
Homework 8

To hand in on December 7th at 14:00, during the exercise session or by mail at marie.fortin@lsv.fr.

Exercise 1. Draw the BDDs for the following functions, using the order of your choice on the variables $\{x_1, \ldots, x_5\}$. You may omit the 0-node. No justification is necessary.

1. $x_2 \Rightarrow (x_1 \land x_3)$ 2. $\neg x_1 \land (x_2 \Leftrightarrow \neg x_4) \land (x_3 \Leftrightarrow x_5)$ 3. $f(x_1, \dots, x_5) = \begin{cases} 1 & \text{if } x_1 + \dots + x_5 > 3\\ 0 & \text{otherwise} \end{cases}$

Exercise 2. Let x_1, \ldots, x_n , be Boolean variables, for some $n \ge 1$. We fix the ordering $x_1 < \cdots < x_n$. Given a function f, we let B(f) denote the number of nodes labelled with variables in the BDD for f. For instance, the figure below shows the BDD of $f := x_1 \Leftrightarrow x_3$, where we have B(f) = 3.

- 1. Let f_p be the parity function, i.e. f_p is 1 iff there is an even number of variables with value 1 among x_1, \ldots, x_n .
 - (a) Draw the BDD for f_p for n = 3.
 - (b) Compute $B(f_p)$, depending on n.
- 2. Depending on n, how many different functions f exist such that
 - (a) B(f) = 1?
 - (b) B(f) = 2?