
Graph games with perfect information

Dietmar Berwanger∗

MPRI 2012/13

1 Basic Notions

A game graph is a structure G = (V,E, V0, V1) consisting of a directed graph
(V,E) and a partition (V0, V1) of its set of vertices V = V0 ∪̇V1. We refer
to the vertices of a game graph as positions and to its edges as moves. The
partition (V0, V1) is called turn partition. We write vE to designate the set
{w : (v, w) ∈ E} of successors of a position v ∈ V . For convenience, we assume
that each position in a game graph has an outgoing move, i.e., vE 6= ∅, for all
v ∈ V .

A play on a game graph involves two players called Player 0 and Player 1,
that form a path by moving a token along the edges of the graph as follows.
At the beginning, the token is at a designated initial position. If the current
position v belongs to V0, Player 0 is in turn to move the token to a successor
w ∈ vE; otherwise, if v ∈ V1, Player 1 is in turn to move. Thus, a play starting
from a designated position v0 ∈ V in G is an infinite sequence of positions
π = v0, v1, . . . that describes a path through the graph (V,E). An initial play
is a prefix of a play.

A strategy for Player 0 is a function σ : V ∗V0 → V that maps every initial
play v0, v1, . . . v` ending at a position v` ∈ V0 to a successor position v`+1 ∈ v`E.
A play π = v0, v1, . . . follows the strategy σ if v`+1 = σ(v0, . . . , v`) for all ` with
v` ∈ V0. The notion of a strategy for Player 1 is defined analogously. When the
starting position is fixed, any pair of strategies (σ, τ) for Player 0 and Player 1,
respectively, determines a play. We call the unique play that follows both σ
and τ the outcome of the two strategies and denote it by σ τ̂ .

A winning condition on G is a set W ⊆ V ω of plays. Player 0 wins a play π
if π ∈ W , otherwise Player 1 wins the play. A strategy for a player is winning,
if all plays that follow the strategy are winning. Sometimes, we consider game
graphs equipped with a coloring function Ω : V → C, and specify a winning
condition as a set W ⊆ Cω standing for the condition

{v0, v1, v2 . . . : Ω(v0),Ω(v1),Ω(v1) · · · ∈W}.
∗LSV, ENS Cachan – dwb@lsv.ens-cachan.fr – revision: February 20, 2013

1



1 Basic Notions

Finally, a game G = (G,W ) is described by a game graph and a winning
condition.

Throughout the lecture, we will discuss games with particular kinds of win-
ning conditions.

• A Reachability condition is specified by a set F ⊆ V of target positions
that describes the winning condition

{v0, v1, . . . : v` ∈ F for some ` ≥ 0}.

• A Safety condition is specified by a set F ⊆ V of safe positions that
describes the winning condition

{v0, v1, . . . : v` ∈ F for all ` ≥ 0}.

Notice that, for a reachability and a safety condition, only a finite number
of moves is needed to establish whether the condition is satisfied or violated,
respectively. To define genuinely infinitary conditions, we refer to the set of
elements that occur infinitely often in a sequence,

Inf(v0, v1, v2, . . . ) = {v : v` = v for infinitely many ` ≥ 0}.

• A Büchi condition is specified by a set F ⊆ V of recurrent positions that
describes the winning condition {π : F ∩ Inf(π) 6= ∅}.

• A Muller condition is specified by a collection F ⊆ P(V ) of subsets that
describes the winning condition {π : Inf(π) ∈ F}.

• A parity condition is specified by a priority function Ω : V → ω of finite
range that describes the winning condition

{v0, v1, v2, . . . : min Inf(Ω(v0),Ω(v1),Ω(v2), . . . ) is even }.

Further, we will refer to ω-regular winning conditions, i.e., conditions given
by ω-regular languages over the alphabet V (or over C, in the case of coloured
game graphs). Such conditions may be specified by appropriate automata mod-
els, ω-regular expressions, or logical formalisms.

When describing a game, we may omit mentioning the set V1 = V \ V0 and
usually refer to a specification of a particular winning condition. For instance
(V,E, V0,Ω) stands for the game (V,E, V0, V1,W ) with the parity winning con-
dition W derived from the priority function Ω.

