
CONSENSUS GAME ACCEPTORS AND ITERATED

TRANSDUCTIONS

DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

LSV, CNRS and Université Paris-Saclay, France

Abstract. We study a game for recognising formal languages, in which
two players with imperfect information need to coordinate on a common
decision, given private input words correlated by a finite graph. The
players have a joint objective to avoid an inadmissible decision, in spite
of the uncertainty induced by the input.

We show that the acceptor model based on consensus games charac-
terises context-sensitive languages. Further, we describe the expressive-
ness of these games in terms of iterated synchronous transductions and
identify a subclass that characterises context-free languages.

1. Introduction

The idea of viewing computation as an interactive process has been at the
origin of many enlightening developments over the past three decades. With
the concept of alternation, introduced around 1980 by Chandra and Stock-
meyer, and independently by Kozen [6], computation steps are attributed
to conflicting players seeking to reach or avoid certain outcome states. This
approach relies on determined games with perfect information, and it led to
important and elegant results, particularly in automata theory. Around the
same time, Peterson and Reif [19] initiated a study on computation via games
with imperfect information, involving teams of players. This setting turned
out to be highly expressive, but also overwhelmingly difficult to comprehend.
(See [2, 11], for more recent accounts.)

In this paper, we propose a game model of a language acceptor based
on coordination games between two players with imperfect information.
Compared to the model of Reif and Peterson, our setting is utterly simple:
the games are played on a finite graph, plays are of finite duration, they involve
only one yes-or-no decision, and the players have no means to communicate.
Moreover, they are bound to take their decisions in consensus. Given an
input word that may yield different observations to each of the players,
they have to settle simultaneously and independently on a common decision,
otherwise they lose.

E-mail address: dwb@lsv.fr (Dietmar Berwanger, corresponding author).

2 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

Consensus game acceptors arise as a particular case of coordination games
with perfect recall, also described as multiplayer concurrent games or synchro-
nous distributed games with incomplete information in the computer-science
literature. Our motivation for studying the acceptor model is to obtain lower
bounds on the complexity of basic computational problems on coordination
games with imperfect information, specifically (1) solvability: whether a
winning strategy exists for a given game, and (2) implementability: which
computational resources are needed to implement a winning strategy, if any
exists.

Without the restrictions to consensus and to a single decision per play, the
solvability problem for coordination games with safety winning conditions is
known to be undecidable [19, 20]. Furthermore, Janin [12] points out that
there exist two-player safety games that admit a winning strategy but none
that can be implemented by a Turing machine.

Our first result establishes a correspondence between context-sensitive
languages and consensus games: We prove that, for every context-sensitive
language L, there exists a solvable consensus game in which every winning
strategy extends the characteristic function of L, and conversely, that every
solvable consensus game admits a winning strategy characterised by a context-
sensitive language.

As a second result, we characterise winning strategies for consensus games
in terms of iterated transductions of the (synchronous rational) relation
between the observations of players. This allows us to identify a subclass
of games that corresponds to context-free languages. Although it is still
undecidable whether a game of the class admits a winning strategy, we can
effectively construct optimal strategies implemented by push-down automata.

The results provide insight on the inherent complexity of coordination
in games with imperfect information. With regard to the basic problem
of agreement on a simultaneous action, they substantiate the assertion
that “optimality requires computing common knowledge” put forward by
Dwork and Moses in their analysis of Byzantine agreement in distributed
systems [9]. Indeed, the constraints induced by our acceptor model can be
reproduced in virtually any kind of games with imperfect information and
plays of unbounded length, with the consequence that implementing optimal
strategies amounts to deciding the transitive closure of the transduction
induced by the game graph.

Acknowledgements. This work was partially supported by the European
Union Seventh Framework Programme under Grant Agreement 601148
(CASSTING). The current paper extends a preliminary report [5] presented
at the Conference on Developments in Language Theory (DLT 2015).

2. Preliminaries

For standard background on formal language theory, in particular context-
sensitive languages, we refer to Chapters 3 and 4 of the handbook [21]. We

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 3

use the characterisation of context-sensitive languages in terms of nondeter-
ministic linear-bounded automata given by Kuroda [13], and the following
well-known results from the same article: (1) For a fixed context-sensitive
language L over an alphabet Σ, the problem whether a given word w ∈ Σ∗

belongs to L is PSpace-hard. (2) The problem of determining whether a
given context-sensitive language represented by a linear-bounded automaton
contains any non-empty word is undecidable.

2.1. Consensus game acceptors. Consensus acceptors are games between
two cooperating players 1 and 2, and a passive agent called Input. Given
a finite observation alphabet Γ common to both players, a consensus game
acceptor G = (V,E, (β1, β2), v0,Ω) is described by a finite set V of states, a
transition relation E ⊆ V ×V , and a pair of observation functions βi : V → Γ
that label every state with an observation, for each player i = 1, 2. There is
a distinguished initial state v0 ∈ V with no incoming transition. States with
no outgoing transitions are called final states; the admissibility condition
Ω : V → P({0, 1}) maps every final state v ∈ V to a nonempty subset of
admissible decisions Ω(v) ⊆ {0, 1}. The observations at the initial and the
final states do not matter, we assume that they correspond to a special
symbol # ∈ Γ for both players.

The game is played as follows: Input chooses a finite path π = v0 v1 . . . vn+1

in G from the initial state v0, following transitions (v`, v`+1) ∈ E, for all
` ≤ n, to a final state vn+1. Then, each player i receives a private sequence of
observations βi(π) := βi(v1)βi(v2) . . . βi(vn) and is asked to take a decision
ai ∈ {0, 1}, independently and simultaneously. The players win if they agree
on an admissible decision, that is, a1 = a2 ∈ Ω(vn+1); otherwise they lose.
Without risk of confusion we sometimes write Ω(π) for Ω(vn+1).

We say that two plays π, π′ are indistinguishable to player i, and write
π ∼i π′, if βi(π) = βi(π′). This is an equivalence relation, and its classes,
called the information sets of Player i, correspond to observation sequences
βi(π). A strategy for Player i is a mapping si : V ∗ → {0, 1} from plays π
to decisions si(π) ∈ {0, 1} such that si(π) = si(π′), for any pair π ∼i π′ of
indistinguishable plays. A joint strategy is a pair s = (s1, s2); it is winning,
if s1(π) = s2(π) ∈ Ω(π), for all plays π. In this case, the components s1

and s2 are equal, and we use the term winning strategy to refer to the joint
strategy or either of its components. Finally, a game is solvable, if there
exists a (joint) winning strategy.

In the terminology of distributed systems, consensus game acceptors
correspond to synchronous systems with perfect recall and known initial
state. They are a particular case of distributed games with safety objectives
[17], coordination games with imperfect information [4], or multi-player
concurrent games [1]. Whenever we refer to games in the following, we mean
consensus game acceptors.

2.2. Strategies and knowledge. We say that two plays π and π′ are
connected, and write π ∼∗ π′, if there exists a sequence of plays π1, . . . , πk

4 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

such that π ∼1 π1 ∼2 · · · ∼1 πk ∼2 π′. Then, a mapping f : V ∗ → {0, 1}
from plays to decisions is a strategy that satisfies the consensus condition
if, and only if, f(π) = f(π′), for all π ∼∗ π′. In terms of distributed
knowledge, this means that the decisions have to be based on events that are
common knowledge among the players at every play. (For an introduction
to knowledge in distributed systems, see Chapters 10 – 11 in the book of
Fagin, Halpern, Moses, and Vardi [10].) Such a consensus strategy — or,
more precisely, the pair (f, f)— may still fail, due to prescribing inadmissible
decisions. We say that a decision a ∈ {0, 1} is safe at a play π if a ∈ Ω(π′),
for all π′ ∼∗ π. Then, a consensus strategy f is winning, if and only if, it
prescribes a safe decision f(π), for every play π.

