
NNT : 2017SACLN011

1

Thèse de doctorat
de l'Université Paris-Saclay

préparée à l'École normale supérieure de
Cachan (École normale supérieure

Paris-Saclay)

Ecole doctorale n◦580
Sciences et Technologies de l'Information et de la Communication

Spécialité de doctorat : Informatique

par

M. Daniel Stan

Stratégies randomisées dans les jeux concurrents

Thèse présentée et soutenue à Cachan, le 30 mars 2017.

Composition du Jury :

Mme. Nathalie Bertrand Chargée de recherche (Rapporteuse)
INRIA

M. Antonín Ku£era Professeur (Rapporteur)
Université Masaryk

Mme. Johanne Cohen Directrice de recherche (Examinatrice)
CNRS

M. Olivier Serre Directeur de recherche (Examinateur)
CNRS

M. Joost-Pieter Katoen Professeur (Président)
Université RWTH

M. Nicolas Markey Directeur de recherche (Directeur de thèse)
CNRS

Mme. Patricia Bouyer-Decitre Directrice de recherche (Directrice de thèse)
CNRS

Laboratoire Spéci�cation et Véri�cation
École Normale Supérieure Paris-Saclay, UMR 8643 du CNRS
61 avenue du Président Wilson, 94235 Cachan Cedex, France

ii

Remerciements

Tout d’abord, je tiens à remercier les membres de mon jury, qui ont accepté d’assister à ma
soutenance, et particulièrement Nathalie Bertrand et Antońın Kucera qui m’ont fourni de
nombreux retours et suggestions de corrections, dans un délai très court. Nicolas et Patricia
me connaissent depuis maintenant quatre ans, et je leur suis également profondément recon-
naissant pour leur travail d’encadrement et leurs conseils, qui m’ont énormément appris sur
la façon de présenter mes travaux, que ce soit à l’oral ou à l’écrit1. Plus encore, ils ont su,
tout du long, m’apporter la motivation et surtout l’enthousiasme qui m’a permis d’apprécier
la recherche, même lorsque je pensais, fréquemment et très souvent à tort, me trouver dans
une impasse. J’ai bien sûr retrouvé cette dynamique avec d’autres chercheurs, tels qu’Arnaud
Sangnier et Mickael Randour, avec qui j’ai apprécié les nombreuses discussions et découvertes
enthousiastes devant un tableau tout griffonné. Une autre source d’inspiration non négligeable
m’est venu de l’enseignement en tant que chargé de TD, que ce soit grâce à des encadrants
dynamiques, autrefois mes professeurs, comme Serge Haddad, Paul Gastin, Stefan Schwoon,
Sylvain Schmitz et Alain Finkel ainsi que des élèves, trop nombreux pour être cités ici mais
toujours pleins de ressources.

Le LSV est un laboratoire très agréable à vivre où l’on s’intègre facilement 2 et les discus-
sions et débats3 se lancent facilement autour du café lors d’une pause. Je garde des souvenirs
mémorables des thésards et stagiaires du � fond du couloir �, passés ou actuels, avec lesquels
j’ai passés de très bons moments : Anthony, Antoine, Samy, Simon, Rémy, Guillaume. Grâce
à eux, j’ai pu rencontrer Nadine, et surtout Monsieur Pierre-Jacques Henri, qui m’ont ap-
porté de nombreux conseils avisés. Je n’oublie pas non plus les autres doctorants, notamment
Jérémy, Lucca, Yann, Patrick, Pierre C., François T., mais aussi Marie van Den Bogaard
qui a guidé le groupe des doctorants pendant quasiment toute ma thèse, et m’a aussi fourni
de précieux conseils avant ma propre rédaction et soutenance. Les chercheurs ayant parfois
peur des formalités administratives, je tiens à remercier Catherine, Imane, et surtout Virginie
pour leur travail, et régulièrement pour leur patience et leur pédagogie. Hugues et Francis ont
également fait un travail remarquable au niveau informatique et je dois reconnâıtre que j’ai
pris plaisir à discuter quelque fois avec eux de sujets techniques, que certains qualifieraient
de � cambouis �.