2



1.1 Fundamental questions

1.1 Fundamental questions

1. Determinacy: Given a class Γ of games, is it the case that for any G ∈ Γ,
either Player 0 or Player 1 has a winning strategy?

2. Decision: Given a game, does Player 0 (or Player 1) have a winning
strategy?

3. Construction: Given a game, how to construct a winning strategy (for the
appropriate player).

4. Complexity: Can a winning strategy be implemented algorithmically?
Which computational resources are necessary to do so?

In the context of algorithmic analysis, the question of determinacy is often
formulated as follows. Given the game G = (V,W ), does there exist a a partition
V = W0 ∪̇W1 such that Player 0 has a winning strategy from any position
v ∈ W0 whereas Player 1 has a winning strategy from any position v ∈ W1.
If this is the case, we call the sets W0,W1 the winning region of Player 0 and
Player 1, respectively.

2 Reachability and Safety games

Our first result shows that reachability games, i.e, games with reachability win-
ning conditions are determined.

Theorem 1 (Determinacy of reachability games). For every reachability game
G = (V, V0, E, F ), there exists a partition W0 ∪̇W1 = V such that Player 0 has a
winning strategy from any starting position v ∈W0 and Player 1 has a winning
strategy from any starting position v ∈W1.

Proof. We detail the proof for games on finite graphs (the argument can be
extended to infinite graphs using transfinite induction.) Towards this, we con-
struct inductively a sequence of sets (Attr0i (F ))i≥0 with the property that from
any position of Attr0i (F ), Player 0 can ensure to reach F in at most i many
steps:

Attr00(F ) := F ;

Attr0i+1(F ) := Attr0i (F )

∪ {v ∈ V0 : vE ∩Attr0i (F ) 6= ∅}
∪ {v ∈ V1 : vE ⊆ Attr0i (F )}.

The sequence is increasing until it reaches a fixed point Attr0i+1(F ) = Attr0i+1(F )

after at most |V | many stages. We denote this fixed point by Attr0(F ) and call
it the attractor of F for Player 0. We claim that

(i) W 0 := Attr0(F ) is the winning region of Player 0 on G, and

3



2 Reachability and Safety games

(ii) W 1 := V \Attr0(F ) is the winning region of Player 1 on G.

To show this, let us define a function rank : V → ω ∪ {∞} associating to
every position v ∈ V the stage at which it was included into the attractor,

rank(v) =

{
min{i : v ∈ Attr0i (F )} if v ∈ Attr0(F ),

∞ otherwise.

This function has the following property:

(i) for every v ∈ Attr0(F ), either

- v ∈ F , or

- v ∈ V0 \ F and for some successor w ∈ vE, rank(w) < rank(v), or

- v ∈ V1 \ F and, for all successors w ∈ vE, rank(w) < rank(v);

(ii) for every v ∈ V \Attr0(F ), either

- v ∈ V0 and, for all successors w ∈ vE, rank(w) =∞, or

- v ∈ V1 and, for some successor w ∈ vE, rank(w) =∞.

Accordingly, we can define a function f : V0 → V that picks for every
position v ∈ V0 a successor f(v) ∈ vE such that rank(f(v)) < rank(v) whenever
v ∈ Attr0(F ) \ F .

Let us now consider the reachability game G with an arbitrary starting po-
sition v0 ∈ Attr0(F ), and let σ : V ∗V0 → V be the strategy for Player 0 that
chooses for every initial play π = v0, v1, . . . , v` with v` ∈ V0 the successor f(v`).
Then, any play v0, v1, v2, . . . that follows σ must reach a position of F . Other-
wise, we had a strictly decreasing sequence

rank(v0) > rank(v1) > rank(v2) > . . .

of infinite length, which cannot happen. Thus, σ is a winning strategy for
Player 0 in G, v0.

Conversely, for Player 1, let g : V1 → V be a function that picks for every
v ∈ V1 a successor g(v) such that rank(g(v)) =∞ whenever v ∈ V \Attr0(F ).

