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True concurrency

process 1
pr

oc
es

s
2

Petri nets [Petri 62]
progress graphs [Dijkstra 68]
trace theories [Mazurkiewicz 70s]
event structures [Winskel 80s]
higher dimensional automata (HDA) [Pratt 91]
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Interleaving vs continuity

X := 0 ‖ Y := 1

q∅ qA

qB qA,B

X := 0

Y := 1 Y := 1

X := 0

Interleaving behaviors : A then B or B then A
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Interleaving vs continuity

X := 0 ‖ Y := 1

q∅ qA

qB qA,B

X := 0

Y := 1 Y := 1

X := 0

Continuous behaviors : any scheduling of A and B
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True concurrency, geometrically

truly concurrent system topological space

states points

executions paths

modulo scheduling of modulo
independent actions homotopy
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True concurrency, geometrically

truly concurrent system topological space

states points

executions paths

modulo scheduling of modulo
independent actions homotopy

Problem : executions are directed, paths are not
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True concurrency, geometrically

truly concurrent system directed space

states points

executions directed paths

modulo scheduling of modulo
independent actions directed homotopy
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D-spaces and dipaths [Grandis 01]
A d-space is a topological X with a subset

−→
P (X ) of paths, called dipaths, such

that :
constant paths are dipaths,
dipaths are closed under concatenation,

γ1 ? γ2(t) = γ1(2t) if t ≤ 1
2

= γ2(2t − 1) if t ≥ 1
2

dipaths are closed under non-decreasing reparametrization, γ ◦ r with
r : [0, 1] −→ [0, 1] continuous monotonic.

The set of paths can be equipped with the compact-open topology−→
P (X ) and

−→
P (X )(a, b) can be equipped with the subspace topology

A dimap is a continuous function f : X −→ Y such that for every γ ∈
−→
P (X ),

f ◦ γ ∈
−→
P (Y ).
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The different d-space structures of the segment

−−→
[0, 1] : dipaths are monotonic paths,

[0, 1] : dipaths are constant paths,

←−→
[0, 1] : dipaths are all the paths.

Ex : dipaths of X = dimaps from
−−→
[0, 1] to X
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Homotopy

A homotopy from γ to τ , paths from a to b, is a continuous function

H : [0, 1]× [0, 1] −→ X

such that :
H(0,_) = a and H(1,_) = b,
H(_, 0) = γ and H(_, 1) = τ .

Equivalently, it is a path in the space of paths P(X )(a, b) !

Two paths are homotopic if there is a homotopy between them, or equivalently, if
they are in the same path-connected components of P(X )(a, b).
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Dihomotopy

A dihomotopy from γ to τ , dipaths from a to b, is a dimap

H : [0, 1]×
−−→
[0, 1] −→ X

such that :
H(0,_) = a and H(1,_) = b,
H(_, 0) = γ and H(_, 1) = τ .

Equivalently, it is a path in the space of dipaths
−→
P (X )(a, b) !

Two paths are dihomotopic if there is a dihomotopy between them, or
equivalently, if they are in the same path-connected components of

−→
P (X )(a, b).
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Example I

dihomotopic non-dihomotopic
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Example II : Fahrenberg’s matchbox
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A category of dipaths ?

Can we form the following category ?
objects are points,
morphisms are dipaths,
identities are constant paths,
composition is concatenation.
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A category of dipaths ?

Can we form the following category ?
objects are points,
morphisms are dipaths,
identities are constant paths,
composition is concatenation.

Answer : No, the concatenation is not associative...
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A category of dipaths ?

...but we can form the fundamental category −→π1 :
objects are points,
morphisms are dipaths modulo dihomotopy,
identities are dihomotopy classes of constant paths,
composition is concatenation modulo dihomotopy.

because concatenation is associative modulo dihomotopy.
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A category of traces

Actually, concatenation is associative modulo reparametrization
γ reparametrizes to ρ if there is a surjective, monotonic and continuous function
r : [0, 1] −→ [0, 1] such that ρ = γ ◦ r . We call trace of a dipath γ and note 〈γ〉,
the equivalence class of γ modulo reparametrization.

We can form the category of traces
−→
T (X ) :

objects are points,
morphisms are traces,
identities are traces of constant paths,
composition is concatenation modulo reparametrization.

