Automates d'arbre

TD n°1 : Recognizable Tree Languages and Finite Tree Automata^{*}

Exercise 1:

Let $\mathcal{F} = \{f(2), g(1), a(0)\}$. Give a DFTA and a top-down DFTA for the set G(t) of ground instances of the term t = f(f(a, x), g(y)) which is defined by :

$$G(t) = \left\{ f(f(a, u), g(v)) \mid u, v \in T(\mathcal{F}) \right\}$$

Solution:

• top-down DFTA : $Q = \{q_{f,1}, q_{f,2}, q_g, q_a, q_{\top}\}, I = \{q_{f,1}\} \text{ and } \Delta =$ * $q_{f,1}(f(x, y)) \longrightarrow f(q_f(x), q_g(y))$ * $q_{f_2}(f(x, y)) \longrightarrow f(q_a(x), q_{\top}(y))$ * $q_g(g(x)) \longrightarrow g(q_{\top}(x))$ * $q_a(a) \longrightarrow a$ * $q_{\top}(f(x, y)) \longrightarrow f(q_{\top}(x), q_{\top}(y))$ * $q_{\top}(g(x)) \longrightarrow g(q_{\top}(x))$ * $q_{\top}(g(x)) \longrightarrow g(q_{\top}(x))$ * $q_{\top}(a) \longrightarrow a$ • DFTA : $Q = \{q_a, q_f, q_g, q_{\top}, q_{\perp}\}, F = \{q_{\top}\} \text{ and } \Delta =$ * $a \longrightarrow q_a$ * $f(q_a, q) \longrightarrow q_f \text{ for all } q \in Q$ * $g(q) \longrightarrow q_g \text{ for all } q \in Q$ * $f(q_f, q_g) \longrightarrow q_{\top}$ * $f(q, q') \longrightarrow q_{\perp} \text{ for all } (q, q') \neq (q_a, _), (q_f, q_g)$

Exercise 2:

Are the following tree languages recognizable (by a bottom-up FTA) ?

- $\mathcal{F} = \{f(2), a(0)\}$ and $L = \{f(t, t) \mid t \in T(\mathcal{F})\}.$
- $\mathcal{F} = \{g(1), a(0)\}$ and L the set of ground terms of even height.
- $\mathcal{F} = \{f(2), g(1), a(0)\}$ and L the set of ground terms of even height.

Solution:

- No. By the pumping lemma.
- Yes.
- No. Remark that the pumping lemma does not apply ! Assume that it is recognizable by a NFTA with *n* states. Define :

$$t_n = f(g^{2n+1}(a), g^{2n+2}(a))$$

It has height 2n+2 and so belongs to this language. So there exists an accepting run ρ for t_n . By the pigeonhole principle, there exists k < k' such that $r(1.1^k) = r(1.1^{k'})$ and from that we deduce that for all $p \in \mathbb{N}$, the tree

$$t_{n,p} = f(g^{2n+1+p(k'-k)}(a), g^{2n+2}(a))$$

also has an accepting run. But $t_{n,2}$ has height 2(n + k' - k) + 1 which is odd. Contradiction.

^{*}taken from Tree Automata Techniques and Applications

Exercise 3:

- 1) Let \mathcal{E} be a finite set of linear terms on $T(\mathcal{F}, \mathcal{X})$. Prove that $Red(\mathcal{E}) = \{C[t\sigma] \mid C \in \mathcal{C}(\mathcal{F}), t \in \mathcal{E}, \sigma \text{ ground substitution}\}$ is recognizable.
- 2) Prove that if \mathcal{E} contains only ground terms, then one can construct a DFTA recognizing $Red(\mathcal{E})$ whose number of states is at most n+2, where n is the number of nodes of \mathcal{E} .

Solution:

- 1) Do the case where \mathcal{E} is a singleton $\{t\}$, t linear (the general case can be deduced by finite union). $Red(\{t\}$ is recognized by the following NFTA : $Q = \{q_{\perp}\} \cup Pos(t)$, $F = \{\epsilon\}$ and $\Delta =$
 - $\star f(q_1, ..., q_n) \longrightarrow q_{\perp} \text{ for all } f \in \mathcal{F}, q_1, ..., q_n \in Q$
 - $\star q_{\perp} \longrightarrow p$ for all $p \in Pos(t)$ such that t(p) is a variable
 - $\star f(p.1,...,p.n) \longrightarrow p \text{ if } t(p) = f$
 - $\star f(q_1, ..., q_n) \longrightarrow \epsilon$ for all $f \in \mathcal{F}$ and $q_1, ..., q_n \in Q$ such that there exists $i \in \{1, ..., n\}$ such that $q_i = \epsilon$
- 2) Let $St(\mathcal{E})$ be the set of all subterms of a term in \mathcal{E} . Then the following DFTA works : $Q = \{q_t \mid t \in St(\mathcal{E})\} \cup \{q_\perp, q_\top\}, F = \{q_\top\} \text{ and } \Delta =$
 - $\star \ f(q_{t_1},...,q_{t_n}) \longrightarrow q_{f(t_1,...,t_n)} \text{ if } f(t_1,...,t_n) \in St(\mathcal{E}) \setminus \mathcal{E}$
 - $\star f(q_{t_1}, ..., q_{t_n}) \longrightarrow q_{\top} \text{ if } f(t_1, ..., t_n) \in \mathcal{E}$
 - $\star f(q_{t_1}, ..., q_{t_n}) \longrightarrow q_\perp$ else
 - $\star f(q_1, ..., q_n) \longrightarrow q_{\top}$ if there is at least one $q_i = q_{\top}$
 - $\star f(q_1, ..., q_n) \longrightarrow q_\perp$ else

Exercise 4:

Let $\mathcal{F} = \{f(2), a(0), b(0)\}.$

- 1) Let L_1 be the smallest set such that :
 - $f(a,b) \in L_1$
 - $t \in L_1 \Rightarrow f(a, f(t, b)) \in L_1$

Prove that L_1 is recognizable.