For the game G starting at an arbitrary position v0 ∈ F \ Attr0(F ), define
a strategy τ : V ∗V1 → V for Player 1 by associating to every initial play
v0, v1, . . . v` with v` ∈ V1 the successor g(v`). Then, in any play v0, v1, v2, . . .
following τ , we have rank(vi) = ∞ at all indices i ≥ 0, which means that F is
never reached. Hence, τ is a winning strategy for Player 1 in the reachability
game G, v0.

The attractor computation can be implemented in time linear in the size
|V |+ |E| of the graph. To avoid processing elements twice, Algorithm 1 main-
tains, for each node v, a counter n(v) of unprocessed successors and a queue P (v)
of unprocessed predecessors.

4



2 Reachability and Safety games

Algorithm 1: A linear-time algorithm for solving reachability games

Input: a game G = (V,E, V0, F ) with reachability condition F
Output: winning regions W0 and W1

// initialisation
forall the v ∈ V do

win[v] := ⊥
P [v] := ∅
n[v] := 0

end
// for each position, set up a list of predecessors and count its successors
forall the (u, v) ∈ E do

P [v] := P [v] ∪ {u}
n[u] := n[u] + 1

end

forall the v ∈ F do
Propagate(v)

end

return win

procedure Propagate(v)
if win[v] 6= ⊥ then return
// mark v as winning for Player 0
win[v] := >
// propagate change to predecessors
forall the u ∈ P [v] do

n[u] := n[u]− 1
if u ∈ V0 or n[u] = 0 then Propagate(u)

end

5



3 Non-determined games

Observe that the attractor strategy σ : V ∗V0 → V constructed in the previ-
ous proof is described by a function f : V0 → V , which is a much simpler object
than σ. Here the choice after an initial play v0, v1, . . . , v` depends only on the
current position v` and not on the entire play prefix (the strategy τ : V ∗V1 → V
also had this property). Such strategies are particularly interesting for our
analysis.

A strategy σ : V ∗V0 for a game G, v0 is called memoryless (or positional) if
there exists a function f : V0 → V such that σ(v0, v1, v2, . . . , v`) = f(v`) for all
initial plays v0, v1, . . . , v` with v` ∈ V0. We will usually identify the function f
and the induced memoryless strategy.

Notice that, if we fix a game G, a memoryless strategy f : V0 → V induces a
(proper) strategy σ : V ∗V0 → V for each game G, v0 with v0 ∈ V . We say that
a memoryless strategy is uniformly winning over a set of positions U ⊆ V if the
(induced proper) strategy is winning in every game G, v0 with v0 ∈ U .

Corollary 2. For every reachability game G, the set V of positions can be par-
titioned into W0 ∪̇W1 = V such that Player 0 has a uniform memoryless win-
ning strategy over W0 and Player 1 has a uniform memoryless winning strategy
over W1. The winning regions together with witnessing memoryless strategies
can be computed in time O(|V |+ |E|).

Safety games are dual to reachability games in the following sense: Player 0
has a winning strategy in the safety game (V, V0, V1, E, F ) if, and only if, Player 1
has a winning strategy in the reachability game (V, V1, V0, F

′ = V \ F ) where
the roles of the players are switched. Thus, our results for reachability games
apply readily to safety games.

Corollary 3. For every safety game G, the set V of positions can be partitioned
into W0 ∪̇W1 = V such that Player 0 has a uniform memoryless winning strat-
egy over W0 and Player 1 has a uniform memoryless winning strategy over W1.
The winning regions together with witnessing memoryless strategies can be com-
puted in time O(|V |+ |E|).

3 Non-determined games

Theorem 4. There exist a game (G,W ) that is not determined. For every
strategy σ for Player 0, there exists a strategy τ of Player 1 such that σ τ̂ ∈W1

and conversely, for every strategy τ there exists a strategy σ such that σ τ̂ ∈W0.

Proof following [D. Gale and F. Stewart, Infinite games with perfect
information, Contributions to the Theory of Games, Annals of Mathematical
Studies, vol. 28, Princeton University Press, Princeton, NJ, 1953, pp. 245 –
266.]

6



4 Parity games

4 Parity games

In this section we discuss parity games. They provide the basic model of games
used in automated verification and the synthesis of reactive system, and are
closely connected with automata-theoretic methods. Although conceptually
more complex than reachability games, we will show that parity games enjoy
similarly good analytic properties.

