TD 1: Models

Exercise 1 (Rendez-vous with Data). Consider the synchronization of transition systems with variables through a rendez-vous mechanism. Such a system is of form $M = (S, \Sigma, V, (D_v)_{v \in V}, T, I, AP, l)$ where V the set of (typed) variables v, each with domain D_v.

We want to extend the rendez-vous mechanism between systems with variables with the ability to exchange data values. For instance, a system M_i may transmit a value m by performing

$$s_i \xrightarrow{!m} s'_i,$$

only if some system M_j is ready to receive the message, i.e. to perform

$$s_j \xrightarrow{?v} s'_j,$$

where v is a variable of M_j and m is in D_v. Of course the synchronization is also possible if M_j performs instead

$$s_j \xrightarrow{?m} s'_j.$$

1. Propose Structural Operational Semantics for the rendez-vous with data synchronization.

2. Assume $D_v = D$ for all variables v in V.

 Generalize these semantics to allow sending and receiving terms in $T(\Sigma, V)$ build from the variables and a finite set of symbols Σ that contains D.

Exercise 2 (Needham-Schroeder Protocol). We consider the analysis of a public-key authentication protocol proposed by Needham and Schroeder in 1978. The protocol relies on

- the generation of *nonces* N_C: random numbers that should only be used in a single session, and

- on public key encryption: we denote the encryption of message M using C’s public key by $(M)_C$.

Alice and Bob try to make sure of each other’s identity by the following (very simplified) exchange:
1. Alice first presents herself (the A part of the message) and challenges Bob with her nounce N_A. Assuming both cryptography and random number generation to be perfect, only Bob can decrypt $\langle A, N_A \rangle_B$ and find the correct number N_A.

2. Bob responds by proving his identity (the N_A part) and challenges Alice with his own nounce N_B.

3. Finally, Alice proves her identity by sending N_B.

The nounces N_A and N_B are used by Alice and Bob as secret keys for their communications.

In order to account for the insecure channel, we have to add an intruder I to the model, who has his own nounce N_I, and can read and send any message it fancies, but can only decrypt $\langle M \rangle_I$ messages and cannot guess the nounces generated by Alice and Bob.

We can model the behaviour of Alice as a transition system M_A with variables and rendez-vous with data, using a single variable N ranging over $D_N = \{N_A, N_B, N_I\}$.

1. Provide a model M_B for Bob.

2. Provide a model M_I the intruder.

3. Unfold an execution path in the synchronized product of M_A, M_B, and M_I that unveils a flaw in the protocol.
Exercise 3 (Channel Systems). The course notes present the semantics of FIFO channels. We consider here the case of a single finite system \(M = \langle S, \Sigma, T, I, \text{AP}, \ell \rangle \) along with \(n \) unbounded channels over a finite set \(\Gamma \) (i.e. each channel is declared as \(c_i : \text{channel}[\infty] \) of \(\Gamma \) for each \(1 \leq i \leq n \)). Configurations of the full system \(\hat{M} \) are thus in \(S \times (\Gamma^*)^n \), i.e. of form \((s, \gamma_1, \ldots, \gamma_n) \) where \(s \) is a state of \(S \) and channel \(i \) contains \(\gamma_i \).

Without loss of generality, we consider the channels to be empty in the initial configurations, i.e. \(\hat{I} = \{ (s_i, \epsilon, \ldots, \epsilon) \mid s_i \in I \} \).

We are interested in the **control-state reachability problem**, i.e. given an \(n \)-channel system \(\hat{M} \) and a state \(s \), does there exist an initial state \(s_i \) in \(I \) and \(n \) strings \(\gamma_1, \ldots, \gamma_n \) in \(\Gamma^* \) s.t. \((s_i, \epsilon, \ldots, \epsilon) \rightarrow^* (s, \gamma_1, \ldots, \gamma_n) \)?

1. Consider the case \(\Gamma = \{ a \} \) and \(n = 1 \). Show that the control-state reachability problem is decidable in \(\text{PTime} \).

2. Show that it becomes undecidable for \(n = 1 \) and \(|\Gamma| \geq 2 \).

3. We allow the channel systems to test the contents of a channel for emptiness:

\[
\begin{align*}
\nu(c_j) &= \epsilon \land s_i \xrightarrow{\text{empty}(c_j)} s'_i \\
(s, \nu) \xrightarrow{\text{empty}(c_j)} (s', \nu)
\end{align*}
\]

Show that the control-state reachability problem is then undecidable for \(n \geq 2 \) even if \(|\Gamma| = 1 \). Hint: reduce from the control state reachability in 2-counters Minsky machines.