It is sometimes convenient to represent a strategy for a player i as a function
f i : Γ∗ → {0, 1}. Every such function describes a valid strategy, because
observation sequences identify information sets; we refer to an observation-
based strategy in contrast to the state-based representation si : V ∗ → {0, 1}.
Note that the components of a joint winning strategy need no longer be
equal in the observation-based representation. However, once the strategy
for one player is fixed, the strategy of the other player is determined by the
consensus condition, so there is no risk of confusion in speaking of a winning
strategy rather than a joint strategy pair.

As an example, consider the game depicted in Figure 1, with observation
alphabet Γ = {a, b, /, .,�}. States v at which the two players receive different
observations are split, with β1(v) written in the upper part and β2(v) in the
lower part; states at which the players receive the same observation carry
only one symbol. The admissible decisions at final states are indicated on
the outgoing arrow. Notice that upon receiving the observation sequence
a2b2, for instance, the first player is constrained to choose decision 1, due to
the following sequence of indistinguishable plays that leads to a play where
deciding 0 is not admissible.

a, a
a, /
b, .
b, b

 ∼2

a, a
/, /
., .
b, b

 ∼1

a, /
/, .
., /
b, .

 ∼2

/, /
., .
/, /
., .

 ∼1

/,�
.,�
/,�
.,�

 ∼2

�,�
�,�
�,�
�,�

In contrast, decision 0 may be safe when Player 1 receives input a3b2, for
instance. Actually, the strategy s1(w) that prescribes 1 if, and only if,
w ∈ {anbn | n ∈ N} determines a joint winning strategy. Next, we shall make
the relation between games and languages more precise.

3. Describing languages by games

We consider languages L over a terminal alphabet Σ. The empty word ε is
excluded from the language, and also from its complement L̄ := (Σ∗ \{ε})\L.
As acceptors for such languages, we consider games over an observation
alphabet Γ ⊇ Σ, and we assume that no observation sequence in Σ+ is

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 5

#

a /

a b

a
a

a
/

/
.

/
�

�

.b
b
b

b
.

.
/

.
�

#

10, 1

Figure 1. A consensus game acceptor

omitted: for every word w ∈ Σ+, and each player i, there exists a play π
that yields the observation sequence βi(π) = w.

Given a consensus game acceptor G, we associate to every observation-
based strategy s ∈ S1 of the first player, the language L(s) := {w ∈
Σ∗ | s(w) = 1}. We say that the game G covers a language L ⊆ Σ∗, if G is
solvable and

• L = L(s), for some winning strategy s ∈ S1, and
• L ⊆ L(s), for every winning strategy s ∈ S1.

If, moreover, L = L(s) for every winning strategy in G, we say that G
characterises L. In this case, all winning strategies map L to 1 and L̄ to 0.

Notice that every solvable game covers a unique language L over the full
observation alphabet Γ. With respect to a given terminal alphabet Σ ⊆ Γ,
the covered language is hence L ∩ Σ∗. For instance, the consensus game
acceptor represented in Figure 1 covers the language {anbn | n ∈ N} over
{a, b}. To characterise a language rather than covering it, we need to add
constraints that require to reject inputs.

Given two games G,G′, we define the union G∪G′ as the consensus game
obtained by taking the disjoint union of G and G′ and identifying the initial
states. Then, winning strategies of the component games can be turned into
winning strategies of the composite game, if they agree on the observation
sequences over the common alphabet.

Lemma 1. Let G, G′ be two consensus games over observation alphabets Γ,
Γ′. Then, an observation-based strategy r is winning in G ∪G′ if, and only

6 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

if, there exist observation-based winning strategies s, s′ in G, G′ that agree
with r on Γ∗ and on Γ′∗, respectively.

Proof. Clearly, if r is a winning strategy in G ∪G′, then its restrictions s, s′

to Γ∗ and Γ′∗ are winning strategies in G and G′. For the converse, let s, s′

be two observation-based winning strategies in G, G′ that agree on (Γ∩ Γ′)∗.
Notice that every observation sequence in the conjunction G ∪G′ is either
included in Γ∗ or in Γ′∗, as a play that enters G at the initial state can never
reach G′ and vice versa. Therefore, the function r : (Γ ∪ Γ′)∗ → {0, 1} that
agrees with s on Γ∗ and with s′ on Γ′∗ determines a winning strategy in the
acceptor game G ∪G′. �

Whenever a language and its complement are covered by two consensus
games, we can construct a new game that characterises the language. The
construction involves inverting the decisions in a game, that is, replacing the
admissible decisions for every final state v ∈ V with Ω(v) = {0} by Ω(v) :=
{1} and vice versa; final states v with Ω(v) = {0, 1} remain unchanged.

Lemma 2. Suppose two consensus games G, G′ cover a language L ⊆ Σ∗

and its complement L̄, respectively. Let G′′ be the game obtained from G′ by
inverting the admissible decisions. Then, the game G ∪G′′ characterises L.

Proof. Let G, G′ be two acceptor games that cover L and L̄. Witout loss
of generality, we assume that the observation alphabets Γ, Γ′ intersect only
on Γ ∩ Γ′ = Σ; other common observations may be renamed. We need to
show that the union G ∪G′′ is solvable and that every winning strategy r of
Player 1 satisfies L = L(r).

For the first point, let s,s′ be two observation-based winning strategies for
Player 1 in G,G′ such that L(s) = L and L(s′) = L̄. Then, the strategy s′′

for G′′ with s′′(π) := 1− s′(π) for any play π is winning, since s′ is winning
in G′ and the admissible decisions are inverted. Moreover, s and s′′ agree on
all sequences of observations in Σ∗, so they admit a common extension r to
G ∪G′′ that determines a winning strategy, according to Lemma 1.

For the second point, consider an arbitrary winning strategy r in the
composite game G∪G′′. Then, the restrictions of r to Γ∗ and Γ′∗ are winning
in G and G′′, respectively. This implies, for all w ∈ Σ∗, that r(w) = 1 if
w ∈ L, and r(w) = 0 otherwise: the former because G covers L, and the
latter because G′ covers L̄ and the decisions in G′′ are inverted. Hence, we
have L(r) = L for every winning strategy r in the game G ∪G′′, which thus
characterises L. �

3.1. Domino frontier languages. We use domino systems as an alter-
native to encoding machine models and formal grammars (See [25] for a
survey.). A domino system D = (D,Eh, Ev) is described by a finite set of
dominoes together with a horizontal and a vertical compatibility relation
Eh, Ev ⊆ D × D. The generic domino tiling problem is to determine, for
a given system D, whether copies of the dominoes can be arranged to tile

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 7

a given space in the discrete grid Z × Z, such that any two vertically or
horizontally adjacent dominoes are compatible. Here, we consider finite
rectangular grids Z(`,m) := {0, . . . , `+ 1} × {0, . . . ,m}, where the first and
last column, and the bottom row are distinguished as border areas. Then,
the question is whether there exists a tiling τ : Z(`,m)→ D that assigns to
every point (x, y) ∈ Z(`,m) a domino τ(x, y) ∈ D such that:

• if τ(x, y) = d and τ(x+ 1, y) = d′ then (d, d′) ∈ Eh, and
• if τ(x, y) = d and τ(x, y + 1) = d′ then (d, d′) ∈ Ev.

The Border-Constrained Corridor tiling problem takes as input a domino
system D with two distinguished border dominoes # and �, together with
a sequence w = w1w2 . . . w` of dominoes wi ∈ D, and asks whether there
exists a height m such that the rectangle Z(`,m) allows a tiling τ with w in
the top row, # in the first and last column, and � in the bottom row:

• τ(i, 0) = wi, for all i = 1, . . . , `;
• τ(0, y) = τ(`+ 1, y) = #, for all y = 0, . . . ,m− 1;
• τ(x,m) = �, for all x = 1, . . . , `.

