
Automates d’arbre

TD n◦3 : WSkS

Exercise 1 :
Produce formulae of WSkS for the following predicates :
• the set X has exactly two elements.
• the set X contains at least one string beginning with a 1.
• x ≤lex y where ≤lex is the lexicographic order on {1, ...k}∗.
• given a formula of WSkS φ with one free first-order variable, produce a formula of

WSkS expressing that there is an infinity of words on {1, ..., k}∗ satisfying φ.
• the set X has an even number of elements.

Solution:
•

|X| ≤ 2
.
= ∀Y. Y ⊆ X ⇒ (Y = ∅ ∨ Sing(Y ) ∨ Y = X)

|X| ≥ 2
.
= ∃x, y. x 6= y ∧ x ∈ X ∧ y ∈ X

|X| = 2
.
= |X| ≤ 2 ∧ |X| ≥ 2

•
X ∩ 1.Σ∗ 6= ∅ .

= ∃x. x ∈ X ∧ 1 ≤ x

•
x ≤lex y

.
= x ≤ y ∨ (∃z.

∨
i<j≤k

(z.i ≤ x ∧ z.j ≤ y))

•
X |= φ

.
= ∀x, x ∈ X ⇒ φ(x)

φ satisfied by an infinity of words .
= ∀X, X |= φ⇒ ∃Y, X ( Y ∧ Y |= φ

•

y = x+X 1
.
= x ∈ X ∧ y ∈ X ∧ x ≤lex y ∧ ¬∃z. (z ∈ X ∧ x �lex z ∧ z �lex y)

y = x+X 2
.
= ∃z.z = x+X 1 ∧ y = z +X 1

x = Xmax
.
= x ∈ X ∧ ∀y.(y ∈ X ⇒ y ≤lex x)

x = Xmin
.
= x ∈ X ∧ ∀y.(y ∈ X ⇒ x ≤lex y)

|X| is even .
= ∃Y. (∃x. x = Xmin ∧ x ∈ Y ) ∧ (∃y. y = Xmax ∧ y /∈ Y )∧

∀z. (z ∈ Y ⇒ ∃w. (w = z +X 2 ∧ w ∈ Y ))

Exercise 2 :
Prove that the predicate x = 1y is not definable in WSkS.

Solution:
We use the equivalence with recognizable tree languages. So we have to prove that L =
{tra(x, y) | x = 1.y} is not recognizable. Using the translation, we see that

L ∩ {tiσ | ti = 00(i⊥(x1, ..., xk), y2, ..., yk), i ∈ {0, 1}, σ closed substitution}



= {tra(x, y) | x = 1.y ∧ y ∈ {2, ..., k}.{1, ..., k}∗} = L′

So it is enough to prove that L′ is not recognizable. Now elements of L′ are of the form :

00

⊥⊥· · · · · · · · · ⊥⊥

t(p) s(p)

with p ∈ {2, ..., k}.{1, ..., k}∗, t and s injective and the height of t and s strictly increasing
with p. You can reason by contradiction using the pumping lemma : for p large enough,
using the pumping lemma, you can iterate a piece of t(p) without touching s(p) (or vice
versa) while staying in L′ which is absurd by injectivity.

Exercise 3 :
Let n ∈ N∗, n =

∏∞
i=0 p

ei
i its prime factorization and ei =

∑∞
j=0 bi,j2

j the binary representa-
tion of ei. We code n in WS2S by the set Sn = {1i2j | bi,j = 1}. Produce formulae of WS2S
for the predicates X = Sn, ∃n.X = Sn and ∃n,m.X = Sn ∧ Y = Sm ∧ Z = Snm. Deduce
that the first order theory of integers with multiplication and equality is decidable.

Solution:
—

?
x ∈ 1?.2?

