Preliminaries. We recall below several definitions from the course.

- Given a Presburger formula $\varphi(x_1, \ldots, x_n)$ with $n \geq 1$ free variables, we write $\text{REL}(\varphi(x_1, \ldots, x_n))$ to denote the set of tuples (variable values) that make true the formula:

 $$\text{REL}(\varphi(x_1, \ldots, x_n)) \stackrel{\text{def}}{=} \{(v(x_1), \ldots, v(x_n)) \in \mathbb{N}^n : v \models \varphi, \text{valuation } v\}.$$

 We also write $\vec{a} \models \varphi(x_1, \ldots, x_n)$ whenever $v \models \varphi(x_1, \ldots, x_n)$ where $v : \{x_1, \ldots, x_n\} \to \mathbb{N}$ is the valuation such that $v(x_i) = \vec{a}(i)$.

- An affine counter system S is a tuple of the form (Q, n, δ) such that every transition $q \xrightarrow{\varphi} q' \in \delta$, $\text{REL}(\varphi)$ is affine. Usually, φ is encoded by a triple (A, \vec{b}, ψ) such that $A \in \mathbb{Z}^{n \times n}$, $\vec{b} \in \mathbb{Z}^n$, ψ has free variables among $\{x_1, \ldots, x_n\}$, and $\text{REL}(\varphi) = \{(\vec{x}, \vec{x}') \in \mathbb{N}^{2n} : \vec{x}' = A\vec{x} + \vec{b} \text{ and } \vec{x} \in \text{REL}(\psi)\}$.

- A VASS S is a tuple of the form (Q, n, δ) such that every transition $t \in \delta$ is of the form $q \xrightarrow{\vec{b}} q'$ with $\vec{b} \in \mathbb{Z}^n$. Given configurations (q, \vec{a}), $(q', \vec{a}') \in Q \times \mathbb{N}^n$ and a transition $q \xrightarrow{\vec{b}} q' \in \delta$, we have $(q, \vec{a}) \xrightarrow{t} (q', \vec{a}') \iff \vec{a}' = \vec{a} + \vec{b}$.

- A standard counter automaton (Q, n, δ) has transitions of the form either $q \xrightarrow{\text{inc}(i)} q'$ (increment counter i) or $q \xrightarrow{\text{dec}(i)} q'$ (decrement counter i if nonzero) or $q \xrightarrow{\text{zero}(i)} q'$ (zero-test on counter i).

Exercise 1. Let us consider the affine counter system below:

\[
\begin{align*}
q_1 \quad & \xrightarrow{\left(\begin{array}{cc} 1 & 0 \\
0 & 1 \end{array}\right), \left(\begin{array}{c} 3 \\
-3 \end{array}\right), x_1 < x_2} q_2 \\
q_2 \quad & \xrightarrow{\left(\begin{array}{cc} 2 & 0 \\
0 & 2 \end{array}\right), \left(\begin{array}{c} 3 \\
-3 \end{array}\right), x_1 = x_2} q_3 \\
q_3 \quad & \xrightarrow{\left(\begin{array}{cc} 1 & 0 \\
0 & 1 \end{array}\right), \left(\begin{array}{c} 1 \\
-1 \end{array}\right), x_1 = x_1} q_1
\end{align*}
\]
Design a Presburger formula \(\varphi(x_1, x_2, y_1, y_2) \) such that for every valuation \(v \), we have \(v \models \varphi \) if \((q_1, v(x_1), v(x_2)) \overset{*}{\rightarrow} (q_3, v(y_1), v(y_2)) \), i.e. \((q_3, v(y_1), v(y_2))\) is reachable from \((q_1, v(x_1), v(x_2))\).

Exercise 2. Let us consider an extension of VASS by allowing extended transitions of the form \(t = q \xrightarrow{b} q' \) with \(b \in \mathbb{N}^n \) such that \((q, \bar{a}) \xrightarrow{b} (q', \bar{a}')\) iff \(\bar{a} = \bar{b} \) (equality test) and \(\bar{a}' = \bar{a} \) (update is identity).

Question 2.1 Let \(\mathcal{V} = (Q, n, \delta) \) be an extended VASS such that the extended transitions of \(\mathcal{V} \) are exactly those below (apart from the standard transitions):

\[
q_1 \xrightarrow{\vec{b}_1} q'_1, \ldots, q_N \xrightarrow{\vec{b}_N} q'_N
\]

Show that if there is a run from \((q, \bar{x})\) to \((q', \bar{x}')\), then there is a run from \((q, \bar{x})\) to \((q', \bar{x}')\) such that the number of times extended transitions are fired is at most \(N\).