Domino systems can be used to recognise formal languages. For a domino
system D with side and bottom border dominoes as above, the frontier
language L(D) is the set of words w ∈ D∗ that yield positive instances
of the border-constrained corridor tiling problem. We use the following
correspondence between context-sensitive languages and domino systems
established by Latteux and Simplot.

Theorem 3 ([14, 15]). For every context-sensitive language L ⊆ Σ∗, we can
effectively construct a domino system D over a set of dominoes D ⊇ Σ with
frontier language L(D) = L.

Figure 2 describes a domino system for recognising the language anbn also
covered by the game in Figure 1. In the following, we show that domino
systems can generally be described in terms of consensus game acceptors.

3.2. Uniform encoding of domino problems in games. Game formu-
lations of domino tiling problems are standard in complexity theory, going
back to the early work of Chlebus [7]. However, these reductions are typically
non-uniform: they construct for every input instance consisting of a domino
system together with a border constraint a different game which depends, in
particular, on the size of the constraint. Here, we use imperfect information
to define a uniform reduction that associates to a fixed domino system D a
game G(D), such that for every border constraint w, the question whether
D, w allows a correct tiling is reduced to the question of whether decision 1
is safe in a certain play associated to w in G(D).

Proposition 3.1. For every domino system D, we can construct, in poly-
nomial time, a consensus game acceptor that covers the frontier language
of D.

8 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

a a a a / a b . b b b b

/ / . . / . # # � � � �

#
#

a
a

a
/

b
b

b
.

/
�

.
�

.
/

/
.

(a) domino system for anbn

a a a b b b
a a / . b b
a / . / . b
/ . / . / .
� � � � � �

(b) tiling a3b3

Figure 2. Characterising a language with dominoes

Proof. Let us fix a domino system D = (D,Eh, Ev) with a left border
domino # and a bottom domino �. We construct a consensus game G for
the alphabet Σ := D \ {#,�} to cover the frontier language L(D). There
are domino states of two types: singleton states d for each d ∈ D \ {#} and
pair states (d, b) for each (d, b) ∈ Ev. At singleton states d, the two players
receive the same observation d. At states (d, b), the first player observes d
and the second player b. The domino states are connected by transitions
d→ d′ for every (d, d′) ∈ Eh, and (d, b)→ (d′, b′) whenever (d, d′) and (b, b′)
are in Eh. There is an initial state v0 and two final states ẑ and z, all
associated to the the observation # for the border domino. From v0 there
are transitions to all compatible domino states d with (#, d) ∈ Eh, and all
pair states (d, b) with (#, d) and (#, b) ∈ Eh. Conversely, the final state z is
reachable from all domino states d with (d,#) ∈ Eh, and all pair states (d, b)
with (d,#) and (b,#) ∈ Eh; the final ẑ is reachable only from the singleton
bottom domino state �. Finally, admissible decisions are Ω(z) = {0, 1} and
Ω(ẑ) = {1}. Clearly, G is a consensus game, and the construction can be
done in polynomial time.

Note that any sequence x = d1 d2 . . . d` ∈ D` that forms a horizontally
consistent row in a tiling by D corresponds in the game to a play πx =
v0 d1 d2 . . . d`, z or πx = v0 �` ẑ. Conversely, every play in G corresponds
either to one possible row, in case Input chooses a single domino in the
first transition, or to two rows, in case it chooses a pair. Moreover, a
row x can appear on top of a row y = b1 b2 . . . b` ∈ D` in a tiling if,
and only if, there exists a play ρ in G such that πx ∼1 ρ ∼2 πy, namely
ρ = v0 (d1, b1) (d2, b2) . . . (d`, b`) z.

Now, we claim that at an observation sequence π = w for w ∈ Σ` the
decision 0 is safe if, and only if, there exists no correct corridor tiling by
D with w in the top row. According to our remark, there exists a correct
tiling of the corridor with top row w, if and only if, there exists a sequence
of rows corresponding to plays π1, . . . , πm, and a sequence of witnessing
plays ρ1, . . . , ρm−1 such that w = π1 ∼1 ρ1 ∼2 π2 · · · ∼1 ρm−1 ∼2 πm = �`.
However, the decision 0 is unsafe in the play �` and therefore at w as well.
Hence, every winning strategy s for G must prescribe s(w) = 1, for every
word w in the frontier language of D, meaning that L(s) ⊆ L(D).

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 9

Finally, consider the mapping s : D∗ → A that prescribes s(w) = 1 if, and
only, if w ∈ L(D). The observation-based strategy s in the consensus game G
is winning since s(�∗) = 1, and it witnesses the condition L(s) = L(D).
This concludes the proof that the constructed consensus game G covers the
frontier language of D. �

4. Characterising context-sensitive languages

Our first result establishes a correspondence between context-sensitive
languages and consensus games.

Theorem 4. For every context-sensitive language L ⊆ Σ∗, we can construct
effectively a consensus game acceptor that characterises L.

Proof. Let L ⊆ Σ∗ be an arbitrary context-sensitive language, represented,
e.g., by a linear-bounded automaton. By Theorem 3, we can effectively
construct a domino system D with frontier language L. Further, by Proposi-
tion 3.1, we can construct a consensus game G that covers L(D) = L. Due
to the Immerman-Szelepcsényi Theorem, context-sensitive languages are
effectively closed under complement, so we can construct a consensus game
G′ that covers Σ∗ \ L following the same procedure. Finally, we combine the
games G and G′ as described in Lemma 2 to obtain a consensus game that
characterises L. �

One interpretation of the characterisation is that, for every context-
sensitive language, there exists a consensus game that is as hard to play as
it is to decide membership in the language. On the one hand, this implies
that winning strategies for consensus games are in general PSpace-hard.
Indeed, there are instances of consensus games that admit winning strategies,
however, any machine that computes the decision to take in a play requires
space polynomial in the length of the play.

Theorem 5. There exists a solvable consensus game for which every winning
strategy is PSpace-hard.

Proof. There exist context-sensitive languages with a PSpace-hard word
problem [13]. Let us fix such a language L ⊆ Σ∗ together with a consensus
game G that characterises it, according to Theorem 4. This is a solvable
game, and every winning strategy can be represented as an observation-based
strategy s for the first player. Then, the membership problem for L reduces
(in linear time) to the problem of deciding the value of s in a play in G:
For every input word w ∈ Σ∗, we have w ∈ L if, and only if, s(w) = 1. In
conclusion, for every winning strategy s in G, it is PSpace-hard to decide
whether s(π) = 1. �

On the other hand, it follows that determining whether a consensus game
admits a winning strategy is no easier than solving the emptiness problem of
context-sensitive languages, which is well known to be undecidable.

10 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

Theorem 6. The question whether a consensus game admits a winning
strategy is undecidable.

Proof. We reduce the emptiness problem for a context-sensitive grammar
to the solvability problem for a consensus game. For an arbitrary context-
sensitive language L ∈ Σ∗ given as a linear bounded automaton, we construct
a consensus game G that characterises L, in polynomial time, according to
Theorem 4. Additionally, we construct a consensus game G′ that characterises
the empty language over Σ∗: this can be done, for instance, by connecting
a clique over letters in Σ observable for both players to a final state at
which only the decision 0 is admissible. Now, for any word w ∈ Σ∗, the
game G′ requires decision 0 at every observation sequences w ∈ Σ∗, whereas
G requires decision 1 whenever w ∈ L. Accordingly, the consensus game
G ∪G′ is solvable if, and only if, L is empty. As the emptiness problem for
context-sensitive languages is undecidable [13], it follows that the solvability
problem is undecidable for consensus game acceptors. �

We have seen that every context-sensitive language corresponds to a
consensus game acceptor such that language membership tests reduce to
winning strategy decisions in a play. Conversely, every solvable game admits a
winning strategy that is the characteristic function of some context-sensitive
language. Intuitively, a strategy should prescribe 0 at a play π whenever
there exists a connected play π′ at which 0 is the only admissible decision.
Whether this is the case can be verified by a nondeterministic machine using
space linear in the length of the play π.