.
= ∃z. z ≤ x ∧ ∀Y. (z ∈ Y ∧ ∀y. (y.1 ∈ Y ⇒ y ∈ Y ))⇒ ε ∈ Y

∧∀X. (x ∈ X ∧ ∀w. (w.2 ∈ X ⇒ w ∈ X))⇒ z ∈ X

?
∃n.X = Sn

.
= X ⊆ 1?.2? \ {ε} .= ∀x. x ∈ X ⇒ x ∈ 1?.2? ∧ x 6= ε

—
X = Sn

.
= ∀x. (x ∈ X ⇔

∨
(i,j)|bi,j=1

x = 1i.2j)

—

∃n,m.X = Sn∧Y = Sm∧Z = Snm
.
= (∃n,X = Sn)∧(∃m,Y = Sm)∧(∃p, Z = Sp)∧

∃R.¬(∃x. x ∈ 1? ∧ x ∈ R) ∧ ∀x.

(((x ∈ X ∧ x ∈ Y ∧ x ∈ R)⇒ (x ∈ Z ∧ x.2 ∈ R))∧

((x ∈ X ∧ x /∈ Y ∧ x ∈ R)⇒ (x /∈ Z ∧ x.2 ∈ R))∧

((x ∈ X ∧ x /∈ Y ∧ x /∈ R)⇒ (x ∈ Z ∧ x.2 /∈ R))∧

((x ∈ X ∧ x ∈ Y ∧ x /∈ R)⇒ (x /∈ Z ∧ x.2 ∈ R))∧

((x /∈ X ∧ x ∈ Y ∧ x ∈ R)⇒ (x /∈ Z ∧ x.2 ∈ R))∧

((x /∈ X ∧ x ∈ Y ∧ x /∈ R)⇒ (x ∈ Z ∧ x.2 /∈ R))∧

((x /∈ X ∧ x /∈ Y ∧ x ∈ R)⇒ (x ∈ Z ∧ x.2 /∈ R))∧

((x /∈ X ∧ x /∈ Y ∧ x /∈ R)⇒ (x /∈ Z ∧ x.2 /∈ R)))

— by induction on the size of the formula. Watch out, ∃x. ... should be transform into
∃X. (∃n.X = Sn) ∧ ... (idem for ∀), because there are sets that do not represent
integers.



Exercise 4 :
Let L be a recognizable language on F = {f1, . . . , fn}. Let φ be a WSkS formula defining L,
i.e., a formula with n+1 second order variables X, X1, . . . , Xn such that for every t ∈ T (F),

Pos(t), Posf1(t), . . . , Posfn(t) |= φ iff t ∈ L

where Posfi(t) is the set of positions of t labelled by fi.
We want to prove that the language L̄ of trees t such that for every decomposition t = C[t′]
there is a decomposition t′ = C ′[t′′] with C ′[C[t′′]] ∈ L is also recognizable. From φ, construct
a WSkS formula φ̄ defining L̄.

Solution:
We want to construct a formula φ̄ such that for every t ∈ T (F),

t ∈ L̄ iff Pos(t), Posf1(t), . . . , Posfn(t) |= φ̄.

For a tree t and positions p ≤ p′ of t write p′′ such that p′ = p.p′′ and tp,p′ the tree :

t|p[t[t|p′ ]p]p′′

Remember that t|p is the subtree of t at position p and t[s]p is the tree obtained by replacing
the subtree at position p of t by s. Intuitively, tp,p′ is the tree C ′[C[t′′]] obtained by the
decomposition t = C[t′] where t′ is the subtree at position p of t and t′ = C ′[t′′] where t′′ is
the subtree at position p′′ of t′ (or equivalently, the subtree at position p′ of t). φ̄ will have
the following form :

φ̄(X,X1, . . . , Xn) = ∀x.∃y.x ∈ X ∧ y ∈ X ∧ x ≤ y ∧ φ̃(X,X1, . . . , Xn, x, y)

where φ̃ satisfies the following property : for every t ∈ T (F) and every positions p ≤ p′ of
t,

Pos(t), Posf1(t), . . . , Posfn(t), p, p′ |= φ̃ iff Pos(tp,p′), Posf1(tp,p′), . . . , Posfn(tp,p′) |= φ.

