Automates d'arbre

TD $n^{\circ}2$: Decision problems & tree homomorphisms

Exercise 1:

We consider the **(GII)** problem (ground instance intersection) : **Instance** : t a term in $T(\mathcal{F}, \mathcal{X})$ and \mathcal{A} a NFTA **Question** : Is there at least one ground instance of t accepted by \mathcal{A} ? 1) Suppose that t is linear. Prove that **(GII)** is P-complete.

- hint : you may use ideas from exercise 3 of TD1. For the hardness, reduce the emptiness. 2) Suppose that \mathcal{A} is deterministic. Prove that (GII) is NP-complete.
- hint : for the hardness, reduce (SAT).
- 3) Prove that (GII) is EXPTIME-complete. hint : for the hardness, reduce the intersection non-emptiness problem.
- 4) Deduce that the complement problem :
 Instance : t a term in T(F, X) and linear terms t₁, ..., t_n
 Question : Is there a ground instance of t which is not an instance of any t_i ? is decidable.

Exercise 2:

A bottom-up tree transducer (NUTT) is a tuple $U = (Q, \mathcal{F}, \mathcal{F}', Q_f, \Delta)$ where Q is a finite set (of states), \mathcal{F} and \mathcal{F}' are finite ranked sets (of input and output), $Q_f \subseteq Q$ (final states) and Δ is a finite set of rules of the form :

- $f(q_1(x_1), ..., q_n(x_n)) \rightarrow q(u)$ where $f \in \mathcal{F}$ and $u \in T(\mathcal{F}', \{x_1, ..., x_n\})$
- $q(x_1) \rightarrow q'(u)$ where $u \in T(\mathcal{F}', \{x_1\})$.

We say that U is linear when the right side of the rules of Δ are. This defines a rewrite system \to_U on $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$. The relation induced by U is then $\mathcal{R}(U) = \{(t, t') \mid t \in T(\mathcal{F}), t' \in T(\mathcal{F}'), t \to_U^* q(t'), q \in Q_f\}$.

- 1) Prove that tree morphisms are a special case of NUTT that is if $\mu : T(\mathcal{F}) \longrightarrow T(\mathcal{F}')$ is a morphism, then there exists a NUTT U_{μ} such that $\mathcal{R}(U_{\mu}) = \{(t, \mu(t)) \mid t \in T(\mathcal{F})\}$. Be sure that if μ is linear then U_{μ} is too.
- 2) Prove that the domain of a NUTT U, that is $\{t \in T(\mathcal{F}) \mid \exists t' \in T(\mathcal{F}'), (t, t') \in U\}$, is recognizable.
- 3) Prove that the image of a recognizable tree language L by a linear NUTT U, that is $\{t' \in T(\mathcal{F}') \mid \exists t \in L, (t, t') \in U\}$, is recognizable.

Exercise 3:

- 1) We can see the set of runs of an NFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ as a tree language on $\mathcal{F} \times Q = \{(f,q)(n) \mid f(n) \in \mathcal{F}, q \in Q\}$ as the smallest set $Run(\mathcal{A})$ included in $T(\mathcal{F} \times Q)$ such that :
 - if $a \to q \in \Delta$, then $(a,q) \in Run(\mathcal{A})$
 - if $f(q_1, ..., q_n) \to q \in \Delta$ and $t_1, ..., t_n \in Run(\mathcal{A})$ with $t_i(\epsilon) = (_, q_i)$ then $(f, q)(t_1, ..., t_n) \in Run(\mathcal{A})$.

Then the set of accepting runs can be seen as $Acc(\mathcal{A}) = \{t \in Run(\mathcal{A}) \mid t(\epsilon) = (_,q), q \in Q_f\}.$

Prove that $Acc(\mathcal{A})$ is in the smallest class **Stab** of sets which contains all the $T(\mathcal{F})$ for any finite ranked set \mathcal{F} and which is stable by image of linear morphisms and inverse image of morphisms. For example, you should be able to prove that $Acc(\mathcal{A}) = \beta^{-1}(\gamma(\delta^{-1}(T(\mathcal{F}'))))$ where γ is linear.

2) Deduce that $\mathbf{Stab} = \mathbf{Rec}$.