En parlant de cambouis, il me serait difficile de faire l’impasse sur le Crans, qui m’a
permis tout au long de ma scolarité à l’ENS de pratiquer une autre forme d’informatique,
plus appliquée et complémentaire de toute la théorie déployée pendant ma thèse. Mais cette
grande association Cachanaise ne serait rien sans la bande de � geeks � qui la compose, et
que je ne nommerai que par leurs pseudonymes4 : Nit, olasd, iota, Zelda, Harry, Tilgaht,
Bernie, Chirac, Hamza, Guinness. C’est aussi de ce groupe d’amis qu’est née la colocation
avec Pauline, PEB et 20-100 et tous les souvenirs inoubliables que nous avons partagé ces
trois dernières années ensemble, et avec son � adhérence topologique �, notamment Zadou et
Corentin.

Merci aussi à Chloé, Baptiste, Tilgaht et Lucile, que je ne vois pas très souvent, mais
dont j’apprécie toujours les retrouvailles, ainsi qu’à mes parents, et ma petite sœur, qui sans
me pousser dans la voie que je poursuis aujourd’hui, ont toujours validé mes choix et m’ont

1Vive Tikz !
2même lorsque l’on refuse de goûter à la gastronomie du restaurant universitaire
3parfois même des trolls
4car il nous arrive de ne même plus savoir nous nommer autrement

iii

encouragé à persévérer.
Le début de ma thèse a aussi été marquée par ma rencontre avec Maud, qui n’a jamais

cessé de croire en moi, de me réconforter et de m’encourager, même après que nos chemins
aient divergés, je chéris ces souvenirs. Je souris encore aux nombreux moments passés avec
les � Grotas �, mais aussi la � Trolloc �, Ping, Marion, trolin, Ara, Nolwenn, Ariane, mais
aussi Misc et Blupon. Ce dernier méritant ainsi d’être cité comme mon fidèle compagnon
d’infortune (je lui souhaite bon courage pour sa future thèse) lors de cette dernière année de
rédaction, de soutenance, et enfin de départ pour une nouvelle vi(ll)e.