Theorem 7. Every solvable consensus game admits a winning strategy that
is implementable by a nondeterministic linear bounded automaton.

5. Consensus and iterated transductions

Our aim in the following is to investigate how the structure of a consensus
game relates to the complexity of the described language which, in turn,
determines the complexity of winning strategies. Towards this, we view games
as finite-state automata representing the relation between the observation
sequences received by the players and the admissible decisions.

A synchronous transducer is a two-tape automaton (Q,Γ,∆, q0, F) over an
alphabet Γ, with state set Q, a transition relation ∆ ⊆ Q×Γ×Γ×Q labelled
by pairs of letters, an initial state q0 ∈ Q and a non-empty set F ⊆ Q of final
states; in contrast to games, final states of transducers may have outgoing

transitions. We write p
a|b−−→ q to denote a transition (p, a, b, q) ∈ ∆. An

accepting run of the transducer is a path ρ = q0
a1|b1−−−→ q1

a2|b2−−−→ . . .
an|bn−−−→ qn

that follows transitions in ∆ starting from the initial state q0 and ending at a
final state qn ∈ F . The label of the run is the pair of words (a1 . . . an, b1, . . . bn).
A pair of words (w,w′) ∈ Γ∗ × Γ∗ is accepted by the transducer if it is the
label of some accepting run. The relation recognised by the transducer is

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 11

the set R ⊆ Γ∗ × Γ∗ of accepted pairs of words. A relation is synchronous
if it is recognised by a synchronous transducer. In general, we do not
distinguish notationally between transducers and the relation they recognise.
For background on synchronous, or letter-to-letter, transducers, we refer to
the survey [3] of Berstel and to Chapter IV in the book [22] of Sakarovitch.

Given a consensus game acceptor G = (V,E, β1, β2, v0,Ω) over an obser-
vation alphabet Γ, we define the seed of G to be the triple (R,Lacc, Lrej)
consisting of the relation R := { (β1(π), β2(π)) ∈ (Γ × Γ)∗ | π play in G }
together with the languages Lacc ⊆ Γ∗ and Lrej ⊆ Γ∗ of observation sequences
β1(π) on plays π in G with Ω(π) = {1} and Ω(π) = {0}, respectively. The
seed of any finite game can be represented by finite-state automata.

Lemma 8. For every consensus game, the seed languages Lacc, Lrej are
regular and the seed relation R is recognised by a synchronous transducer.

Proof. We construct automata from the game graph by moving observations
from each state to the incoming transitions. Let G = (V,E, β, v0,Ω) be a
consensus game over an observation alphabet Γ, and let (R,Lacc, Lrej) be
its seed. We define three automata over the alphabet Γ, on the subset of V
consisting of non-final game states and with initial state q0 = v0.

The automata for the seed languages Lacc and Lrej allow transitions u
a−→ v

if (u, v) ∈ E and β1(v) = a. The set of final states consists of all game states v
with an outgoing transition (v, v′) ∈ E to some final state with Ω(v′) = {1}
for Lacc, and with Ω(v′) = {0} for Lrej. Then, for all words a1 . . . an ∈ Γ∗,

accepting runs v0
a1−→ v1

a2−→ . . .
an−→ vn of the automata Lacc and Lrej

correspond to plays π := v0v1 . . . vnv
′ with observations β1(π) = a1 . . . an

such that Ω(π) = {1} and Ω(π) = 0, respectively. Hence, the automata
recognise Lacc and Lrej.

Similarly, the transducer for the seed relation has transitions u
a|b−−→ v

whenever (u, v) ∈ E with β1(v) = a, β2(v) = b, and its final states are states
v ∈ V with an outgoing transition (v, v′) ∈ E to some terminal state v′ in
G. Then, for any pair of words (a1 . . . an, b1 . . . bn) ∈ Γ∗ × Γ∗, there exists an

accepting transducer run v0
a1|b1−−−→ v1

a2|b2−−−→ . . .
an|bn−−−→ vn if, and only if, there

exists a play π = v0, v1, . . . , vn, v
′ with β1(π) = a1 . . . an, β2(π′) = b1 . . . bn,

for some final game state v′. So, the transducer recognises the seed relation
R, as intended. �

Conversely, we can turn synchronous transducers and automata over
matching alphabets into games.

Lemma 9. Given a synchronous relation R ⊆ Γ∗ × Γ∗ and two disjoint
regular languages Lacc, Lrej ⊆ Γ∗, we can construct a consensus game with
seed (R,Lacc, Lrej).

Proof. Let us consider a synchronous transducer R and two word automata
A, B that recognise R, Lacc and Lrej, respectively. We assume that the word

12 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

automata are deterministic, with transition functions δA : QA × Γ → QA

and δB : QB ×Γ→ QB. To avoid confusion, we label the components of each

automaton with its name and write p
a−→
R

q for the transitions in R.

We construct a game G over the observation alphabet Γ∪{#} with states

formed of three components: a transducer transition p
a|b−−→
R

q, a state ofA, and

one of B. The game transitions follow the adjacency graph of the transducer
in the first component and update the state ofA and B in the second and third
component according to the observation a of player 1 in the first component.
More precisely, the set of game states is V := ∆×QA×QB∪{v0, vacc, vrej, v=},
where v0 is a fresh initial state whereas vacc, vrej and v= are final states. Game

transitions lead from the initial state v0 to all states (qR0
a|b−−→
R

q, qA0 , q
B
0); for

each pair of incident transducer transitions e := p
a|b−−→
R

q and e′ := q
a′|b′−−→
R

q′,

and for all automata states qA ∈ QA, qB ∈ QB, there is a game transition from

(e, qA, qB) to (e′, δA(qA, a), δA(qB, a)); finally, from any state (p
a|b−−→
R

q, qA, qB)

with q ∈ FR there is a transition to vacc if qA ∈ FA , to vrej if qB ∈ FB, and

otherwise to v=. The observation at state (p
a|b−−→
R

q, qA, qB) is (a, b); at the

initial and the final states both players observe #. Admissible decisions are
Ω(vacc) = {1}, Ω(vrej) = {0}, and Ω(v=) = {0, 1}.

Now, for any play π, the first component corresponds to an accepting run
of R on the pair of observation sequences (β1(π), β2(π)), whereas the second
and third components correspond to runs of A and B on β1(π) which are
accepting if Ω(π) = {1} and Ω(π) = {0}, respectively. Accordingly, the game
G has seed (R,Lacc, Lrej). �

Thanks to the translation between games and automata, we can reason
about games in terms of elementary operations on their seed. Our notation is
close to the one of Terlutte and Simplot [24]. Given a relation R ⊆ Γ∗×Γ∗, the
inverse relation is R−1 := {(x, y) ∈ Γ∗ × Γ∗ | (y, x) ∈ R}. The composition
of R with a relation R′ ∈ Γ∗ is RR′ := {(x, y) ∈ (Γ × Γ)∗ | (x, z) ∈
R and (z, y) ∈ R′ for some z ∈ Γ∗}. For a language L ⊆ Γ∗, we write
RL := {x ∈ Γ∗ | (x, y) ∈ R and y ∈ L}. For a subalphabet Σ ⊆ Γ, we denote
the identity relation by (∩Σ∗) := {(x, x) ∈ Σ∗ × Σ∗}. The power Rk of R is
defined by R0 := (∩Γ), and Rk+1 := RkR for k > 0. Finally, the iteration of

R is R∗ := ∪0≤k<ωR
k.