Theorem 5 (Memoryless determinacy of parity games). For every parity game
G, the set V of positions can be partitioned into W0 ∪̇W1 = V such that Player 0
has a uniform memoryless winning strategy over W0 and Player 1 has a uniform
memoryless winning strategy over W1.

Before proceeding with the proof, let us formulate a technical lemma.

Lemma 6. Let G be a parity game, and let U = {v0, v1, . . . vn−1} be a set of
positions such that Player 0 has memoryless winning strategies f0, f1, . . . , fn−1
in the games G starting at v0, v1, . . . , vn−1, respectively. Then, there exists a
memoryless winning strategy for Player 0 that is uniformly winning over U .

Proof. We define the strategy f : V0 → V by setting

f(v) =

{
fk(v) k = min{j : fj is a winning strategy in G, v}
f0(v) otherwise (arbitrary).

The strategy f is uniformly winning over U , because along any play π that fol-
lows f starting at a position in U , the index min{j : fj is a winning strategy in G, v
is always defined and never increases along an edges taken in the play. Accord-
ingly, such a play must stabilise after a finite number of steps to follow the
strategy fk forever and, thus, yield a win for Player 0.

We are now ready to prove the theorem.

Proof. Let us fix a game G. We proceed by induction over the number of
priorities m = |Ω(V )|. Without loss, we can assume that the range Ω(V ) of the
priority function is either {0, 1, . . . ,m− 1} or {1, 2, . . . ,m}.

For m = 1, either Ω(V ) = {0} and Player 0 wins all plays, or Ω(V ) = {1}
and it is Player 1 who wins all plays. Accordingly, we have W0 = V and W1 = ∅
or vice-versa. Any memoryless strategy is uniformly winning on the relevant
region.

For m > 1, we treat only the case 0 ∈ Ω(V ). (If the most significant priority
is 1, we can switch the roles of the two players and use the same argument).

First, let us isolate the game positions from which Player 1 has a winning
strategy of the desired form,

X1 := {v ∈ V : Player 1 has a memoryless winning strategy from v}.

By Lemma 6, we can choose a uniform memoryless strategy g for Player 1
over X1. Our intention is to prove that the winning regions of G are W1 = X1

7



4 Parity games

and W0 = V \ X1. Towards this, we will constructing a memoryless winning
strategy f for Player 0 over W0.

Observe that V \X1 is a trap for Player 1 in the sense that Player 0 has a
memoryless strategy to prevent any play that starts in this set from quitting it:
If Player 1 could ensure reaching X1 from some position v ∈ V \X1, then his
winning strategy over X1 would extend to a winning strategy over X1∪{v} and
we had v ∈ X1, a contradiction. Let us fix a trap strategy f0 for Player 0 over
V \X1.

Next, we separate the positions of most significant priority that are not
already won by Player 1,

Y := Ω−1(0) \X1,

and consider the attractor of this set for Player 0:

Z = Attr0(Y ).

Let f̂ be an attractor strategy over the set Z.
Finally, let us look at the subgame G′ induced in G by the set of positions

V ′ = V \ (X1 ∪ Z). Clearly, G′ has fewer priorities than G, so we can apply the
induction hypothesis to obtain a winning partition V ′ = W ′0 ∪̇W ′1 and winning
memoryless strategies f ′ and g′ for Player 0 and Player 1, respectively.

At this point, we argue that W ′1 = ∅. Assuming otherwise, for any v ∈ W ′1,
the strategy

g + g′ =

{
g(x) x ∈ X1

g′(x) x ∈W ′1

would be a memoryless winning strategy in G, v: Any play that follows g + g′

would either stay in W ′1 and follow g′ or reach X1 and follow g afterwards,
leading in either case to a win for Player 1. However, by construction, any such
position v must already belong to X1.

Finally, we are ready to define

f(x) :=


f ′(x) if x ∈W ′0;

f̂(x) if x ∈ Z \ Y ;

f0(x) if x ∈ Y.

