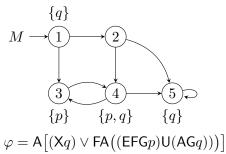
TD 3: CTL, CTL*

Exercise 1 (CTL^{*}). For each model and each formula, say if the model satisfies the formula.

$$M_{1} \rightarrow \underbrace{1}_{\{p\}} \underbrace{2}_{\{q\}} \qquad M_{2} \rightarrow \underbrace{1}_{\{p\}} \underbrace{2}_{\{q\}} \qquad M_{3} \rightarrow \underbrace{1}_{\{p\}} \underbrace{2}_{\{p\}} \\ M_{3} \rightarrow \underbrace{1}_{\{p\}} \\ M_{3} \rightarrow \underbrace{1}_{\{p\}} \underbrace{2}_{\{p\}} \\ M_{3} \rightarrow \underbrace{1}_{\{p\}} \\ M_{3}$$

Exercise 2 (Semantics of CTL^{*}). Compute $\llbracket \varphi \rrbracket$, where:



Exercise 3 (CTL Model-Checking). Let $M = (S, T, I, AP, \ell)$ be a finite Kripke structure, and φ a CTL formula.

1. Let M_{φ} be the restriction of M to states satisfying φ : $M_{\varphi} = (\llbracket \varphi \rrbracket, T \cap \llbracket \varphi \rrbracket^2, I \cap \llbracket \varphi \rrbracket, AP, \ell_{\lfloor \llbracket \varphi \rrbracket}).$

Show that $s \in \llbracket \mathsf{EG} \varphi \rrbracket$ iff there exists a non-trival strongly connected component C of M_{φ} and $t \in C$ such that $s \to^* t$ in M_{φ} .

2. Deduce an algorithm to compute $\llbracket \mathsf{EG} \varphi \rrbracket$ from M and $\llbracket \varphi \rrbracket$. What is the complexity of your procedure?

Exercise 4 (CTL Equivalences).

1. Are the two formulæ $\varphi = A G(E F p)$ and $\psi = E F p$ equivalent? Does one imply the other?

2. Same questions for $\varphi = \mathsf{E} \mathsf{G} q \lor (\mathsf{E} \mathsf{G} p \land \mathsf{E} \mathsf{F} q)$ and $\psi = \mathsf{E}(p \lor q)$.

Exercise 5 (CTL⁺). CTL⁺ extends CTL by allowing boolean connectives on path formulæ, according to the following abstract syntax:

$$\begin{split} f &::= \top \mid a \mid f \land g \mid \neg f \mid \mathsf{E}\,\varphi \mid \mathsf{A}\,\varphi & (\text{state formulæ } f,g) \\ \varphi &::= \varphi \land \psi \mid \neg \varphi \mid \mathsf{X}\,f \mid f \mathrel{\mathsf{U}}\,g & (\text{path formulæ } \varphi,\psi) \end{split}$$

where a is an atomic proposition. The associated semantics is that of CTL^{*}.

We want to prove that, for any CTL⁺ formula, there exists an equivalent CTL formula.

1. Give an equivalent CTL formula for

$$\mathsf{E}((a_1 \mathsf{U} b_1) \land (a_2 \mathsf{U} b_2)) .$$

2. Generalize your translation for any formula of form

$$\mathsf{E}\left(\bigwedge_{i=1,\dots,n} (\psi_i \,\mathsf{U}\,\psi_i') \wedge \mathsf{G}\,\varphi\right) \,. \tag{1}$$

What is the complexity of your translation?

3. Give an equivalent CTL formula for the following CTL⁺ formula:

 $\mathsf{E}(\mathsf{X}\,a \wedge (b \mathsf{U}\,c)) \ .$

4. Using subformulæ of form (1) and E modalities, give an equivalent CTL formula to

$$\mathsf{E}(\mathsf{X}\,\varphi \wedge \bigwedge_{i=1,\dots,n} (\psi_i \,\mathsf{U}\,\psi_i') \wedge \mathsf{G}\,\varphi') \;. \tag{2}$$

What is the complexity of your translation?

5. We only have to transform any CTL⁺ formula into (nested) disjuncts of form (2). Detail this translation for the following formula:

$$\mathsf{A}((\mathsf{F} a \lor \mathsf{X} a \lor \mathsf{X} \neg b \lor \mathsf{F} \neg d) \land (d \mathsf{U} \neg c))$$