One significant relation obtained from the seed transducer R of a game G
is the reflection relation τ(R) := RR−1. That is, a word w ∈ Γ∗ over the
observation alphabet is a reflection of u ∈ Γ∗ if, whenever player 1 observes
u, player 2 considers it possible that 1 actually observes w. Obviously, this
relation is reflexive and symmetric. Its transitive closure relates observations
received on connected plays.

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 13

Lemma 10. Let G be a consensus game with seed relation R ⊆ Γ∗ × Γ∗,
and let τ := RR−1 be its reflection. Then,

(i) τ = { (β1(π), β1(π′)) | plays π ∼2 π′ in G }, and
(ii) τ∗ = (∩Γ∗) ∪ { (β1(π), β1(π′)) | plays π ∼∗ π′ in G }.

Proof. (i) By our definition of the seed relation, for every pair of words
(w,w′) ∈ RR−1, there exist plays π, π′ such that β1(π) = w, β1(π′) = w′,
and β2(π) = β2(π′), that is, π ∼2 π′. Conversely, for any pair of plays
π ∼2 π′, the observation sequences are related by (β1(π), β2(π)) ∈ R and
(β2(π), β1(π′)) = (β2(π′), β1(π′)) ∈ R−1. Hence (β1(π), β1(π′)) ∈ RR−1.

(ii “⊇”): Clearly, (∩Γ∗) ⊆ τ∗. Further, by definition of connectedness, if
π ∼∗ π′, then there exists a sequence of plays (π`)`≤2k with π0 = π, π2k = π′,
and π` ∼1 π`+1 ∼2 π`+2 for all even ` < 2k. Therefore, the observation
sequences

x := β1(π`) = β1(π`+1), y := β1(π`+2), and z := β2(π`+1) = β2(π`+2)

are related by (x, z) ∈ R and (z, y) ∈ R−1, which means that (x, y) =
(β1(π`), β

1(π`+2)) ∈ RR−1, for all even ` < 2k. Accordingly, we obtain
(β1(π), β1(π′)) ∈ (RR−1)∗.

(ii “⊆”) To show that every pair of distinct words in τ∗ can be observed
by player 1 on connected plays, we verify by induction on the power k ≥ 1
that for every pair (w,w′) ∈ (RR−1)k, there exists a sequence of plays
π0 ∼1 π1 ∼2 · · · ∼2 π2k such that β1(π0) = w and β1(π2k) = w′.

The base case for k = 1 follows from point (i) of the present lemma: if
(w,w′) ∈ (RR−1), then there exist π ∼2 π′ with β1(π) = w, β1(π′) = w′,
and we set π0 = π1 = π and π2 = π′. For the induction step, assume that
the hypothesis holds for a power k ≥ 1 and consider (w,w′) ∈ (RR−1)k+1.
That is, there exists a word z ∈ Γ∗ such that (w, z) ∈ (RR−1)k and (z, w′) ∈
(RR−1). The former implies, by induction hypothesis, that we have a chain
π0 ∼1 π1 ∼2 · · · ∼1 π2k−1 ∼2 π2k with β1(π0) = w and β1(π2k) = z; from
the latter it follows, by definition of R, that there exist plays π and π′ with
β1(π) = z = β1(π2k), β2(π) = β2(π′), and β1(π′) = w′. Therefore, we can
prolong the witnessing chain by setting π2k+1 := π, π2k+2 := π′, which
concludes the induction argument. �

The consensus condition requires decisions to be invariant under the
reflection relation. This yields the following characterisation of winning
strategies.

Lemma 11. Let G be a consensus game with seed (R,Lacc, Lrej) over an
alphabet Γ, and let τ := RR−1 be its reflection relation. Then, a strategy s :
Γ∗ → {0, 1} of player 1 is winning if, and only if, it assigns s(w) = 1 to
every observation sequence w ∈ τ∗Lacc and s(w) = 0 to every observation
sequence w ∈ τ∗Lrej.

Proof. (“ =⇒ ”) According to Lemma 10(ii), every word w ∈ τ∗Lacc cor-
responds to the observation sequence β1(π) = w of a play π in G, and

14 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

there exists a connected play π′ ∼∗ π with π′ ∈ Lacc. Therefore, any win-
ning strategy s : Γ∗ → {0, 1} for player 1 must assign s(w) = 1 to all
w ∈ Lacc and further, to all w ∈ τ∗Lacc, by the conditions of consensus and
indistinguishability. Likewise, it follows that s(w) = 0 for all w ∈ τ∗Lrej.

(“⇐=”) Consider the mapping s : V ∗ → {0, 1} with s(π) = 1 if, and only
if, β1(π) ∈ τ∗Lacc. Then s is a valid strategy, as for all π ∼2 π′ we have
(β1(π), β1(π′)) ∈ τ and (β1(π′), β1(π)) ∈ τ , hence β1(π) ∈ τ∗Lacc if, and
only if, β1(π′) ∈ τ∗Lacc. If it is the case that s(π) = 0 for all π ∈ τ∗Lrej, that
is, τ∗Lacc ∩ τ∗Lrej = ∅, then s is a winning strategy. �

As a direct consequence, we can characterise the language defined by a
game in terms of iterated transductions.

Theorem 12. Let G be a consensus game with seed (R,Lacc, Lrej), and let
Σ be a subset of its alphabet. Then, for the reflection τ := RR−1, we have:

(i) G is solvable if, and only if, τ∗Lacc ∩ τ∗Lrej = ∅.
(ii) If G is solvable, then it covers the language (∩Σ∗)τ∗Lacc.

(iii) If G is solvable and (∩Σ∗)(τ∗Lacc ∪ τ∗Lrej) = Σ∗, then G characterises
the language (∩Σ∗)τ∗Lacc.

6. Games for context-free languages

Properties of iterated letter-to-letter transductions, or equivalently, length-
preserving transductions, have been investigated by Latteux, Simplot, and
Terlutte in [16, 24], where it is also shown that iterated synchronous trans-
ductions capture context-sensitive languages. Our setting is, however, more
restrictive in that games correspond to symmetric transductions. In the
following, we investigate a family of consensus game acceptors that captures
context-free languages. Since the class is not closed under complement, we
will work with the weaker notion of covering a language rather than charac-
terising it. For the language-theoretic discussion, we generally assume that
the rejecting seed language Lrej is empty and specify the seed (R,Lacc, ∅) as
(R,Lacc).

Firstly, we remark that regular languages correspond to games where the
two players have the same observation function. Clearly, such games admit
regular winning strategies whenever they are solvable.

Proposition 6.1. A language L ⊆ Σ∗ is regular if, and only if, it is charac-
terised by a consensus game acceptor where the seed relation is the identity.

Proof. Every regular language L ⊆ Σ∗ is characterised by the game with seed
((∩Σ∗), L,Σ∗ \ L). Conversely, suppose a language L ⊆ Σ∗ is characterised
by a game G over an alphabet Γ ⊇ Σ with seed ((∩Γ∗), Lacc, Lrej). Then, G
also covers L and, by Theorem 12(ii), it follows that L = (∩Σ∗)(∩Γ∗)∗Lacc =
Σ∗ ∩ Lacc. Hence, L is regular. �

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 15

6.1. Dyck languages. As a next exercise, let us construct games for cover-
ing Dyck languages, that is, languages of well-balanced words of brackets; we
also allow neutral symbols, which may appear at any position without affect-
ing the bracket balance. Our terminal alphabet A consists of an alphabet
Bn = { [k,]k | 1 ≤ k ≤ n } of n ≥ 1 matching brackets and a set C of neutral
symbols. For a word w ∈ A∗ and an index k, we denote by excessk(w) the
difference between the number of opening and of closing brackets [k and
]k. Then, the Dyck language DA over A consists of the words w ∈ A∗ such
that, for each kind of brackets k ∈ {1, . . . , k}, excessk(w) = 0, whereas for
all prefixes w′ of w, excessk(w′) ≥ 0.

