TD 5: Büchi Automata and Synchronous Büchi Transducers

Exercise 1 (Synchronous Büchi Transducers). Give synchronous Büchi transducers for the following formulæ:

- 1. SF q
- 2. $\operatorname{SG} q$
- 3. $p \operatorname{\mathsf{R}} q$
- 4. *p* S *q*
- 5. $G(p \rightarrow Fq)$

Exercise 2 (Closure by Complementation). The purpose of this exercise is to prove that $\operatorname{Rec}(\Sigma^{\omega})$ is closed under complement. We consider for this a Büchi automaton $\mathcal{A} = (Q, \Sigma, T, I, F)$, and want to prove that its complement language $\overline{L(\mathcal{A})}$ is in $\operatorname{Rec}(\Sigma^{\omega})$.

We note $q \stackrel{u}{\to} q'$ for q, q' in Q and $u = a_1 \cdots a_n$ in Σ^* if there exists a sequence of states q_0, \ldots, q_n such that $q_0 = q, q_n = q'$ and for all $0 \le i < n, (q_i, a_{i+1}, q_{i+1})$ is in T. We note in the same way $q \stackrel{u}{\to}_F q'$ if furthermore at least one of the states q_0, \ldots, q_n belongs to F.

We define the *congruence* $\sim_{\mathcal{A}}$ over Σ^* by

$$u \sim_{\mathcal{A}} v \text{ iff } \forall q, q' \in Q, \ (q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q') \text{ and } (q \xrightarrow{u}_{F} q' \Leftrightarrow q \xrightarrow{v}_{F} q')$$

- 1. Show that $\sim_{\mathcal{A}}$ has finitely many congruence classes [u], for u in Σ^* .
- 2. Show that each [u] for u in Σ^* is in $\operatorname{Rec}(\Sigma^*)$, i.e. is a regular language of finite words.
- 3. Consider the language K(L) for $L \subseteq \Sigma^{\omega}$

$$K(L) = \bigcup_{u,v \in \Sigma^*, [u][v]^{\omega} \cap L \neq \emptyset} [u][v]^{\omega}$$

Show that K(L) is in $\operatorname{Rec}(\Sigma^{\omega})$ for any $L \subseteq \Sigma^{\omega}$.

- 4. Show that $K(L(\mathcal{A})) \subseteq L(\mathcal{A})$ and $K(\overline{L(\mathcal{A})}) \subseteq \overline{L(\mathcal{A})}$.
- 5. Prove that for any infinite word σ in Σ^{ω} there exist u and v in Σ^* such that σ belongs to $[u][v]^{\omega}$. The following theorem might come in handy when applied to couples of positions (i, j) inside σ :

Theorem 1 (Ramsey, infinite version). Let $E = \{(i, j) \in \mathbb{N}^2 \mid i < j\}$, and $c : E \to \{1, \ldots, k\}$ a k-coloring of E. There exists an infinite set $A \subseteq \mathbb{N}$ and a color $i \in \{1, \ldots, k\}$ such that for all $(n, m) \in A^2$ with n < m, c(n, m) = i.

6. Conclude.

Exercise 3 (Closure Properties). Given Büchi automata for $L_1 \subseteq \Sigma^{\omega}$ and $L_1 \subseteq \Sigma^{\omega}$, construct a Büchi automaton for

- 1. globally $(L_1) = \{ u \in \Sigma^{\omega} \mid \forall u' \in \Sigma^*, u'' \in \Sigma^{\omega}, u = u'u'' \to u'' \in L_1 \}$
- 2. $\operatorname{until}(L_1, L_2) = \{uv \in \Sigma^{\omega} \mid u \in \Sigma^+ \land v \in L_2 \land \forall u, u'' \in \Sigma^+, u = u'u'' \to u''v \in L_1\}$