We claim that f is uniformly winning over V \X1.
To see this, consider a play π that follows f . By construction of the strat-

egy, π stays in V \X1. We distinguish between two cases:

(a) if π hits Z finitely often, it means that the play finally stays in W ′0 where
it follows σ′ yielding a win for Player 0;

(b) if π hits Z infinitely often, the play will also be attracted into Y infinitely
often, and thus hit the priority 0 infinitely often, thus also leading to a
win for Player 0.

8



4 Parity games

Thus we have constructed memoryless winning strategies τ and σ over W1 =
X1 and W0 = V \X1 for Player 0 and Player 1, respectively, which concludes
the proof.

As a consequence of memoryless determinacy, we obtain the following insight
into the computational complexity of parity games.

Corollary 7. The problem of deciding whether a position v0 in a parity game
is winning for Player 0 is in NP ∩ Co-NP.

Proof. To show membership in NP, we argue that a nondeterministic machine
can guess a memoryless strategy and verify in polynomial time whether it is
winning.

Towards this, let us fix a parity game G, v0 with the usual notation. Without
loss, we may assume that all game positions are reachable from v0. Any memo-
ryless strategy f induces in G a reduced game Gf = (V,Ef , V0,Ω) by eliminating
all the moves that do not follow f :

Ef = {(v, w) ∈ E : v ∈ V1 ∨ (v ∈ V0 ∧ w = f(v)}.

We call a cycle in Gf odd, if the least priority of its positions is odd.
It is easily seen that a strategy f is winning in G, v0 if, and only if, the reduced

game Gf contains no odd cycle. This property can be verified in polynomial time
using the following procedure.

Consider for any odd priority k ∈ {1, 3, . . . } the subgraph Gk induced in the
graph of Gf by the set of positions of priority at least k. Checking whether Gf

contains an odd cycle amounts to checking whether, for any odd priority k, the
graph Gk has a strongly connected component with a position of priority k. For
a single priority k, this can be done using Tarjan’s algorithm in time O(|V |+|E|).

Membership in Co-NP follows immediately: to decide that Player 0 does
not have a winning strategy an algorithm can guess a memoryless strategy for
Player 1 and verify it in polynomial time.

In order to turn our proof of Theorem 5 into a deterministic algorithm for
solving games, it appears reasonable to avoid the explicit construction of the
set

X1 := {v ∈ V : Player 1 has a memoryless winning strategy from v}

which would require exponential time, if implemented directly.
One approach is to conduct the induction over the number of positions in

the game rather than the number of priorities.
Games with one position are trivial. For the induction step on a game G

with |V | = n + 1 positions, choose a position v ∈ V of the most significant
priority; let us assume that this priority is even (otherwise, switch the players).
Next, consider the subgame induced by V \Attr0({v}), which has at most n po-
sitions, and construct its winning partition (W ′0,W

′
1) with witnessing strategies

recursively.
Firstly, we have W ′1 ⊆W1 because W ′1 is a trap for Player 1 in G. To deter-

mine how V \W ′0 splits into winning regions, there are two cases to distinguish.

9



4 Parity games

(i) If Player 0 can enforce at v that the next move leads to W ′0 ∪Attr0({v}),
we can compose the inductive and the attractor strategies to show that
Player 0 wins in G from all positions in V \W ′1 = W ′0 ∪ Attr0({v}), and
thus W1 = W ′1.

(ii) Otherwise, if Player 1 can enforce at v that the next move leads to W ′1, that
is, if v ∈ Attr1({W ′1}, we recursively find the partition of V \ Attr1(W ′1)
into winning regions (W ′′0 ,W

′′
1 ) and show that Player 1 wins in G from all

positions in W ′′1 ∪ Attr1(W ′1) whereas Player 0 wins from the remaining
positions, i.e., W0 = W ′′0 .

Notice that the algorithm for solving a game of size n may invoke two re-
cursive calls on games of size up to n− 1 (if case [(ii)] occurs). The worst-case
complexity of this algorithm for a game with n positions is O(2n). During the
last decades several algorithms with better bounds have been proposed improv-
ing the worst case complexity up to (2O

√
n). However, the question whether

winning regions of parity games can be computed in polynomial time remained
one of the most challenging open problems in theoretical computer science.

10


