Homework 10

To hand in on December 21th at 14:00, during the exercise session or by mail at marie.fortin@lsv.fr.

Exercise 1. Let \mathcal{N} be the following Petri net:

- 1. Draw the reachability graph of \mathcal{N} . A marking *m* will be denoted by the tuple $\langle m(p_1), m(p_2), m(p_3), m(p_4) \rangle$, for instance the initial marking is $\langle 1, 0, 0, 1 \rangle$.
- 2. Is \mathcal{N} 1-safe ? 2-safe ? 3-safe ?

Exercise 2. We say that a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$ is *acyclic* if the directed graph $G_{\mathcal{N}} = (P \cup T, F)$ does not contain any cycle. Let \mathcal{A} denote the class of Petri nets that are 1-safe and acyclic.

- 1. Let $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$ be a Petri net.
 - (a) Show that if $m \xrightarrow{t_1} m_1 \xrightarrow{t_2} m'$ in \mathcal{N} and $t_1^{\bullet} \cap {}^{\bullet}t_2 = \emptyset$, then there exists a marking m_2 such that $m \xrightarrow{t_2} m_2 \xrightarrow{t_1} m'$.
 - (b) Let $m_1 \xrightarrow{t_1} m_2 \xrightarrow{t_2} \cdots \xrightarrow{t_k} m_{k+1}$ be an execution in \mathcal{N} for some k > 1. Assume that for all 1 < i < k, there exists a nonempty path from t_1 to t_i in the graph $G_{\mathcal{N}}$, and that there is no nonempty path from t_1 to t_k in $G_{\mathcal{N}}$. Show that there exists an execution $m_1 \xrightarrow{t_k} m'_1 \xrightarrow{t_1} m'_2 \xrightarrow{t_2} \cdots \xrightarrow{t_{k-1}} m'_k = m_{k+1}$.

- 2. Let $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$ be a 1-safe, acyclic Petri net. We assume that for all $t \in T$, ${}^{\bullet}t \neq \emptyset$ or $t^{\bullet} \neq \emptyset$.
 - (a) Show that there is no reachable marking m from which some transition t can fire twice, i.e. that there are no t, m, m', m'' such that m is reachable from m_0 and $m \stackrel{t}{\to} m' \stackrel{t}{\to} m''$.
 - (b) Show that for all executions $m_0 \xrightarrow{t_1} m_1 \xrightarrow{t_2} \cdots \xrightarrow{t_n} m_n$ in \mathcal{N} , we have $t_i \neq t_j$ for all $i \neq j$.
- 3. Show that the reachability problem for the class \mathcal{A} is in NP.