TD 4: Büchi Automata

Exercise 1 (Generalized Acceptance Condition). A generalized Büchi automaton \(A = (Q, \Sigma, I, T, (F_i)_{0 \leq i < n}) \) has a finite set of accepting sets \(F_i \). An infinite run \(\sigma \) of \(A \) satisfies this generalized acceptance condition if each set \(F_i \) is visited infinitely often.

Show that for any generalized Büchi automaton, one can construct an equivalent Büchi automaton.

Exercise 2 (Rational Languages). A rational language \(L \) of infinite words over \(\Sigma \) is a finite union

\[
L = \bigcup X \cdot Y^\omega
\]

where \(X \) is in \(\text{Rat}(\Sigma^* \Sigma^+) \) and \(Y \) in \(\text{Rat}(\Sigma^+) \). We denote the set of rational languages of infinite words by \(\text{Rat}(\Sigma^\omega) \).

Show that \(\text{Rec}(\Sigma^\omega) = \text{Rat}(\Sigma^\omega) \).

Exercise 3 (Deterministic Büchi Automata). A Büchi automaton is deterministic if \(|I| \leq 1 \), and for each state \(q \) in \(Q \) and symbol \(a \) in \(\Sigma \), \(|\{(q, a, q') \in T \mid q' \in Q\}| \leq 1 \).

1. Give a nondeterministic Büchi automaton for the language \(L \subseteq \{a, b\}^\omega \) described by the expression \((a + b)^*a^\omega\), and a deterministic Büchi automaton for \(L \).

2. Show that there does not exist any deterministic Büchi automaton for \(L \).

3. Let \(A = (Q, \Sigma, T, q_0, F) \) be a finite deterministic automaton that recognizes the language of finite words \(L \subseteq \Sigma^* \). We can also interpret \(A \) as a deterministic Büchi automaton with a language \(L' \subseteq \Sigma^\omega \); our goal here is to relate the languages of finite and infinite words defined by \(A \).

Let the limit of a language \(L \subseteq \Sigma^* \) be

\[
\overrightarrow{L} = \{w \in \Sigma^\omega \mid w \text{ has infinitely many prefixes in } L\}.
\]

Characterize the language \(L' \) of infinite words of \(A \) in terms of its language of finite words \(L \) and of the limit operation.

Exercise 4 (Closure by Complementation). The purpose of this exercise is to prove that \(\text{Rec}(\Sigma^\omega) \) is closed under complement. We consider for this a Büchi automaton \(A = (Q, \Sigma, T, I, F) \), and want to prove that its complement language \(\overline{L(A)} \) is in \(\text{Rec}(\Sigma^\omega) \).

We note \(q \xrightarrow{u} q' \) for \(q, q' \) in \(Q \) and \(u = a_1 \cdots a_n \) in \(\Sigma^* \) if there exists a sequence of states \(q_0, \ldots, q_n \) such that \(q_0 = q, q_n = q' \) and for all \(0 \leq i < n \), \((q_i, a_{i+1}, q_{i+1}) \) is in \(T \).
We note in the same way $q \xrightarrow{u} q'$ if furthermore at least one of the states q_0, \ldots, q_n belongs to F.

We define the congruence \sim_A over Σ^* by

$$u \sim_A v \text{ iff } \forall q, q' \in Q, (q \xrightarrow{u} q' \iff q \xrightarrow{v} q') \text{ and } (q \xrightarrow{u} F q' \iff q \xrightarrow{v} F q').$$

1. Show that \sim_A has finitely many congruence classes $[u]$, for u in Σ^*.

2. Show that each $[u]$ for u in Σ^* is in $\text{Rec}(\Sigma^*)$, i.e. is a regular language of finite words.

3. Consider the language $K(L)$ for $L \subseteq \Sigma^\omega$

$$K(L) = \{[u][v]^\omega \mid u, v \in \Sigma^*, [u][v]^\omega \cap L \neq \emptyset \}. $$

Show that $K(L)$ is in $\text{Rec}(\Sigma^\omega)$ for any $L \subseteq \Sigma^\omega$.

4. Show that $K(L(A)) \subseteq L(A)$ and $K(\overline{L(A)}) \subseteq \overline{L(A)}$.

5. Prove that for any infinite word σ in Σ^ω there exist u and v in Σ^* such that σ belongs to $[u][v]^\omega$. The following theorem might come in handy when applied to couples of positions (i,j) inside σ:

Theorem 1 (Ramsey, infinite version). Let $E = \{(i,j) \in \mathbb{N}^2 \mid i < j\}$, and $c : E \to \{1, \ldots, k\}$ a k-coloring of E. There exists an infinite set $A \subseteq \mathbb{N}$ and a color $i \in \{1, \ldots, k\}$ such that for all $(n,m) \in A^2$ with $n < m$, $c(n,m) = i$.

6. Conclude.

Exercise 5 (Muller Automata). A nondeterministic Muller automaton is a tuple $A = (Q, \Sigma, I, T, F)$, where Q, Σ, I, T are as for B"uchi automata and $F \subseteq 2^Q$ is the acceptance condition. For a run σ of A, denote by $\text{Inf}(\sigma)$ the set of states which are visited infinitely often. A run σ is accepting if $\text{Inf}(\sigma) \in F$.

1. Give a deterministic Muller automaton for the language $(a + b)^* a^\omega$.

2. Show that for any Muller automaton A, $L(A)$ is ω-regular.

3. Show that any ω-regular language is accepted by some (nondeterministic) Muller automaton.

Remark: in fact, any ω-regular language can be recognized by some deterministic Muller automaton.