Automates d'arbre

TD $n^{\circ}2$: Decision problems & tree homomorphisms

Exercise 1:

We consider the **(GII)** problem (ground instance intersection) : **Instance** : t a term in $T(\mathcal{F}, \mathcal{X})$ and \mathcal{A} a NFTA **Question** : Is there at least one ground instance of t accepted by \mathcal{A} ?

- 1) Suppose that t is linear. Prove that (GII) is P-complete. hint : You may use ideas from exercise 3 of TD1. For the hardness, reduce the emptiness problem.
- 2) Suppose that \mathcal{A} is deterministic. Prove that (GII) is NP-complete. hint : for the hardness, reduce (SAT).
- 3) Prove that **(GII)** is EXPTIME-complete. hint : for the hardness, reduce the intersection non-emptiness problem.
- 4) Deduce that the complement problem : **Instance** : t a term in $T(\mathcal{F}, \mathcal{X})$ and linear terms $t_1, ..., t_n$ **Question** : Is there a ground instance of t which is not an instance of any t_i ? is decidable.

Solution:

1) in P : use a construction similar to exercise 4 TD1, intersect with \mathcal{A} and test the non-emptiness.

P-hard : testing the emptiness of \mathcal{A} is equivalent to testing (GII) on \mathcal{A} and a variable.

2) in NP : guess for each variable an accessible state of \mathcal{A} and verify that you can complete this to an accepting run by running the automata.

NP-hard : We reduce **(SAT)** : let $\mathcal{F} = \{\neg(1), \lor(2), \land(2), \bot(0), \top(0)\}$ and \mathcal{A}_{SAT} the DFTA with $Q = \{q_{\top}, q_{\perp}\}, F = \{q_{\top}\}$ and $\Delta =$

- $\star \perp \longrightarrow q_{\perp}$
- $\star \ \top \longrightarrow q_{\top}$
- $\star \neg (q_{\alpha}) \longrightarrow q_{\neg \alpha}$
- $\star \ \lor (q_\alpha, q_\beta) \longrightarrow q_{\alpha \lor \beta}$
- $\star \land (q_{\alpha}, q_{\beta}) \longrightarrow q_{\alpha \land \beta}$

The language of \mathcal{A}_{SAT} is the set of closed valid formulae.

Let ϕ a CNF formula, $\phi = \bigwedge_{i=1}^{n} c_i$ where c_i are clauses. Define t_{c_i} by induction on the size of c_i :

- $\begin{array}{l} -- \quad \text{if} \ c_i = x_j, \ t_{c_i} = x_j \\ -- \quad \text{if} \ c_i = \neg x_j, \ t_{c_i} = \neg (x_j) \end{array}$
- $\text{ if } c_i = x_j \lor c'_i, t_{c_i} = \lor(x_j, t_{c'_i}) \\ \text{ if } c_i = \neg x_j \lor c'_i, t_{c_i} = \lor(\neg(x_j), t_{c'_i})$

Then $t_{\phi} = \wedge (t_{c_1}, \wedge (t_{c_2}, \dots, \wedge (t_{c_{n-1}}, t_{c_n}) \dots))$. ϕ is satisfiable iff a closed instance of t_{ϕ} is recognized by \mathcal{A}_{SAT} .

- 3) in EXP : for each coloring of t by states (exponentially many) :
 - check that the coloring of every occurrence of a variable is an accessible state (in P)
 - check that the coloring corresponds to an accepting run (in P)

- for every variable, let $\{q_1, ..., q_n\}$ be the set of the colorings of all occurrence of x. Check that $L(\mathcal{A}_{q_1}) \cap ... \cap L(\mathcal{A}_{q_n})$ is non empty where A_q is the NFTA obtained from \mathcal{A} by changing the set of final states to $\{q\}$ (in P)

EXP-hard : We reduce intersection non-emptiness : let $(A_k = (Q_k, \mathcal{F}, I_k, \Delta_k))_{k \in \{1, \dots, n\}}$ a finite sequence of top-down NFTA (we can transform a bottom-up NFTA to a topdown one in polynomial time). We suppose that all the Q_k are disjoint. Define : $- \mathcal{F}' = \mathcal{F} \cup \{h(n)\}$

$$\begin{array}{l} -t = h(x,...,x) \\ -\tilde{\mathcal{A}} = (\bigsqcup Q_k \sqcup \{q_0\}, \mathcal{F}', \{q_0\}, \Delta' \sqcup \bigsqcup \Delta_k) \text{ where} \\ \Delta' = \{q_0(h(x_1,...,x_n)) \longrightarrow h(q_1(x_1),...,q_n(x_n)) \mid \text{ for } q_k \in I_k\} \end{array}$$

Then $L(\mathcal{A}_1) \cap ... \cap L(\mathcal{A}_n) \neq \emptyset$ iff t has a closed instance in $L(\tilde{\mathcal{A}})$.