iv

Contents

1 Introduction 1

1.1 Game theory and computer science . 2

1.2 Non-determinism, stochasticity and quantitative problems 3

1.3 Strategic optimization . 3

1.4 Outlines . 4

1.5 Related work . 5

1.6 Structure of the Thesis . 6

1.7 Scientific publications . 6

2 Preliminaries 9

2.1 Usual notations . 9

2.2 Operations over a monoid . 9

2.2.1 Monoid over words . 9

2.2.2 Relations over a set . 10

2.2.3 Paths . 10

2.2.4 Partial functions . 10

2.3 Sets and multisets . 10

2.4 Well-quasi-orders . 10

2.5 Probability theory . 11

I Mixed Strategies in Concurrent games 13

3 Concurrent games 15

3.1 Strategies . 16

3.2 Visibility of actions . 18

3.3 Semantics . 19

3.4 Outcome of a game . 19

3.5 Two-player zero-sum games . 21

3.6 Nash Equilibria . 25

3.6.1 Definition . 26

3.6.2 Sub-game characterization . 27

3.6.3 Subgame perfect equilibrium . 28

3.6.4 Example of equilibria . 29

v

CONTENTS

4 Decidability of Nash Equilibria 31

4.1 Tools . 32

4.1.1 One-shot games . 32

4.1.2 k-action matching-pennies games . 33

4.1.3 Embedded game . 34

4.2 Modules . 40

4.2.1 Rescale game . 40

4.2.2 Testing game . 43

4.2.3 Counting modules . 44

4.2.4 Description of the reduction . 46

4.3 Conclusions . 50

4.3.1 Unconstrained problem . 50

4.3.2 Qualitative objectives . 51

4.3.3 Summary . 55

5 Games that almost-surely terminate 57

5.1 Avoiding cycling behaviours . 57

5.1.1 Non-cycling games . 59

5.1.2 Strong components . 61

5.1.3 Fixed point analysis . 61

5.2 Equilibria under imprecise deviations . 64

5.2.1 Restricting to memoryless deviations 65

5.2.2 Existence theorem . 67

5.2.3 Discussions . 68

5.3 Computing stationary equilibria under imprecise deviations 68

II Parametrized Stochastic Systems 71

6 Interaction models 73

7 Parametrized register protocols 79

7.1 Non-deterministic transition system . 80

7.2 Parametrized reachability: a global picture 82

7.3 Monotonicity . 82

7.3.1 Upward closed reachability objectives 82

7.3.2 Non-atomicity . 83

7.4 Probabilistic transition system . 85

7.4.1 Qualitative analysis . 86

7.4.2 Cut-off property . 87

8 Probabilistic reachability and safety 89

8.1 Existence . 89

8.2 Symbolic graph . 89

vi

CONTENTS

9 Almost-sure reachability 93
9.1 First examples . 93

9.1.1 Atomicity prevents cut-off existence 93
9.1.2 Symbolic graph is powerless . 94

9.2 Existence . 95
9.3 Bound examples . 97

9.3.1 Linear cut-off . 97
9.3.2 Counter machine . 99
9.3.3 PSPACE-hardness . 102

9.4 Decision procedure . 105
9.4.1 Refined symbolic graph . 105
9.4.2 Symbolic based algorithm . 106
9.4.3 Complexity bounds on covering . 107
9.4.4 General bounding scheme . 109

10 Extensions and discussions 113
10.1 Model checking . 113
10.2 r-register protocol . 114

10.2.1 Tools enhancement . 114
10.2.2 Operations over r registers . 115
10.2.3 Discussion on the r-register extension 118
10.2.4 Comparison with non-atomic protocols 119

10.3 Process identifiers . 119
10.4 Conclusions . 119

11 Toward Strategy Synthesis 121
11.1 Definitions . 121

11.1.1 Allowed actions and randomization . 121
11.1.2 Local strategies . 122
11.1.3 Semantics . 124
11.1.4 Cut-off property . 125

11.2 Reachability . 126
11.2.1 Mixed strategies . 126
11.2.2 Pure strategies . 126
11.2.3 Summary . 128

11.3 Safety . 129
11.4 Conclusions . 132

Bibliography 135

List of figures 142

List of tables 145

Résumé en français 146

vii

CONTENTS

viii

Chapter 1

Introduction

Stochastic behaviours are a particular form of uncertainty that also allow desynchronization
and symmetry breaking mechanisms. Imagine for example two persons playing the well-
known rock-paper-scissors game as in Figure 1.1a, on a daily basis. The game consists in a
series of rounds, where each of them consists in the two persons picking a symbol among ,
and . The game continues until a winner is determined, that is when a tie is not triggered.
As these players often play this game against each other, they may start to learn from each
other and infer over time how their opponent reasons. Each day that passes, the players can
decide to change their mind according to what was played the day before, which will result
in an endless oscillation of their played symbols, or keep playing the same way. This may
require them to remember the beginning of the previous plays, or at least the beginning of
the sequence of played symbols. One day, one of the players is bored of this game and instead
of trying to “outsmart” their opponent as usual, decides at each round, to roll a dice and play

if the value is 1 or 2, if the value is 3 or 4 and otherwise. As soon he decides to play
according to this scheme, he secures his win with probability 1

2 . No matter what the other
player does, there is no point in trying to guess an opponent behaviour nor remembering what
he has played the day before, thus the game becomes easier to play for both of them. Playing
at random may also be a time-saver, as every day, players are now guaranteed to spend only
3
2 rounds on average.

In this thesis, we study formal verification and synthesis of systems with stochastic be-
haviours. Randomization in the computer science field is indeed a key tool to desynchronise
processes, to avoid deadlock situations or collisions in communication protocols. The global

37 73

;

; ;

;

2
;

2
;

2

(a) Rock-paper-scissors game. A tie resets the
game.

37 73
;

(b) Simple schema of a wait/transmit (/)
mechanism for two entities that share the
same medium. Any collision resets the game.

Figure 1.1 – Simple games that require randomization

1

1.1. GAME THEORY AND COMPUTER SCIENCE

picture in this context is very close to our previous rock-paper-scissors game, as shown in
Figure 1.1b. Many protocols rely on randomization, like CSMA/CD [CSM00], which requires
its participants to randomize their sending in case of a previous collision. As a consequence,
considering stochasticity in this protocol is of fundamental feature for its analysis [DKN+12].
Another example of desynchronization through randomization occurs for the distributed as-
signment of link-local addresses as specified by the Zeroconf protocol [BSHV03, AGC05].

With the rise of open-source softwares and the progresses of code disassembly, but also
because communication protocols are publicly described, it is reasonable to assume that the
source code of any program is in fact a public information. This has security implications
since several algorithms and data structures have a reasonable complexity on average, but a
huge complexity in the worst case, that can be triggered by an attacker. For example, with
limited computational power and bandwidth, an attacker could trigger many collisions in
the deterministic hash-table of a server-side program and bring down a large computational
structure [CW03]. In this context, randomization is not only a way to ensure fairness during
a transmission, but also a natural counter-measure against an adversary.