Given a terminal alphabet A = Bn∪C, we define the transducer Rn,C over
the observation alphabet Γ := A ∪ {�} with a set of states {q0, q1, . . . , qn}
among which q0 is the initial and the only final state, and with the following

two kinds of transitions: copying transitions q0
a|a−−→ q0 for all a ∈ Γ, as well

as qk
�|�−−→ qk for every k ∈ {1, . . . n}, and erasing transitions q0

[k|�−−→ qk and

qk
]k|�−−→ q0 for the brackets of each kind k, and q0

c|�−−→ q0 for each neutral
symbol c ∈ C. Essentially, Rn,C erases neutral symbols and any innermost
pair of brackets.

Lemma 13. The Dyck language over an alphabet n of matching brackets
and a set C of neutral symbols is covered by the game with seed (Rn,C ,�∗).

Proof. For a terminal alphabet A with partitions Bn, C as in the statement,
we denote the corresponding Dyck language by DA and the previously defined
transduction by R := Rn,C . The observation alphabet Γ = Bn ∪ C ∪ {�}
extends A with an additional neutral symbol �; let DΓ ⊇ DA be the Dyck
language over this extended alphabet. Consider now the game G over Γ
with seed (R,�∗). We using the reflection relation τ := RR−1 to argue that
DA = τ∗�∗.

To see that the Dyck language DA is contained in the language τ∗�∗

covered by G, observe that for every pair of words u, u′ ∈ Γ∗ where u ∈ DΓ

and u′ is obtained from u by replacing one innermost pair of matching
brackets with �, we have (u, u′) ∈ R. Since the relation R contains the
identity on Γ, it follows that (u, u′) ⊆ RR−1, so (u, u′) ∈ τ . If we set out
with an arbitrary word w ∈ A∗, first erase all neutral symbols by applying R
once, and then repeat applying R to erase an innermost pair of brackets, we
end up with �∗, hence w ∈ τ∗�∗.

Conversely, to verify that every word in τ∗�∗ has well-balanced brackets,
we show that DΓ is invariant under the transductions R and R−1 in the
sense that for any pair (u,w) ∈ R ∪ R−1, we have u ∈ DΓ if, and only if,
w ∈ DΓ. Towards this, let us fix an accepting run of R on u|w and compare
the values excessk(u′) and excessk(w′) of its prefixes u′|w′, for any k ≥ n: the

values are equal until a transition q0
[k|�−−→ qk is taken at some prefix u′[k|w′�.

Since qk is not final, the run will take the transition qk
]k|�−−→ q0 at some later

16 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

position; let u′′]k|w′′� be the shortest continuation of u′|w′ at which q0 is
reached again. Hence, we set out with excessk(w′) = excessk(u′), and also
have excessk(u′) = excessk(u′′), since none of [k or]k is transduced while
looping in qk; after returning to q0, again excessk(w′′) = excessk(u′′), because
the opening bracket was matched. So, it is the case that excessk(u′) ≥ 0 for
all prefixes u′ of u if, and only if, excessk(w′) ≥ 0 for all prefixes w′ of w,
which means that RDΓ ⊆ DΓ and R−1DΓ ⊆ DΓ; the converse inclusions
hold because R contains the identity on Γ. Accordingly, for every sequence
w0, . . . , w` of words with w0 = w such that (wi, wi+1) ∈ τ for each i < `, we
have wi ∈ DΓ if, and only if, wi+1 ∈ DΓ. Since �∗ ∈ DΓ, it follows that
w ∈ DΓ, for any word w ∈ τ∗�∗. In conclusion, (∩A∗)τ∗�∗ ⊆ DA. �

6.2. Context-free languages. To extend the game description of Dyck lan-
guages to arbitrary context-free languages, we use the Chomsky-Schützenberger
representation theorem [8] in the non-erasing variant of proved by Okhotin [18].
A letter-to-letter homomorphism h : A∗ → Σ∗ is a functional synchronous
transduction that preserves concatenation, that is, h(uw) = h(u)h(w) for
all words u,w ∈ A∗. Such a homomorphism is identified by its restriction
f : A→ Σ to single letters.

Theorem 14 ([18]). A language L ⊆ Σ∗ is context-free if, and only if,
there exists a Dyck language DA over an alphabet A of brackets and neutral
symbols, a regular language M ⊆ A∗, and a letter-to-letter homomorphism
h : A∗ → Σ∗, such that L = h(DA ∩M).

We will show how a game that covers an arbitrary language L ⊆ A∗ can
be extended to cover an homomorphic image of the intersection of L with a
regular language. Let h : A→ Σ be a letter-to-letter homomorphism, and
let R be a synchronous transducer over an alphabet Γ ⊇ A. We construct
from R a new transducer Rh over the enlarged alphabet Σ∪Γ×A by adding
a coding cycle. This is done by including a fresh final state qh, as well

as transitions q0
h(a)|(a,a)−−−−−−→ qh and qh

h(a)|(a,a)−−−−−−→ qh for all a ∈ A, and then

relabelling each transition p
a|b−−→ q of R to p

(a,x)|(b,x)−−−−−−→ q, for all x ∈ A.
Intuitively, the new transducer duplicates the automaton tapes into two
tracks which are both initialised with a homomorphic pre-image u ∈ A∗ of
a terminal word w ∈ Σ∗, in a transduction via the coding cycle. The first
track is intended to simulate R on the pre-image u, whereas the second track
stores u: the contents is looped through every other transduction of Rh or
of its inverse. Notice that every run of Rh proceeds either through the new
coding cycle, or through the original transducer R, in the sense that, for any
pair (w,w′) ∈ Rh we have {w,w′} ⊆ Σ∗ ∪ (Γ×A)∗.

Lemma 15. Suppose that a game acceptor with seed (R,Lacc) covers a
language L ⊆ A∗. Let M ⊆ A∗ be a regular language and let h : A∗ → Σ∗

be a letter-to-letter homomorphism. Then, the game acceptor with seed
(Rh, Lacc ×M) covers the language h(L ∩M) over the terminal alphabet Σ.

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 17

Proof. Let G be a game over an alphabet Γ ⊇ A with seed (R,Lacc). Without
loss of generality, we assume that R contains the identity on A, otherwise
we take the reflexive transduction RR−1 to obtain the seed of a game that
covers the same language. Further, let M ⊆ A∗ be a regular language and let
h : A→ Σ represent a letter-to-letter homomorphism as in the statement. We
argue for the case where the alphabets Σ and Γ are disjoint; the general case
follows by composition with a relabelling homomorphism. Now, consider the
game G′ with seed transducer Rh and accepting language L′acc := Lacc ×M .
We denote the reflection relations associated R and Rh by τ := RR−1 and
τ ′ := RhR

−1
h .

