 1 on some
Büchi automaton B = (Σ, S, s0, δ, F ).

Algorithm 1 Depth-first-search
1. nr = 0;
2. hash = { };
3. dfs(s0);
4. exit;

dfs(s) :

1. add s to hash;
2. nr = nr + 1;
3. s.num = nr;
4. for all t ∈ succ(s) do
5. if t not in hash then
6. dfs(t)
7. end if
8. end for

1. At each point during the DFS, we define the search path as the sequence s0s1 . . . sn
of visited states for which the DFS call has not yet terminated (in the order in
which they are visited).

Show that si.num < sj .num iff i < j, and that for all i < j, si →+ sj .

For all strongly connected component C ⊆ S of B, we call root of C the state of C that
is visited first during the DFS, i.e. the node rC such that rC .num = min{s.num | s ∈ C}
at the end of the DFS. Note that it is also the last state in C from which the DFS
backtracks, and, at that point, all states and edges in the component C have been
considered.

The explored graph of B denotes the subgraph containing all visited states and ex-
plored transitions. We call an SCC of the explored graph active if the search path
contains at least one of its states. A state is active if it is part of an active SCC in the
explored graph (it is not necessary for the state itself to be on the search path). The
active graph is the subgraph of the explored graph induced by the active states.
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3. Show that an inactive SCC in the explored graph is also an SCC of B.

4. Show that the roots of the SCCs in the active graph are a subsequence of the
search path.

5. Let s be an active state and t the root of its SCC in the active graph. Show that
there is no active root u with t.num < u.num < s.num.

6. Show that if s, t are two active states with s.num ≤ t.num, then s→∗ t.

7. Let C,C ′ be two active SCCs and t ∈ C, s ∈ C ′ such that t.num ≤ s.num. Show
that if an edge (s, t) is added to the explored graph, after the addition, C and C ′

are in the same SCC of the explored graph.

8. We modify Algorithm 1 to maintain a stack W with elements of the form (s, C),
where s is the root of an active SCC, and C is the set of states in the SCC of s.
Show that Algorithm 2 returns true iff the language of the input Büchi automaton
is empty.

9. Show that if L(B) 6= ∅, Algorithm 2 terminates as soon as the explored graph
contains a counterexample.

10. Adapt Algorithm 2 to test emptiness of a generalized Büchi automaton with ac-
ceptance sets F1, . . . , Fn.

11. Compare with the nested DFS algorithm from the lectures.
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Algorithm 2 Emptiness Test
1. nr = 0;
2. hash = { };
3. W = { };
4. dfs(s0);
5. return true;

dfs(s):

1. add s to hash;
2. s.active = true;
3. nr = nr + 1;
4. s.num = nr;
5. push (s, {s}) onto W ;
6. for all t ∈ succ(s) do
7. if t not in hash then
8. dfs(t)
9. else if t.active then

10. D = { };
11. repeat
12. pop (u,C) from W ;
13. if u is accepting then
14. return false
15. end if
16. merge C into D;
17. until u.num ≤ t.num;
18. push (u,D) onto W ;
19. end if
20. end for
21. if s is the top root in W then
22. pop (s, C) from W ;
23. for all t in C do
24. t.active = false
25. end for
26. end if
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