Modulo renaming, we can assume that x and y do not appear in φ. φ̃ will be defined by
induction on the size of φ :

— φ is of the form z = z′ with z, z′ first-order variables : φ̃ is z = z′ ;
— φ is of the form z = z′.i with z, z′ first-order variables and 1 ≤ i ≤ k : that is the

interesting case. φ̃ is then

(z′.i = x⇒ z = y) ∧ (z′.i = y ⇒ z = ε) ∧ ((z′.i 6= y) ∧ (z′.i 6= x))⇒ z = z′.i ;

— φ is of the form z ∈ Z with z first-order variable and Z second-order variable : φ̃ is
z ∈ Z ;

— φ is of the form ∃z.φ′ : φ̃ is ∃z.φ̃′ ;
— φ is of the form ∃Z.φ′ : φ̃ is ∃Z.φ̃′ ;
— φ is of the form φ′ ∨ φ′′ : φ̃ is φ̃′ ∨ φ̃′′ ;
— φ is of the form ¬φ′ : φ̃ is ¬φ̃′.

φ̃ has the same free variables as φ, plus two extra x and y. For words w, p, p′ in {1, . . . , k},
with p ≤ p′ (so p′ = p.p′′ for some p′′), define [w, p, p′] the following word :

— if p 6≤ w, then [w, p, p′] = p′′.w ;
— if p ≤ w, so w = p.w′, and p′ 6≤ w, then [w, p, p′] = w′ ;
— if p′ ≤ w, so w = p′.w′ then [w, p, p′] = p′′.p.w′.

For S a set of words, define [S, p, p′] = {[w, p, p′] | w ∈ S}. Observe that [Pos(t), p, p′] =
Pos(tp,p′) and [Pos(tfi), p, p

′] = Pos(tp,p′). Observe also that [_, p, p′] is a bijection from
{1, . . . , k}? to {1, . . . , k}?. We prove the following invariant by induction on the size of φ :
for every formula φ with free variables x1, . . . , xr, X1, . . . , Xl, for every words w1, . . . , wr,
sets of words S1, . . . , Sl, and words p ≤ p′ :

w1, . . . , wr, S1, . . . , Sl, p, p
′ |= φ̃ iff [w1, p, p

′], . . . , [wr, p, p
′], [S1, p, p

′], . . . , [Sl, p, p
′] |= φ



— z = z′ : w1 = w2 iff [w1, p, p
′] = [w2, p, p

′] since [_, p, p′] is an injective function.
— z = z′.i : do the case distinction and draw a picture.
— z ∈ Z : w1 ∈ S1 iff [w1, p, p

′] ∈ [S1, p, p
′] by definition of [S1, p, p

′] and injectivity.
— ∃z.φ′ : if

w1, . . . , wr, S1, . . . , Sl, p, p
′ |= φ̃ = ∃z.φ̃′

then there is a word w such that

w1, . . . , wr, w, S1, . . . , Sl, p, p
′ |= φ̃′.

So by induction hypothesis,

[w1, p, p
′], . . . , [wr, p, p

′], [w, p, p′], [S1, p, p
′], . . . , [Sl, p, p

′] |= φ′

and then

[w1, p, p
′], . . . , [wr, p, p

′], [S1, p, p
′], . . . , [Sl, p, p

′] |= φ = ∃z.φ′.

Conversely, if

[w1, p, p
′], . . . , [wr, p, p

′], [S1, p, p
′], . . . , [Sl, p, p

′] |= φ = ∃z.φ′

then there is a word w such that

[w1, p, p
′], . . . , [wr, p, p

′], w, [S1, p, p
′], . . . , [Sl, p, p

′] |= φ′.

Since [_, p, p′] is surjective, there is a word w′ such that [w′, p, p′] = w and by
induction hypothesis :

w1, . . . , wr, w
′, S1, . . . , Sl, p, p

′ |= φ̃′

and so
w1, . . . , wr, S1, . . . , Sl, p, p

′ |= φ̃ = ∃z.φ̃′.

— ∃Z.φ′ : similar.