- 2) Prove that $L_2 = \{t \in T(\mathcal{F}) \mid |t|_a = |t|_b\}$ is not recognizable.
- 3) Let L be recognizable on \mathcal{F} and C(L) be the closure of L by the congruence generated by the equation f(x, y) = f(y, x). Prove that C(L) is recognizable.
- 4) Let L be recognizable on \mathcal{F} and AC(L) be the closure of L by the congruence generated by the equations f(x, y) = f(y, x) and f(x, f(y, z)) = f(f(x, y), z). Prove that AC(L) is not recognizable in general.
- 5) Let L be recognizable on \mathcal{F} and A(L) be the closure of L by the congruence generated by the equation f(x, f(y, z)) = f(f(x, y), z). Prove that A(L) is not recognizable in general.

Solution:

- 1) $Q = \{q_a, q_b, q_f, q_{\top}\}, F = \{q_{\top}\} \text{ and } \Delta =$
 - $\star a \longrightarrow q_a$
 - $\star \ b \longrightarrow q_b$
 - $\star f(q_a, q_b) \longrightarrow q_{\top}$
 - $\star f(q_{\top}, q_b) \longrightarrow q_f$
 - $\star \ f(q_a, q_f) \longrightarrow q_{\top}$
- 2) By the pumping lemma.
- 3) Given a NFTA for L, construct a NFTA for C(L) by adding for every rule of the form $f(q,q') \longrightarrow q''$, the rule $f(q',q) \longrightarrow q''$.
- 4) $AC(L_1) = L_2$.
- 5) $A(L_1)$ is not recognizable by the pumping lemma.

Exercise 5:

Let $\mathcal{F} = \{f(2), g(1), a(0)\}$. Give a DFTA and a top-down NFTA for the set M(t) of terms which have a ground instance of the term t = f(a, g(x)) as a subterm, i.e. $M(t) = \{C[f(a, g(u))] \mid C \in \mathcal{C}(\mathcal{F}), u \in T(\mathcal{F})\}.$

Prove that M(t) is not recognizable by a top-down DFTA or even a finite union of languages recognizable by a top-down DFTA.

hint : you can use without proof the following fact (prove it if you have time) : let t be a tree. The path language $\pi(t)$ is defined by :

- if t is a constant, $\pi(t) = \{t\}$
- if $t = f(t_1, ..., t_n), \ \pi(t) = \bigcup_{i=1}^n \{fiw \mid w \in \pi(t_i)\}$

Let L be a tree language. The path language of L is $\pi(L) = \bigcup_{t \in L} \pi(t)$. The path closure of L is defined by pathclosure(L) = $\{t \mid \pi(t) \subseteq \pi(L)\}$. L is recognizable by a top-down DFTA iff L is recognizable and path closed, i.e. L = pathclosure(L).

Solution:

- top-down NFTA : $Q = \{q_0, q_\perp, q_a, q_g\}, I = \{q_0\}$ and $\Delta =$ * $q_0(f(x, y)) \longrightarrow f(q_\perp(x), q_0(y))$ * $q_0(f(x, y)) \longrightarrow f(q_0(x), q_\perp(y))$ * $q_\perp(f(x, y)) \longrightarrow f(q_\perp(x), q_\perp(y))$ * $q_\perp(g(x)) \longrightarrow g(q_\perp(x))$ * $q_0(g(x)) \longrightarrow g(q_0(x))$ * $q_0(f(x, y)) \longrightarrow f(q_a(x), q_g(y))$ * $q_a(a) \longrightarrow a$ * $q_g(g(x)) \longrightarrow g(q_\perp(x))$ • DFTA : $Q = \{q_a, q_g, q_\top, q_\perp\}, F = \{q_\top\}$ and $\Delta =$ * $a \longrightarrow q_a$ * $g(q_\top) \longrightarrow q_\top$ * $g(q) \longrightarrow q_g$ with $q \neq q_\top$ * $f(q, q') \longrightarrow q_\top$ if $(q, q') = (q_a, q_g)$ or $q = q_\top$ or $q' = q_\top$
 - $\star f(q,q') \longrightarrow q_{\perp}$ else
- non-recognizable by a top-down DFTA : it is not path-closed because if it were the case, as f(f(a, g(a)), a) and f(a, f(a, g(a))) are in M(t), then f(a, a) would be in M(t) too which is absurd.
- not a finite union of languages recognizable by a top-down DFTA : assume that M(t) is a finite union $\bigcup_{k=1}^{n} L_k$ where L_k is recognizable by a top-down DFTA and in particular path-closed. Let t^p be defined by induction :

$$- t^{0} = f(a,t) - t^{p+1} = f(t^{p},a)$$

They all belong to M(t) then at least one of the L_k contains two different t^p and t^q with, say, p < q. As L_k is path-closed, it must also contains s^p , where s^r is defined by :

$$- s^0 = f(a, a)$$

$$-s^{r+1} = f(s^r, a)$$

which does not belong to M(t) (because, for example, it contains only fs and as). Contradiction.