To see that h(L ∩M) is included in the language covered by G′, consider
a word w = h(u) for some u ∈ τ∗Lacc ∩M . By Theorem 12, there exists
a witnessing sequence (ui)i≤` with u0 = u, u` ∈ Lacc, and (ui, ui+1) ∈ τ
for all i < `. By construction of Rh, we have (w, (u, u)) ∈ Rh which
implies (w, (u, u)) ∈ τ ′, thanks to our assumption that (∩A∗) ⊆ R. Since
(u`, u) ∈ Lacc ×M , the sequence starting with w and followed by ((ui, u))i<`

is witnessing that w ∈ τ ′∗L′acc.
Conversely, consider a word w ∈ (∩Σ∗)τ ′∗L′acc and let (wi)i≤` be a wit-

nessing sequence with w0 = w, w` ∈ L′acc, and (wi, wi+1) ∈ τ ′ for all i ≤ `.
By construction of Rh, the initial word w is preserved at each term wi of the
sequence, in the sense that either wi = w, or wi = (ui, xi) ∈ Γ∗×A∗ for some
xi ∈ A∗ such that w = h(xi). By our assumption that Σ and Γ are disjoint, we
have w 6∈ Lacc, so there exists a last position k < ` with wk = w. As w ∈ Σ∗

can only be transduced via the coding cycle, it follows that wi+1 = (u, u)
for some u ∈ A∗ with h(u) = w. For each following position i > k, the
terms of the sequence are of the form wi = (ui, u) for a certain word ui ∈ Γ∗.
Hence the coding cycle cannot be applied and the sequence (ui)k<i≤` satisfies,
(ui, ui+1) ∈ τ for all i < `. Moreover, w` = (u`, u) ∈ L′acc = Lacc ×M . Thus,
the sequence witnesses that u = uk+1 ∈ τ∗Lacc ∩M , and since h(u) = w, it
follows that w ∈ h(L ∩M). �

Now, we can construct a game acceptor for covering an arbitrary context-
free language L ⊆ Σ∗ represented as L = h(DA∩M) according to Theorem 14,
by applying Lemma 15 to the particular case of Dyck languages: we set out
with the seed transducer Rn,C for the Dyck language DA over the alphabet
A = Bn ∪ C and add a coding cycle for the homomorphism h. This yields
a transducer Rh over the alphabet Σ ∪ (A ∪ {�})× A such that the game
with seed (Rh,�∗ ×M) covers L.

The generic construction of Rh can be simplified in the case where R =
Rn,C is the seed transducer of a Dyck language. Notice that, if we start
from a word w ∈ Σ∗, then every distinct word w′ 6= w reached in the
iteration (w,w′) ∈ (RhR

−1
h)∗ consists only of letters of the form (x, x) or

(�, x) with x ∈ Bn ∪C. Hence, the reduced transducer R̂h obtained from Rh,
by restricting to the (subset of transitions labelled with letters in the)
subalphabet Σ∪{(x, x) | x ∈ A}∪ {(�, x) | x ∈ A} and identifying each pair

18 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

q0

q1 q2

qh

(

(

[

[

x

x
,

x

x
x∈A

)

)

x

x
x∈A

]

]

x

x
x∈A

a

[
,
b

(
,
c

]
,
c

)

(a) 2-flower

q0

q1 q2

qh

qf

qc

(

(

[

[

(

(
,

[

[

)

)

x

x
x ∈ A

]

]

x

x
x ∈ A

a

[
,
b

(
,
a

]
,
b

)

x

x
,
x

x
x∈A

)

)
,

]

]

(b) loose flower for palindromes

Figure 3. Flower transducers

(x, x) ∈ A×A with x, is equivalent to Rh in the sense that, for every regular

language M ⊆ A∗, the game with seed (R̂h,�∗×M) covers the same language
over Σ as the one with seed (Rh,�∗ ×M). In contrast to Rh, however, the

reduced transducer R̂h has fewer transition and a smaller alphabet, which
extends the one of the underlying Dyck language DA only with a neutralised
copy of each letter in A.

We argue that the shape of the seed constructed above is prototypical for
games that cover context-free languages. Therefore, we focus on games with
a seed isomorphic to the seed (R̂h,�∗ ×M) obtained for the homomorphic
image of a Dyck-language over n bracket pairs intersected with a regular
language. An n-flower transducer is a transducer R = (Q,Γ,∆, q0, F) on a
set of states Q = {q0, q1, . . . , qn, qh} with initial state q0 and final state set
F = {q0, qh}, over an alphabet that can be partitioned into Γ = Σ∪Bn∪C∪A′
where Bn is a set of n matching brackets [k,]k and A′ is a disjoint copy
of A := Bn ∪ C associating a neutralised variant a to each letter a ∈ A,

such that ∆ contains copying transitions q0
a|a−−→ q0 for all a ∈ A ∪ A′,

and qk
a | a
−−−−→ qk for all a ∈ A and each k ∈ {1, . . . n}, as well as erasing

transitions q0
c| c
−−→ q0 for each c ∈ C, and q0

[k| [k−−−→ qk, qk
]k|]k−−−→ q0 for each

k. Furthermore, we require that there is a homomorphism h : A→ Σ, such

that the remaining transitions of ∆ are coding transitions q0
h(a)|a−−−−→ qh and

qh
h(a)|a−−−−→ qh for all a ∈ A. Finally, a seed (R,Lacc) is an n-flower if R is an

n-flower transducer and Lacc is a regular language over the alphabet A′ of
its neutralised symbols. An example of a 2-flower transducer is depicted in
Figure 3a.

Theorem 16. A language is context-free if, and only if, it is covered by a
consensus game acceptor with an n-flower seed.

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 19

Proof. Let L ⊆ Σ∗ be an arbitrary context-free language. According to the
Representation Theorem 14, there exists an alphabet A partitioned into
a bracket alphabet Bn and a set of neutral symbols C, a letter-to-letter
homomorphism given by h : A→ Σ, and a regular language M ⊆ A∗, such
that L = h(DA ∩M). With these in hand, we construct the seed transducer
Rn,C for the Dyck language DA as in Lemma 13 and then add a coding
cycle qh for the homomorphism h. According to Lemma 15, the transducer R
constructed in this way together with the seed language Lacc := �∗ ×M
describe a game that covers L. By reducing R to the alphabet Σ∪A∪{�}×A,

we finally obtain the n-flower seed seed (R̂,�∗×M) that also covers L over Σ.
For the converse statement, let G be a consensus game with an n-flower

seed (R,Lacc) over an alphabet Γ. We wish to prove that the language
covered by G over Γ is context-free. First, we partition Γ into an alphabet Σ,
a set Bn of n matching brackets, a set C of (prime) neutral symbols, and a
neutralised copy A′ of A := Bn∪C. Let DA be the Dyck language over A, and
let h : A→ Σ be the letter-to-letter homomorphism determined by the coding
cycle in R. Then, consider the neutralising letter-to-letter homomorphism
ν : A ∪A′ → A′ which maps both a and a to the neutralised copy a , and
set M := ν−1Lacc; as an inverse homomorphic image of a regular language,
M is regular. By construction of the flower transducer, we know that, over
the alphabet Σ, the game G covers the context-free language h(DA ∩M).

To describe the language covered over the full alphabet Γ, consider the
Dyck language D′A over the alphabet A∪A′ with the same set Bn of brackets
as DA, but with an extended set C ∪ A′ of neutral symbols. We observe
that D′A is closed under R and R−1 in the sense that, for any pair of non-
terminal words w,w′ ∈ Γ∗ \ Σ∗ with (w,w′) ∈ R, we have w ∈ D′A if, and
only if, w′ ∈ D′A. Moreover, ν(w) = ν(w′) (letters are neutralised, but never
forgotten). This implies that, over Γ \ Σ, the game G covers the language
D′A ∩M . Since every observation sequence of G is either contained in Σ∗ or
in (Γ \ Σ)∗, it follows that, over the full alphabet Γ, the consensus game G
covers the context-free language h(DA ∩M) ∪ (D′A ∩M). �

Notice that without restricting the alphabet of the accepting seed language
to neutralised symbols, the flower structure of the transducer alone would not
guarantee that the language covered by a game is context-free. For instance,
the one-flower transducer over a bracket pair [,] one neutral symbol #, and

their neutralised copies, together with the seed language Lacc := [+ # [
+]+

give rise to a game where the covered language L is not context-free, since
the intersection L ∩ [

+# [+]+ = [
n# [n]n is not context-free.

