TD 6: LTL Model-Checking

Exercise 1 (Model Checking a Path). Consider the time flow $(\mathbb{N}, <)$. We want to verify a model which is an ultimately periodic word $w = uv^{\omega}$ with u in Σ^* and v in Σ^+ , where $\Sigma = 2^{AP}$.

Give an algorithm for checking whether $w, 0 \models \varphi$ holds, where φ is a LTL(AP, X, U) formula, in time bounded by $O(|uv| \cdot |\varphi|)$. *Hint: reduce this to a CTL model-checking problem.*

Exercise 2 (Complexity of LTL(F)). Fix $\Sigma = 2^{AP}$ and let $w = w_0 w_1 w_2 \cdots$ be an infinite word in Σ^{ω} . Let

$$\mathsf{alph}(w) = \{a \in \Sigma \mid |w|_a \ge 1\}$$

be the set of letters appearing in w and

$$\inf(w) = \{a \in \Sigma \mid |w|_a = \infty\}$$

be the set of letters appearing infinitely often in w. We consider *decompositions* $u \cdot v$ in $\Sigma^* \times \Sigma^\infty$ (where $\Sigma^\infty = \Sigma^* \cup \Sigma^\omega$) such that $\mathsf{alph}(v) = \mathsf{inf}(v)$; this definition enforces that either $v = \varepsilon$ or v is in Σ^ω . Given an infinite word w there exists a unique decomposition $w = u \cdot v$ with $u \in \Sigma^*$, $v \in (\mathsf{inf}(w))^\omega$, and u of minimal length.

Define the size $||u \cdot v||$ of a decomposition pair $u \cdot v$ as $||u \cdot v|| = |u| + |\inf(v)|$. Our goal is, for any satisfiable φ in LTL(F), to prove the existence of a model $w = u \cdot v$ with $||u \cdot v|| \leq |\varphi|$.

- 1. Consider an infinite word w decomposed as $u \cdot v$ and two indices $i, j \ge |u|$ with $w_i = w_j$; show that for all φ in LTL(F), $w, i \models \varphi$ iff $w, j \models \varphi$.
- 2. Let w, w' be two infinite words decomposed as $u \cdot v$ and $u \cdot v'$ (thus with a shared initial prefix) with $\inf(w) = \inf(w')$ and $w_0 = w'_0$ (necessary in case $u = \varepsilon$). Show that for all φ in LTL(F), $w, 0 \models \varphi$ iff $w', 0 \models \varphi$.

Let $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$. For a word $\sigma \in \Sigma^{\infty}$, denote by \mathbb{T}_{σ} the set of positions of σ : $\mathbb{T}_{\sigma} = \mathbb{N}$ if $\sigma \in \Sigma^{\omega}$, and $\mathbb{T}_{\sigma} = \{0, \ldots, |\sigma| - 1\}$ if $\sigma \in \Sigma^*$.

Let σ, σ' be words in Σ^{∞} ; σ' is a subword of σ , noted $\sigma' \leq \sigma$, if there exists a monotone injection $f_{\sigma'} : \mathbb{T}_{\sigma'} \to \mathbb{T}_{\sigma}$ s.t. for all $i \in \mathbb{T}_{\sigma'}, \sigma'_i = \sigma_{f_{\sigma'}(i)}$. We denote by $R_{\sigma'} = f_{\sigma'}(\mathbb{T}_{\sigma'})$ the set of preserved positions. Note that for every $R \subseteq \mathbb{T}_{\sigma}$, there exists a unique $\sigma' \leq \sigma$ and $f_{\sigma'}$ such that $R_{\sigma'} = R$.

Given a decomposition $u \cdot v$, a subdecomposition $u' \cdot v'$ is a decomposition such that $u' \leq u$ and $v' \leq v$ (by definition this enforces alph(v') = inf(v')). We write $R_{u' \cdot v'}$ for $R_{u'} \cup \{|u'| + i \mid i \in R_{v'}\}$; this is compatible with the notion of subwords on the words $w' = u' \cdot v'$ and $w = u \cdot v$.