4) Use question 3 and exercise 4 of TD1.

Exercise 2:

A bottom-up tree transducer (NUTT) is a tuple $U = (Q, \mathcal{F}, \mathcal{F}', Q_f, \Delta)$ where Q is a finite set (of states), \mathcal{F} and \mathcal{F}' are finite ranked sets (of input and output), $Q_f \subseteq Q$ (final states) and Δ is a finite set of rules of the form :

- $f(q_1(x_1), ..., q_n(x_n)) \rightarrow q(u)$ where $f \in \mathcal{F}$ and $u \in T(\mathcal{F}', \{x_1, ..., x_n\})$
- $q(x_1) \rightarrow q'(u)$ where $u \in T(\mathcal{F}', \{x_1\})$.

We say that U is linear when the right side of the rules of Δ are. This defines a rewrite system \to_U on $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$. The relation induced by U is then $\mathcal{R}(U) = \{(t, t') \mid t \in T(\mathcal{F}), t' \in T(\mathcal{F}'), t \to_U^* q(t'), q \in Q_f\}$.

- 1) Prove that tree morphisms are a special case of NUTT that is if $\mu : T(\mathcal{F}) \longrightarrow T(\mathcal{F}')$ is a morphism, then there exists a NUTT U_{μ} such that $\mathcal{R}(U_{\mu}) = \{(t, \mu(t)) \mid t \in T(\mathcal{F})\}$. Be sure that if μ is linear then U_{μ} is too.
- 2) Prove that the domain of a NUTT U, that is $\{t \in T(\mathcal{F}) \mid \exists t' \in T(\mathcal{F}'), (t,t') \in U\}$, is recognizable.
- 3) Prove that the image of a recognizable tree language L by a linear NUTT U, that is $\{t' \in T(\mathcal{F}') \mid \exists t \in L, (t, t') \in U\}$, is recognizable.

Solution:

1) $Q = \{q\}, Q_f = \{Q\} \text{ and } \Delta =$ * $f(q(x_1), ..., q(x_n)) \longrightarrow q(\mu(f)(x_1, ..., x_n))$ linear when μ is 2) $Q = Q_U, F = F_U$ and $\Delta =$ * $f(q_1, ..., q_n) \longrightarrow q$ if there exists u such that $f(q_1(x_1), ..., q_n(x_n)) \longrightarrow q(u) \in \Delta_U$ $\star q \longrightarrow q'$ if there exists u such that $q(x_1) \longrightarrow q'(u) \in \Delta_U$ 3) Let U a NUTT and A a NFTA on \mathcal{F} . For every pair of rules $r = f(q_1(x_1), ..., q_n(x_n)) \longrightarrow$ $q(u) \in \Delta_U$ and $r' = f(q'_1, ..., q'_n) \longrightarrow q' \in \Delta_A$, we define : $- Q^{r,r'} = \{q_p^{r,r'} \mid p \in Pos(u)\}$ $-\Delta^{r,r'} =$ $\star \ g(q_{p,1}^{r,r'}, ..., q_{p,k}^{r,r'}) \longrightarrow q_p^{r,r'} \text{ for } p \in Pos(u) \text{ such that } u(p) = g \in \mathcal{F}'$ * $(q_i, q'_i) \longrightarrow q_p^{r,r'}$ if $u(p) = x_i$ (linearity assure that we only have one of this kind for every i) * $q_{\epsilon}^{r,r'} \longrightarrow (q,q')$ For every rule $r = q(x) \longrightarrow q'(u) \in \Delta_U$, we define : $- Q^r = \{q_p^r \mid p \in Pos(u)\} \times Q_{\mathcal{A}}$ $-\Delta^r =$ * $g((q_{p,1}^r, q''), ..., (q_{p,k}^r, q'')) \longrightarrow (q_p^r, q'')$ for $p \in Pos(u)$ such that $u(p) = g \in \mathcal{F}'$ and $q'' \in Q_{\mathcal{A}}$ \star $(q,q'') \longrightarrow (q_p^r,q'')$ if u(p) = x and $q'' \in Q_{\mathcal{A}}$ (linearity assure that we only have one of this kind) $\star (q_{\epsilon}^{r}, q^{\prime\prime}) \longrightarrow (q, q^{\prime\prime})$