Question 2.2 Given an initial configuration \((q, \vec{a})\), design an algorithm that computes the set below:

\[
\{ (q_i, \vec{b}_i) : i \in [1, N], (q, \vec{a}) \overset{\vec{b}_i}{\rightarrow} (q_i, \vec{b}_i) \in \mathcal{V} \}
\]

Hint: use as a subroutine an algorithm for solving the reachability problem for VASS (taken for granted).

Question 2.3 Conclude that the reachability problem for this class of extended VASS is decidable.

Exercise 3.

Question 3.1 Given \(B \geq 0 \) and \(\bar{x} \in \mathbb{N}^n \), we define the \(B \)-truncation of \(\bar{x} \), written \(\text{trunc}_B(\bar{x}) \), as a tuple in \(\mathbb{N}^n \) such that for \(i \in [1, n] \), we have \(\text{trunc}_B(\bar{x})(i) \overset{\text{def}}{=} \min(\bar{x}(i), B) \). A set \(X \subseteq \mathbb{N}^n \) is said to be simple if there are \(B \geq 0 \) and \(Y \subseteq [0, B]^n \) such that for every \(\bar{x} \in \mathbb{N}^n \), \(\bar{x} \in X \) iff \(\text{trunc}_B(\bar{x}) \in Y \). A simple guard \(\varphi \) is defined as a Presburger formula respecting the grammar below:

\[
x_i \geq k \mid x_i \leq k \mid \varphi_1 \land \varphi_2 \mid \top
\]

with \(k \in \mathbb{N}, x_i \) is a variable interpreted by a natural number in \(\mathbb{N} \) and \(\top \) is the truth constant. Let \(\varphi \) be a simple guard with free variables among \(\{x_1, \ldots, x_n\} \). Show that \(\text{REL}(\varphi) \) is a simple set, i.e. \(\varphi \) can be associated with a pair \((B, Y)\) encoding \(\text{REL}(\varphi) \).
Question 3.2 An extended counter automata S of dimension n is a counter system of dimension n in which the transitions are represented in the following way:

$$t = q \xrightarrow{(\varphi(x_1, \ldots, x_n), \vec{b})} q'$$

where $\varphi(x_1, \ldots, x_n)$ is a simple guard with free variables among $\{x_1, \ldots, x_n\}$ and $\vec{b} \in \mathbb{Z}^n$ (update vector). Given configurations $(q, \vec{a}), (q', \vec{a}') \in Q \times \mathbb{N}^n$, by definition $(q, \vec{a}) \xrightarrow{t} (q', \vec{a}')$ if $\varphi(x_1, \ldots, x_n)$ and $\vec{a}' = \vec{a} + \vec{b}$.

Reversal-boundedness for extended counter automata is defined as for standard counter automata: initialized extended counter automaton $(S, (q, \vec{x}))$ is r-reversal-bounded if for every run from (q, \vec{x}), every counter performs at most r reversals.

Let $(S, (q_0, \vec{x}_0))$ be a reversal-bounded extended counter automata and B_{max} be the maximal bound from all the bounds B associated to simple guards in S. Let $(q_0, \vec{x}_0), (q_1, \vec{x}_1), \ldots$ be an infinite run for the extended counter automaton S such that the control state q_f is repeated infinitely often. Show that there are positions $l' < l$ and a set of counters $Z \subseteq [1, n]$ such that:

(a) $q_l = q_{l'} = q_f$,
(b) for $i \in Z$ and $j \in [l' + 1, l]$, $\vec{x}_j(i) - x_{j-1}(i) = 0$,
(c) for $i \in ([1, n] \setminus Z)$, we have $\vec{x}_{l'}(i) \leq \vec{x}_l(i)$,
(d) for $i \in ([1, n] \setminus Z)$ and $j \in [l' + 1, l]$, $\vec{x}_j(i) - x_{j-1}(i) \geq 0$,
(e) for $i \in ([1, n] \setminus Z)$, $\vec{x}_{l'}(i) \geq B_{max}$.

Observe that (d) implies (c).

Question 3.3 Show that there is an infinite run from (q_0, \vec{x}_0) with control state q_f repeated infinitely often iff there are a finite run $(q_0, \vec{x}_0), (q_1, \vec{x}_1), \ldots, (q_l, \vec{x}_l)$, $l' < l$ and $Z \subseteq [1, n]$ such that (a)–(e) hold true.

Question 3.4 Define a reversal-bounded extended counter automaton S' such that there is an infinite run from (q_0, \vec{x}_0) with q_f repeated infinitely often in S iff $(q_0, \vec{x}_0) \xrightarrow{t} (q_{new}, \vec{0})$ in S' (q_{new} is a new control state occurring in S' but not in S).