- 3. Given two subdecompositions $u_1 \cdot v_1$ and $u_2 \cdot v_2$ of some decomposition $u \cdot v$, show that $u' \cdot v'$ with $R_{u'} = R_{u_1} \cup R_{u_2}$ and $R_{v'} = R_{v_1} \cup R_{v_2}$ is a subdecomposition of $u \cdot v$ that verifies $||u' \cdot v'|| \leq ||u_1 \cdot v_1|| + ||u_2 \cdot v_2||$.
- 4. Consider a formula φ in LTL(F). We denote by $m(\varphi)$ the number of F modalities in φ . Show that φ can be transformed into an equivalent formula $\psi \in \text{NNF}(\mathsf{F},\mathsf{G})$ such that $m(\psi) \leq m(\varphi)$, where $\text{NNF}(\mathsf{F},\mathsf{G})$ is the set of formulæ in negative normal form (where negations only occur in front of atomic fomulæ) using only F and G modalities:

$$\psi ::= p \mid \neg p \mid \psi \lor \psi \mid \psi \land \psi \mid \mathsf{F} \psi \mid \mathsf{G} \psi$$

- 5. Let w be an infinite word in Σ^{ω} decomposed as $w = u \cdot v$ and let ψ in NNF(F, G). Show by induction on ψ that, for all subdecompositions $u' \cdot v'$ of $u \cdot v$ s.t. for all $i \in R_{u' \cdot v'}, w, i \models \psi$, there exists a subdecomposition $\sigma \cdot \tau$ of $u \cdot v$ of size $\|\sigma \cdot \tau\| \leq m(\psi)$ such that, for all subdecompositions $\sigma' \cdot \tau'$ of $u \cdot v$ for which $\sigma \cdot \tau$ is a sub-subdecomposition, and for all $i \in R_{u' \cdot v'} \cap R_{\sigma' \cdot \tau'}, \sigma' \cdot \tau', f_{\sigma' \cdot \tau'}^{-1}(i) \models \psi$.
- 6. Show that if for all satisfiabel φ in LTL(F), there exists $w = u \cdot v$ with $||u \cdot v|| \le |\varphi|$ such that $w, 0 \models \varphi$.
- 7. Show that SAT(LTL(F)) is in NP.

Exercise 3 (Stuttering and LTL(U)). In the time flow $(\mathbb{N}, <)$, i.e. when working with words σ in Σ^{ω} , *stuttering* denotes the existence of consecutive symbols, like *aaaa* and *bb* in *baaaabb*. Concrete systems tend to stutter, and thus some argue that verification properties should be stutter invariant.

A stuttering function $f : \mathbb{N} \to \mathbb{N}_{>0}$ from the positive integers to the positive integers. Let $\sigma = a_0 a_1 \cdots$ be an infinite word of Σ^{ω} and f a stuttering function, we denote by $\sigma[f]$ the infinite word $a_0^{f(0)} a_1^{f(1)} \cdots$, i.e. where the *i*-th symbol of σ is repeated f(i) times. A language $L \subseteq \Sigma^{\omega}$ is stutter invariant if, for all words σ in Σ^{ω} and all stuttering functions f,

$$\sigma \in L$$
 iff $\sigma[f] \in L$.

- 1. Prove that if φ is a TL(AP, U) formula, then $L(\varphi)$ is stutter-invariant.
- 2. A word $\sigma = a_0 a_1 \cdots$ in Σ^{ω} is stutter-free if, for all i in \mathbb{N} , either $a_i \neq a_{i+1}$, or $a_i = a_j$ for all $j \geq i$. We note $\mathrm{sf}(L)$ for the set of stutter-free words in a language L.

Show that, if L and L' are two stutter invariant languages, then sf(L) = sf(L') iff L = L'.

3. Let φ be a TL(AP, X, U) formula such that $L(\varphi)$ is stutter invariant. Construct inductively a formula $\tau(\varphi)$ of TL(AP, U) such that $sf(L(\varphi)) = sf(L(\tau(\varphi)))$, and thus such that $L(\varphi) = L(\tau(\varphi))$ according to the previous question. What is the size of $\tau(\varphi)$ (there exists a solution of size $O(|\varphi| \cdot 2^{|\varphi|})$)? **Exercise 4** (Complexity of LTL(U)). We want to prove that the model checking and satisfiability problems for LTL(U) formulæ are both PSPACE-complete.

- 1. Prove that $MC^{\exists}(X, U)$ can be reduced to $MC^{\exists}(U)$: given an instance (M, φ) of $MC^{\exists}(X, U)$, construct a stutter-free Kripke structure M' and an LTL(U) formula $\tau'(\varphi)$. Beware: the τ construction of the previous exercise does not yield a polynomial reduction!
- 2. Show that $MC^{\exists}(X, U)$ can be reduced to SAT(U).