Then this NFTA works :

$$\tilde{Q} = Q_U \times Q_\mathcal{A} \cup \bigcup_{(r,r')} Q^{r,r'} \cup \bigcup_r Q^r$$
$$\tilde{F} = F_U \times F_\mathcal{A}$$
$$\tilde{\Delta} = \bigcup_{(r,r')} \Delta^{r,r'} \cup \bigcup_r \Delta^r$$

Exercise 3:

- 1) We can see the set of runs of an NFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ as a tree language on $\mathcal{F} \times Q = \{(f,q)(n) \mid f(n) \in \mathcal{F}, q \in Q\}$ as the smallest set $Run(\mathcal{A})$ included in $T(\mathcal{F} \times Q)$ such that :
 - if $a \to q \in \Delta$, then $(a,q) \in Run(\mathcal{A})$
 - if $f(q_1, ..., q_n) \to q \in \Delta$ and $t_1, ..., t_n \in Run(\mathcal{A})$ with $t_i(\epsilon) = (_, q_i)$ then $(f, q)(t_1, ..., t_n) \in Run(\mathcal{A})$.

Then the set of accepting runs can be seen as $Acc(\mathcal{A}) = \{t \in Run(\mathcal{A}) \mid t(\epsilon) = (_,q), q \in Q_f\}.$

Prove that $Acc(\mathcal{A})$ is in the smallest class **Stab** of sets which contains all the $T(\mathcal{F})$ for any finite ranked set \mathcal{F} and which is stable by image of linear morphisms and inverse image of morphisms. For example, you should be able to prove that $Acc(\mathcal{A}) = \beta^{-1}(\gamma(\delta^{-1}(T(\mathcal{F}'))))$ where γ is linear.

2) Deduce that $\mathbf{Stab} = \mathbf{Rec}$.

Solution:

- We define β, γ and δ this way :
 δ : T(F_A) → T(F_⊥) where F_⊥ = F ∪ {q(1) | q ∈ F} ∪ {⊥(0)} and F_A = {(f,q₁,...,q_n,q)(n) | f(n) ∈ F, q, q_i ∈ q} ∪ {q(1) | q ∈ Q} such that
 * q(x) ↦ q(x) if q ∈ F
 * q(x) ↦ ⊥ if q ∉ F
 * (f,q₁,...,q_n,q)(x₁,...x_n) ↦ f(x₁,...,x_n) if f(q₁,...,q_n) → q ∈ Δ
 * (f,q₁,...,q_n,q)(x₁,...x_n) ↦ ⊥ else
 - γ: T(F_A) → T(F_Q) linear where T(F_Q) = F ∪ {q(1) | q ∈ Q} such that :
 ** q(x) ↦ q(x)
 ** (f,q₁,...,q_n,q)(x₁,...,x_n) ↦ q(f(q₁(x₁),...,q_n(x_n)))
 - β: T(F × Q) → T(F_Q) such that :
 *** (f,q)(x₁,...,x_n) ↦ q(q(f(x₁,...,x_n))))
 Then Acc(A) = β⁻¹(γ(δ⁻¹(T(F_⊥ \ ⊥)))).

 Stab ⊆ Rec : Let L ∈ Rec and A a NETA recognizing L. Define α : T(F × Q) →
 - **Stab** \subseteq **Rec** : Let $L \in$ **Rec** and \mathcal{A} a NFTA recognizing L. Define $\alpha : T(\mathcal{F} \times Q) \longrightarrow T(\mathcal{F})$ linear such that :

 $\star \star \star \star (f,q)(x_1,...,x_n) \mapsto f(x_1,...,x_n)$ Then $L = \alpha(Acc(\mathcal{A}))$ and by 1), $L \in \mathbf{Stab}$.