Homework 6

To hand in on October 26th at 14:00, during the exercise session or by mail at marie.fortin@lsv.fr.

Exercise 1 (Complexity of LTL(X)). We want to show that LTL(X) existential model checking is NP-complete (instead of PSPACE-complete for full LTL(SU)).

1. Given $\varphi \in LTL(X)$, the temporal depth of φ is defined as follows:

$$\begin{split} d(\top) &= d(p) = 0 & d(\neg \varphi) = d(\varphi) \\ d(\varphi \lor \varphi') &= \max\{d(\varphi), d(\varphi')\} & d(\mathsf{X}\,\varphi) = 1 + d(\varphi) \end{split}$$

Show by induction on φ that for all $\varphi \in LTL(X)$ and $w \in \Sigma^{\omega}$, if u is the prefix of length $d(\varphi) + 1$ of w, we have $w, 0 \models \varphi$ iff $u\emptyset^{\omega}, 0 \models \varphi$.

2. Show that $MC^{\exists}(X)$ is in NP:

Input: $\varphi \in LTL(X)$ and a finite Kripke structure M.

Question: Does $M \models_\exists \varphi$?

3. Reduce 3SAT to $MC^{\exists}(X)$ in order to prove NP-hardness.