Returning to games, the argument from Lemma 11 shows that, given a
game with seed (R,Lacc, Lrej), at every play π with observation β1(π) in the
language L1 covered by (R,Lacc) over the full observation alphabet, the only
safe decision is 1, whereas at each play with observations in the language L0

covered by (R,Lrej) the only safe decision is 0. An observation-based strategy
prescribing s1(π) := 1 precisely if β1(π) ∈ L1 induces a joint strategy that is

20 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

optimal in the sense that it prescribes a safe decision whenever one exists.
Likewise, a strategy that prescribes 0 precisely at sequences in L0 is optimal.
Optimal strategies are undominated, that is, no other strategy wins strictly
more plays. Clearly, if a game is solvable, then every optimal strategy is
winning.

One consequence of Theorem 16 is that, for games where one of (R,Lacc)
or (R,Lrej) is an n-flower, the set L1 or L0 is context-free, and therefore
recognisable by a nondeterministic push-down automata, which we can
construct effectively from the game description. The obtained automaton
hence implements an optimal strategy that is indeed a winning strategy, in
case the game is solvable. According to Theorem 12, already for games where
both L0 and L1 are context-free, the question of whether a winning strategy
exists amounts to solving the disjointness problem for context-free languages
and is hence undecidable. Under these circumstances, it is remarkable that we
can effectively construct strategies that are optimal and, moreover, winning
whenever the game is solvable.

Corollary 17. For any consensus game G with seed (R,Lacc, Lrej) where
either (R,Lacc) or (R,Lrej) is an n-flower, we can effectively construct a
push-down automaton S that implements an optimal strategy.

7. Conclusion

We presented a simple kind of games with imperfect information where
constructing optimal strategies requires iterating the (synchronous rational)
relation that correlates the observation of players. This establishes a corre-
spondence between winning strategies in games on the one hand, and main
classes of formal languages on the other hand. The correspondence leads to
several insights on games with imperfect information.

Firstly, we obtain simple examples that illustrate the computational com-
plexity of coordination under imperfect information. The classical con-
structions for proving that the problem is undecidable in the general case,
typically involve an unbounded number of non-trivial decisions by which the
players describe configurations of a Turing machine [20, 2, 23]. In contrast,
our undecidability argument in Theorem 6 relies on a single simultaneous
decision.

Secondly, we identify families of games where optimal strategies exist and
can be constructed effectively, but the complexity of the strategic decision
necessarily grows with the length of the play. This opens a new perspective
for distributed strategy synthesis that departs from the traditional focus on
finite-state winning strategies and on game classes on which the existence
of such is decidable. In consensus games, the implementation of winning
strategies requires arbitrary linear-bounded automata in the general case.
However, we also described a structural condition on game graphs that
ensures that winning strategies can be implemented by push-down automata.

CONSENSUS GAME ACCEPTORS AND ITERATED TRANSDUCTIONS 21

One challenging objective is to classify games with imperfect information
according to the complexity of strategies required for solving them. The
insights developed for consensus games allow a few more steps into this
direction. For instance, games with one-flower seeds cover one-counter
languages and therefore admit optimal strategies implemented by one-counter
automata. Likewise, we can build up a variant of n-flower seeds from Dyck
languages restricted to palindromes, as illustrated in Figure 3b. Games
with seeds of this kind cover a subclass of linear languages and hence admit
optimal strategies implemented by one-turn push-down automata.

References

1. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman, Alternating-time temporal
logic, J. ACM 49 (2002), no. 5, 672–713.

2. Salman Azhar, Gary Peterson, and John Reif, Lower bounds for multiplayer non-
cooperative games of incomplete information, Journal of Computers and Mathematics
with Applications 41 (2001), 957–992.

3. Jean Berstel, Transductions and context-free languages, Teubner, 1979.
4. Dietmar Berwanger and Lukasz Kaiser, Information tracking in games on graphs,

Journal of Logic, Language and Information 19 (2010), no. 4, 395–412.
5. Dietmar Berwanger and Marie van den Bogaard, Consensus game acceptors, Proc. of

Developments in Language Theory (DLT 2015) (Igor Potapov, ed.), Lecture Notes in
Computer Science, vol. 9168, Springer, 2015, pp. 108–119.

6. Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer, Alternation, Journal of
the ACM 28 (1981), no. 1, 114–133.

7. Bogdan S. Chlebus, Domino-tiling games, Journal of Computer and System Sciences
32 (1986), no. 3, 374 – 392.

8. N. Chomsky and M.P. Schützenberger, The algebraic theory of context-free languages,
Computer Programming and Formal Systems, Studies in Logic and the Foundations of
Mathematics, vol. 35, Elsevier, 1963, pp. 118 – 161.

9. Cynthia Dwork and Yoram Moses, Knowledge and common knowledge in a byzantine
environment: Crash failures, Inf. Comput. 88 (1990), no. 2, 156–186.

10. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi, Reasoning about
knowledge, MIT Press, 1995.

11. Robert A. Hearn and Erik D. Demaine, Games, puzzles, and computation, A. K. Peters,
Ltd., Natick, MA, USA, 2009.

12. David Janin, On the (high) undecidability of distributed synthesis problems, Proc. of
Theory and Practice of Computer Science (SOFSEM 2007), Lecture Notes in Computer
Science, vol. 4362, Springer, 2007, pp. 320–329.

13. Sige-Yuki Kuroda, Classes of languages and linear-bounded automata, Information and
Control 7 (1964), no. 2, 207–223.

14. M. Latteux and D. Simplot, Context-sensitive string languages and recognizable picture
languages, Information and Computation 138 (1997), no. 2, 160 – 169.

15. Michel Latteux and David Simplot, Recognizable picture languages and domino tiling,
Theoretical Computer Science 178 (1997), no. 12, 275 – 283.

16. Michel Latteux, David Simplot, and Alain Terlutte, Iterated length-preserving rational
transductions, Proc. of Mathematical Foundations of Computer Science (MFCS 1998),
Springer, 1998, pp. 286–295.

17. Swarup Mohalik and Igor Walukiewicz, Distributed games, Proc. of Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2003), Springer,
2003, pp. 338–351.

22 DIETMAR BERWANGER AND MARIE VAN DEN BOGAARD

18. Alexander Okhotin, Non-erasing variants of the Chomsky-Schützenberger theorem,
Proc. of Developments in Language Theory (DLT 2012) (Hsu-Chun Yen and OscarH.
Ibarra, eds.), Lecture Notes in Computer Science, vol. 7410, Springer Berlin Heidelberg,
2012, pp. 121–129 (English).

19. Gary L. Peterson and John H. Reif, Multiple-Person Alternation, Proc 20th Annual
Symposium on Foundations of Computer Science, (FOCS 1979), IEEE, 1979, pp. 348–
363.

20. Amir Pnueli and Roni Rosner, Distributed reactive systems are hard to synthesize,
Proc. of Foundations of Computer Science (FoCS 1990), IEEE Computer Society Press,
1990, pp. 746–757.

21. Grzegorz Rozenberg and Arto Salomaa (eds.), Handbook of formal languages, vol. 1:
Word, language, grammar, Springer-Verlag New York, Inc., New York, NY, USA, 1997.

22. Jacques Sakarovitch, Elements of automata theory, Cambridge University Press, 2009.
23. Sven Schewe, Distributed synthesis is simply undecidable, Inf. Process. Lett. 114 (2014),

no. 4, 203–207.
24. Alain Terlutte and David Simplot, Iteration of rational transductions, Informatique

théorique et applications 34 (2000), no. 2, 99–129.
25. Peter van Emde Boas, The convenience of tilings, Complexity, Logic, and Recursion

Theory, Lecture Notes in Pure and Applied Mathematics, vol. 18, Marcel Dekker Inc,
1997, pp. 331–363.