We can also define the trace space
−→
T (X )(a, b) as the quotient space of

−→
P (X )(a, b) modulo reparametrization.
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Objective

study those concurrent systems through their geometry (dipaths, traces,
dihomotopies)

homology = essential notion, computable abstraction of homotopy
⇒ defining a directed homology
⇒ proving classical properties of this homology
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Directed Homology
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Related work

Candidates of directed homology :
past and future homologies [Goubault 95]
ordered homology groups [Grandis 04]
directed homology via ω-categories [Fahrenberg 04]
homology graph [Kahl 13]

Not fine enough : do not distinguish Fahrenberg’s matchbox from a point
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A first idea

Not_so_good directed homology :
Not_so_good(X ) = classical homology of T (X )(a, b)

a

b

a

b

T (A)(a, b) ' 6 point space ' T (B)(a, b)

Not_so_good(A) ' R6 ' Not_so_good(B)
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A first (not so) bad idea

•

•

a

b′

a′

b′

•

•

make a, b vary

T (A)(a, b′) ' 4 point space

Not_so_good(A) ' R4

no a′, b′ such that

T (B)(a′, b′) ' 4 point space

Not_so_good(B) ' R4

Jérémy Dubut (LSV, ENS Paris-Saclay) Natural homology 5th May, 2017 16 / 40



Natural homology

FX = category whose :
objects are traces
morphisms are extensions •a

•a’

•b
•b’

Natural homology :
functor

−→
H n(X ) : FX −→Mod(R)

(a γ−→ b) 7−→ Hn−1(T (X )(a, b)) (Hn−1 = classical singular homology)

FX = category of factorizations [Mac Lane 71]
−→
H n(X ) = natural system [Leech 73, Baues, Wirsching 85]
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Natural homotopy

FX = category whose :
objects are traces
morphisms are extensions •a

•a’

•b
•b’

Natural homotopy :
functor −→π n(X ) : FX −→ Set,Gr,Ab

(a γ−→ b) 7−→ πn−1(T (X )(a, b), γ) (πn−1 = classical homotopy)

FX = category of factorizations [Mac Lane 71]
−→π n(X ) = natural system [Leech 73, Baues, Wirsching 85]
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Bimodule homology

EX = category whose :
pairs of points (a, b), s.t.
∃ a dipaths from a to b
morphisms are extensions

•a

•a’

•b
•b’

Bimodule homology :
functor

−→
H ′n(X ) : EX −→Mod(R)

(a, b) 7−→ Hn−1(T (X )(a, b)) (Hn−1 = classical singular homology)

EX = enveloping category
−→
H ′n(X ) = bimodule [Mitchell 72]
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Example : first natural homology of a + b

0 1

a

b

x y

x ′ y ′

0 x y

[0, x ] [y , 1][x , y ]

[0, y ] [x , 1]

a

1x ′ y ′

[0, x ′] [y ′, 1][x ′, y ′]

[0, y ′] [x ′, 1]

b

−→
H 1(a + b)

R R R

R RR

R R

R[a, b] ' R2

RR R

R RR

R R

R[a, b] ' R2

1 7→ a 1 7→ b

Fa+b
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Example : first bimodule homology of a + b

0 1

a

b

x y

x ′ y ′

0 x y

(0, x) (y , 1)(x , y)

(0, y) (x , 1)

(0, 1)

1x ′ y ′

(0, x ′) (y ′, 1)(x ′, y ′)

(0, y ′) (x ′, 1)

(0, 1)

−→
H′1(a + b)

R R R

R RR

R R

R[a, b] ' R2

RR R

R RR

R R

R[a, b] ' R2

1 7→ a 1 7→ b

Ea+b
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Natural homology on Fahrenberg’s matchbox

a

b

2 dipaths non dihomotopic
⇒ T (X )(a, b) ' 2 point space
⇒ H0(T (X )(a, b)) ' R2

⇒
−→
H 1(X ) not trivial

⇒ natural homology detects failure of dihomotopy
in Fahrenberg’s matchbox
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Comparison of diagrams
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Category of diagrams Diag(M)
Fix a categoryM, typically Mod(R), Set, ...
A diagram in M is a functor from any small category toM.

Ex :
−→
H n(X ),

−→
H ′n(X ), −→π n(X ) are diagrams

A morphism of diagrams from F : C −→M to G : D −→M is a pair (Φ, σ)
where :

Φ : C −→ D is a functor,
σ : F −→ G ◦ Φ is a natural transformation.

