Techniques de réécriture

TD n°4 : Confluence & completion

Exercise 1:
Compute the critical pairs of the following rewrite systems. Which one are locally confluent?
1. \(f(g(f(x))) \rightarrow x, f(g(x)) \rightarrow g(f(x)) \)
2. \(0 + y \rightarrow y, x + 0 \rightarrow x, s(x) + y \rightarrow s(x + y), x + s(y) \rightarrow s(x + y) \)
3. \(f(x, x) \rightarrow a, f(x, g(x)) \rightarrow b \)
4. \(f(f(x, y), z) \rightarrow f(x, f(y, z)), f(x, 1) \rightarrow x \)

Exercise 2:
Let \(P = (\alpha_i, \beta_i)_{1 \leq i \leq n} \) be an instance of PCP. Define \(R(P) = \{ A \rightarrow f(\alpha_i(\epsilon), \beta_i(\epsilon)), f(x, y) \rightarrow f(\alpha_i(x), \beta_i(y)), f(x, x) \rightarrow B, f(x, y) \rightarrow A \} \) on \(F = \{ f(2), A(0), B(0), 0(1), 1(1), \epsilon(0) \} \).
1. Prove that \(P \) has a solution iff \(A \rightarrow^* B \).
2. Deduce that confluence is undecidable.

Algorithm 1 Basic completion procedure

Require: A finite set \(E \) of identities and a reduction order \(> \)
Ensure: A finite convergent rewrite system \(R \) equivalent to \(E \) if the procedure terminates successfully, FAIL if the procedure terminates unsuccessfully
1: if there exists \((s, t) \in E \) such that \(s \neq t, s \not> t \) and \(t \not> s \) then
2: terminates with output FAIL
3: else
4: \(i := 0 \)
5: \(R_0 := \{(l, r) | (l, r) \in E \cup E^{-1} \land l > r \} \)
6: end if
7: repeat
8: \(R_{i+1} := R_i \)
9: for all \((s, t) \in CP(R_i)\) do
10: Reduce \(s \) and \(t \) to some \(R_i \)-normal forms \(\tilde{s} \) and \(\tilde{t} \)
11: if \(\tilde{s} \neq \tilde{t} \wedge \tilde{s} \not> \tilde{t} \wedge \tilde{t} \not> \tilde{s} \) then
12: terminates with output FAIL
13: end if
14: if \(\tilde{s} > \tilde{t} \) then
15: \(R_{i+1} := R_{i+1} \cup \{(\tilde{s}, \tilde{t})\} \)
16: end if
17: if \(\tilde{t} > \tilde{s} \) then
18: \(R_{i+1} := R_{i+1} \cup \{(\tilde{t}, \tilde{s})\} \)
19: end if
20: end for
21: \(i := i + 1 \)
22: until \(R_i = R_{i+1} \)
23: return \(R_i \)
Exercise 3:
We are considering this basic completion procedure.
1. Prove that this procedure is correct by showing it consists in a strategy for applying some rules from the completion procedure seen in the course.
2. Which rules are not used?
3. What can you say about $\bigcup_{i\in\mathbb{N}} R_i$ if the procedure does not terminate?

Exercise 4:
Apply the basic completion procedure on the following set of identities, with the suitable reduction order:
1. $\{ (x \ast (y + z), (x \ast y) + (x \ast z)), ((u + v) \ast w, (u \ast w) + (v \ast w)) \}$ and the LPO with $\ast > +$.
2. $\{ (x + 0, x), (x + s(y), s(x + y)) \}$ and the KBO with $s > +$ and weight 1 for all variables and symbols.
3. $\{ (f(g(f(x))), x) \}$ and the LPO with $f > g$.

Algorithm 2 Huet’s completion procedure

Require: A finite set E of identities and a reduction order $>$
Ensure: A finite convergent rewrite system R equivalent to E if the procedure terminates successfully, FAIL if the procedure terminates unsuccessfully
1: $R_0 := \emptyset$; $E_0 := E$; $i := 0$
2: while $E_i \neq \emptyset$ or there is an unmarked rule in R_i do
3: while $E_i \neq \emptyset$ do
4: Choose an identity $(s, t) \in E$
5: Reduce s and t to some R_i-normal forms \tilde{s} and \tilde{t}
6: if $\tilde{s} = \tilde{t}$ then
7: $R_{i+1} := R_i$; $E_{i+1} := E_i \setminus \{(s, t)\}$; $i := i + 1$
8: else
9: if $\tilde{s} \neq \tilde{t}$ then
10: terminates with output FAIL
11: else
12: let l and r such that $\{l, r\} = \{\tilde{s}, \tilde{t}\}$ and $l > r$
13: $R_{i+1} := \{(g, d) \mid (g, d) \in R_i \land g$ cannot be reduced with $l \rightarrow r \land \tilde{d}$ is a $R_i \cup \{(l, r)\}$-normal form of $d) \cup \{(l, r)\}$
14: (l, r) is not marked and (g, d) is marked in R_{i+1} iff (g, d) is in R_i
15: $E_{i+1} := (E_i \setminus \{(s, t)\}) \cup \{(g', d) \mid (g, d) \in R_i \land g$ can be reduced to g' with $l \rightarrow r\}$
16: $i := i + 1$
17: end if
18: end if
19: end while
20: if there is an unmarked rule in R_i then
21: let (l, r) be such a rule
22: $R_{i+1} := R_i$
23: $E_{i+1} := \{(s, t) \mid (s, t)$ is a critical pair of (l, r) with itself or with a marked rule in $R_i\}$
24: $i := i + 1$
25: Mark (l, r)
26: end if
27: end while
28: return R_i

Exercise 5:
We are now considering Huet’s completion procedure.
1. Do the same study as exercise 4.
2. Prove that the set of identities
\[
\{(\@\text{nil}, x), \\
(\@\text{cons}(x, y), z, \text{cons}(x, \@\text{cons}(y, z))), \\
(\text{rev}(\text{nil}), \text{nil}), (\text{rev}\text{cons}(x, y)), \\
\@\text{rev}(y), \text{cons}(x, \text{nil}))\}
\]
can be oriented to give a convergent TRS. Let \(R \) this TRS.

3. Prove that the associativity \(A \) of \(\@ \), \(\@\text{cons}(x, y), z) = \@\text{cons}(x, \@\text{cons}(y, z)) \) is not a consequence of \(R \).

4. How would you prove associativity of concatenation of lists?

5. Prove that you can complete \((A, R)\). You can use Huet’s completion procedure.

6. Prove that the idempotence \(I \) of \text{rev}, \text{rev}(\text{rev}(x)) = x \) is not a consequence of \(R \).

7. Prove that you can complete \((I, R)\).

8. Prove that Huet’s completion fails to complete \((\{\text{rev}(x) = \@\text{cons}(x, x)\}, R)\).