TD 2: Temporal Logics

Exercise 1 (Specification). We would like to verify the properties of a boolean circuit with input x, output y, and two registers r_1 and r_2 . We define accordingly AP = $\{x, y, r_1, r_2\}$ as our set of atomic propositions and consider the linear time flow $(\mathbb{N}, <)$ where the runs of the circuit can be seen as temporal structures.

Translate the following properties (a) in TL(AP, SU) and (b) in FO(AP, <):

- 1. "it is impossible to get two consecutive 1 as output"
- 2. "each time the input is 1, at most two ticks later the output will be 1"
- 3. "each time the input is 1, the register contents remain the same over the next tick"
- 4. "register r_1 is infinitely often 1"

Note that there might be several, non-equivalent formal specifications matching these informal descriptions—that's the whole point of writing specifications!—but your (a) and (b) should be equivalent.

Exercise 2 (Equivalences). We fix a set AP of atomic propositions including $\{p, q, r\}$ and some discrete linear time flow $(\mathbb{T}, <)$.

- 1. Show that $\varphi SU \psi \equiv X(\psi \lor (\varphi \land (\varphi SU \psi))).$
- 2. Consider the formulæ $\varphi_1 = \mathsf{G}(p \to \mathsf{X} q)$ and $\varphi_2 = \mathsf{G}(p \to ((\neg q) \mathsf{R} q))$
 - (a) Does φ_2 imply φ_1 ?
 - (b) Does φ_1 imply φ_2 ?
- 3. Simplify the following formula:

$$\mathsf{SF}(((\mathsf{G}\,r)\,\mathsf{U}\,p)\wedge (\neg q\,\mathsf{U}\,p))\vee\mathsf{SF}(\neg p\vee\mathsf{F}\,q)\;.$$

4. Give a TL(AP, U) formula φ equivalent to $(p \cup q) \cup r$ and such that for any subformula $\psi \cup \psi'$ of φ , ψ is a boolean formula.

Exercise 3 (Expressiveness). We fix the set $AP = \{p\}$ of atomic propositions, with an associated alphabet $\Sigma = \{\{p\}, \emptyset\}$, and consider the $(\mathbb{N}, <)$ flow of time, where temporal structures can be seen as infinite words over Σ , i.e. words in Σ^{ω} .

- 1. Show that the following subsets of Σ^{ω} are expressible in LTL(AP, U, X):
 - (a) $\{p\}^* \cdot \emptyset^{\omega}$, and

- (b) $\{p\}^n \cdot \emptyset^{\omega}$ for each fixed $n \ge 0$.
- 2. Is the language $(\{p\} \cdot \emptyset)^{\omega}$ expressible in LTL(AP, U, X)?
- 3. Consider the infinite sequence $\sigma_i = \{p\}^i \cdot \emptyset \cdot \{p\}^\omega$ for $i \ge 0$. Show by induction on LTL(AP, U, X) formulæ φ that, for all $n \ge 0$, if φ has less than $n \ge 0$ modalities, then for all $i, i' > n, \sigma_i \models \varphi$ iff $\sigma_{i'} \models \varphi$. (*Hint: For the case of* U, show that $\sigma_i \models \varphi$ iff $\sigma_{n+1} \models \varphi$.)
- 4. Using the previous question, show that the set $(\{p\} \cdot \Sigma)^{\omega}$ is not expressible in LTL(AP, U, X) over $(\mathbb{N}, <)$.

Exercise 4 (Linear Orders with Gaps). In this exercise we assume $(\mathbb{T}, <)$ to be a linear time flow. Let us define a new unary "gap" modality gap:

$$\begin{split} w,i \models \mathsf{gap}\varphi \text{ iff } \forall k.k > i \to (\exists \ell.k < \ell \land \forall j.i < j < \ell \to w, j \models \varphi) \\ & \lor (\exists j.i < j < k \land w, j \models \neg \varphi) \\ & \land \exists k_1.k_1 > i \land \forall j.i < j \le k_1 \to w, j \models \varphi \\ & \land \exists k_2.k_2 > i \land w, k_2 \models \neg \varphi . \end{split}$$

The intuition behind gap is that φ should hold for some time until a gap occurs in the time flow, after which $\neg \varphi$ holds at points arbitrarily close to the gap.

- 1. Express $gap\varphi$ using the standard SU modality.
- 2. Show that, if $(\mathbb{T}, <)$ is Dedekind-complete (i.e. every nonempty subset of \mathbb{T} with an upper bound has a least upper bound), then gapp for $p \in AP$ cannot be satisfied.