Isos : Φ isofunctor, σ natural iso

−→
H n,
−→
H ′n, −→π n are functors from dTop to Diag(M)
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How to compare natural homologies ?
−→
H n(A) =

−→
H n(B)⇒ A = B, modulo isomorphism

R R R

R RR

R R

R[a, b]

RR R

R RR

R R

R[a, b]
1 7→ a 1 7→ b

R RR R

R R R R

R2 R2

Crucial idea :
Compare natural homologies up-to evolutions of homology of trace spaces with
time.
Idea similar to bisimulations in concurrent systems.
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Bisimulations of diagrams

Based on the general theory of bisimulations of [Joyal et al. 94]

An open map is a morphism of diagrams (Φ, σ) from F : C −→M to
G : D −→M such that :

σ is a natural iso,
Φ is surjective on objects,
Φ is fibrational in the following sense : for every morphism of the form
j : F (c) −→ d ′ in D, there is a morphism i : c −→ c ′ in C with F (i) = j .

We say that two diagrams are bisimilar if there is a zigzag of open maps between
them
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Examples

R R R

R RR

R R

R2

RR R

R RR

R R

R2

R RR R

R R R R

R2 R2

−→
H n(X ) is bisimilar to

−→
H ′n(X )

the first natural homology of the matchbox is not bisimilar to the one of a point
space
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Computability
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Cubical complex and discrete traces
Euclidian cubical complex : any subspace of Rn which is a finite union of cubes of
the form

[a1, a1 + α1]× . . .× [an, an + αn]
with ai ∈ Z and αi ∈ {0, 1}.

discrete trace = trace which is a glueing of segments joining center of cubes

fX = category of discrete traces and extensions by discrete traces

Discrete natural homology
−→
h n(X ) :

functor
−→
h n(X ) :

�
 �	fX −→ Ab

(a γ−→ b) 7−→ Hn−1(T (X )(a, b))
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Computability

Theorem :
Given an Euclidian cubical complex X ,

−→
h n(X ) is :

computable
bisimilar to

−→
H n(X )

Proof of computability :
- compute a finite representation of trace spaces [Raussen, Ziemianski],
- compute its homology.

Corollary :
Given two Euclidian cubical complexes, it is decidable wether they have the same
natural homology (when computed in real numbers).

Proof :
Bisimilarity is decidable by reducing the existential theory of the reals.
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Exactness Axiom
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Exactness axiom in classical homology

If (A,X ) is a topological pair, the relative homology Hn(X ,A) is the homology of
the chain complex Cn(X )/Cn(A)

Exactness axiom :
There is a long exact sequence :

· · · Hn(A) Hn(X ) Hn(X ,A) Hn−1(A) · · ·
Hn(i) Hn(p) ∂n
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Exactness axiom in classical homology, general form
the sequence :

C(A) C(X ) C(X )/C(A)
i p

is short exact

Long exact sequence in homology :
If

A B C
i p

is a short exact sequence of chain complexes, then there is a long exact sequence
in modules of the form :

· · · Hn(A) Hn(B) Hn(C) Hn−1(A) · · ·
Hn(i) Hn(p) ∂n

nice for computations, more general in Abelian categories
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Exactness in diagrams ?

Diag(Mod(R)) is not Abelian

Which ingredients ?
zero objects,

no zero objects, but null objects (diagrams with values 0),

kernels,

OK defined levelwise,

images/cokernels,

OK, but more complicated,

subquotients (exactness of some morphisms),

OK.

Theorem :
Diag(Mod(R)) is a homological category in the sense of [Grandis 91].
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Almost exactness in diagrams

Theorem [Grandis 91] :
Let A be a homological category.
For every short exact sequence in C•(A) :

U V W
m p

there exists a long sequence of order two in A :

· · · Hn(V ) Hn(W ) Hn−1(U) Hn−1(V ) · · ·
Hn(p) ∂n Hn−1(m)

natural in the short exact sequence.
Moreover, there are conditions to turn the long sequence to an exact sequence. In
particular, A is modular iff this sequence is always exact.

Bad news : Diag(Mod(R)) is not modular
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Homotopy Axioms
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Homotopy axioms for classical homology

Homotopy axiom, original form
If f , g : X −→ Y are homotopic, then Hn(f ) = Hn(g).

