Automates d'arbre

TD $n^{\circ}3$: WSkS

Exercise 1:

Produce formulae of WSkS for the following predicates :

- the set X has exactly two elements.
- the set X contains at least one string beginning with a 1.
- $x \leq_{lex} y$ where \leq_{lex} is the lexicographic order on $\{1, ..., k\}^*$.
- given a formula of WSkS φ with one free first-order variable, produce a formula of WSkS expressing that there is an infinity of words on {1,...,k}* satisfying φ.
- the set X has an even number of elements.

Exercise 2:

Prove that the predicate x = 1y is not definable in WSkS.

Exercise 3:

Let $n \in \mathbb{N}^*$, $n = \prod_{i=0}^{\infty} p_i^{e_i}$ its prime factorization and $e_i = \sum_{j=0}^{\infty} b_{i,j} 2^j$ the binary representation of e_i . We code n in WS2S by the set $S_n = \{1^i 2^j \mid b_{i,j} = 1\}$. Produce formulae of WS2S for the predicates $X = S_n$, $\exists n. X = S_n$ and $\exists n, m. X = S_n \land Y = S_m \land Z = S_{nm}$. Deduce that the first order theory of integers with multiplication and equality is decidable.

Exercise 4:

Let L be a recognizable language on $\mathcal{F} = \{f_1, \ldots, f_n\}$. Let ϕ be a WSkS formula defining L, i.e., a formula with n+1 second order variables X, X_1, \ldots, X_n such that for every $t \in T(\mathcal{F})$,

$$Pos(t), Pos_{f_1}(t), \dots, Pos_{f_n}(t) \models \phi \text{ iff } t \in L$$

where $Pos_{f_i}(t)$ is the set of positions of t labelled by f_i . We want to prove that the language \overline{L} of trees t such that for every decomposition t = C[t'] there is a decomposition t' = C'[t''] with $C'[C[t'']] \in L$ is also recognizable. From ϕ , construct a WSkS formula $\overline{\phi}$ defining \overline{L} .