Homotopy axiom, v.1
If f : X −→ Y is a homotopy equivalence, then Hn(f ) : Hn(X ) −→ Hn(Y ) is an
isomorphism.

Homotopy axiom, v.2
If f : X −→ Y is a weak homotopy equivalence, then Hn(f ) : Hn(X ) −→ Hn(Y ) is
an isomorphism.
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Dihomotopy axioms for natural homology, v.2

For free :

Dihomotopy axiom, v.2.0
Let f : X −→ Y be a dimap. If for every n,

−→π n(f ) : −→π n(X ) −→ −→π n(Y )

is a isomorphism of diagrams, then for every n,
−→
H n(f ) :

−→
H n(X ) −→

−→
H n(Y )

is a isomorphism of diagrams.

Proof :
Apply the homotopy axiom, form v.2 on trace spaces.
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Dihomotopy axioms for natural homology, form 2
Better, (almost) as free as v.2.0 :

Dihomotopy axiom, v.2.1
Let f : X −→ Y be a dimap. If for every n,

−→π n(f ) : −→π n(X ) −→ −→π n(Y )

is a open map, then for every n,
−→
H n(f ) :

−→
H n(X ) −→

−→
H n(Y )

and −→
H ′n(f ) :

−→
H ′n(X ) −→

−→
H ′n(Y )

are open maps.

Proof :
Apply the homotopy axiom, form 2 on trace spaces + reasoning on open maps.
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Which dihomotopy equivalences for v.1 ?
A future deformation retract of X on a sub-dspace A is a continuous map

H : X −→ I(X )⊆
−→
P (X )

such that :
for every x ∈ X , H(x)(0) = x ;
for every a ∈ A, t ∈ [0, 1], H(a)(t) = a ;
for every x ∈ X , H(x)(1) ∈ A ;
for every t ∈ [0, 1], the map Ht : x 7→ H(x)(t) is a dmap ;
for every δ of A from z to H1(x) there is a dipath γ of X from y to x with
H1(y) = z and H1 ◦ γ dihomotopic to δ.

Inessential equivalence :
Two dspaces are inessentially equivalent iff there is a zigzag of future and past
deformation retracts between them.
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Why not
−→
P (X ) ?

In classical algebraic topology :
if f : X −→ Y is a homotopy equivalence, P(x , y) and P(f (x), f (y)) are
homotopically equivalent because paths induces homotopy equivalence by
concatenation :

γ ? _ : P(X )(z , x) −→ P(X )(z , y) δ 7→ γ ? δ

is a homotopy equivalence.

In directed algebraic topology : dipaths do not have this property

Jérémy Dubut (LSV, ENS Paris-Saclay) Natural homology 5th May, 2017 37 / 40



Inessential dipaths
Idea from [Fajstrup, Goubault, Haucourt, Raussen] for category of
components.

The set I(X ) of inessential dipaths of X is the largest set of dipaths such that :
for every γ ∈ I(X ) from x to y , for every z ∈ X such that

−→
P (X )(z , x) 6= ∅,

the map γ ? _ :
−→
P (X )(z , x) −→

−→
P (X )(z , y) δ 7→ γ ? δ is a homotopy

equivalence ;
symmetrically for _ ? γ ;
I(X ) has the right and left Ore condition modulo dihomotopy :

w x

z y

mod. dihomot.

g ′

f ′ ∈ I(X)

g

f ∈ I(X)

z y

x w

mod. dihomot.

g

f ∈ I(X)

g ′

f ′ ∈ I(X)
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Why inessential equivalence ?

classify as we expect many dspaces (for example, distinguish the matchbox
and the point),

in-between Grandis’ reversible and dihomotopy equivalences,

its action on the fundamental category corresponds to the category of
components,

because of the preservation of the homotopy type of the space of dipaths, it
has a deep relation with (∞, 1)-categories (directed homotopy hypothesis).
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Dihomotopy axiom, v.1

Dihomotopy axiom v.1
If two Euclidian cubical complexes X and Y are inesentially equivalent then
−→
H n(X ),

−→
H ′n(X ),

−→
H n(Y ) and

−→
H ′n(Y ) are bisimilar.

Conclusion : natural and bimodule homologies are invariant of inessential
equivalence, at least on Euclidian cubical complexes, where we can do
computations.
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