1.1 Game theory and computer science

Game theory and strategic reasoning is a prolific domain, introduced by Von Neumann [Neu28]
with his famous minimax theorem, and later more complete formalisms [VNM47]. This
framework has been successfully applied to economics and sociology by Nash, Selten and
others [Nas50, Sel65], as it provides a relevant model for the behaviours and interactions of
people and entities, that are seen as players or agents, each one of them making decisions that
affect all players. Decisions or actions are chosen by each player, according to their strategy,
which can possibly take into account some observation of the game and its environment. Each
player is given a goal or objective, usually a utility function or more generally a preference
relation. The utility is rewarded to each player according to the actions played by all the
players.

These games are usually given as payoff matrices, that is to say the game is described as a
punctual event in time. The previous example and related communication protocols include
a sequential aspect, that is often represented in an automata theoretical framework in the
computer science point of view. For example, the Church’s problem asks whether a binary
relation on infinite sequences of words, represented as a logical formula, can be implemented
in terms of a circuit that takes the first infinite sequence as an input, and produces one of the
corresponding possible infinite sequence as an output. The problem can be represented by a
game played on a graph between two players, the first one proposing an output of the game
by choosing an edge labelled with the corresponding letter of the output sequence, while the
other tries to exhibit an input sequence, letter by letter that doesn’t correspond to the output.
Implementing the circuit corresponds to a winning strategy for the first player [BL69], hence
solving the game.

This methodology is typically well-suited for reactive systems, where we are interested in
the synthesis of a controller that should satisfy a logical property against an unpredictable
environment [ALW89]. Here, the first player is existential, and we shall name her “Eve”, as
we are interested in a single possible winning strategy, whereas the second player is universal,
namely “Adam”, and we consider all his possible behaviours.

2

CHAPTER 1. INTRODUCTION

1,−1 −1, 1

s0

~s, rw rs

~w

Figure 1.2 – H has no optimal strategy

1.2 Non-determinism, stochasticity and quantitative problems

When we say that a player is winning against all possible strategies, we adopt a worst-case
approach since all possible actions are taken into account. One can legitimately argue that
this form of uncertainty is very strong as we may consider irrelevant scenarios, that may
not happen in practice. For example the simple transmission model depicted before, can be
assumed to enjoy a fairness property, that is to say, the existence of infinitely many time slots
available for emission.

An intermediate notion of uncertainty is stochasticity, namely the environment, which is
usually introduced as a particular player that takes no decision but has a stochastic behaviour.
As opposed to a universal player, the environment has no objective and can help or work
against the existential player. Introduction of probabilities into a model has two major
consequences: first of all, some sets of possible executions from the worst-case approach
are discarded. For example, a tie loop is improbable in the rock-paper-scissors game as soon
as one player plays at random. This can be related to certain forms of fairness properties,
that are otherwise harder to model. On the other hand, stochasticity brings new quantitative
questions. For example, we can ask whether a player can win with probability larger than a
given threshold.

1.3 Strategic optimization

Several concepts of optimality for strategies have been proposed, depending on the desired
properties. An optimal strategy is the first natural solution concept where the strategy of a
given player has to maximize the utility of that player, no matter the actions of the other
players. This concept leads to the notion of value [Sha53]. In this context, games are assumed
to be played by two players with antagonistic objectives, namely zero-sum. Although the
resulting values for both players do not necessarily sum to zero, determinacy results state
that this intuition is correct for a wide range of games when players play in turn without
randomization but with regular objectives [Mar75].

When allowing concurrent moves and randomization, optimal strategies may not exist
even though the game is determined, as the value may be asymptotically reached [Mar98].
Consider for example the concurrent 2-player zero-sum game H (hide-or-run), depicted in
Figure 1.2. Player 1 can either hide (~) or run home (r) while player 2 tries to shoot him,
with a snowball. If player 2 shoots while player 1 is hiding, she loses her snowball and loses
the game. If player 2 shoots while the other player is running, she wins. This game has
been shown by [KS81] to have no optimal strategy although player 1 can ensure to win with
probability arbitrarily close to 1.

When the game involves more than two players, or when objectives are compatible from

3

1.4. OUTLINES

one player to another, we may argue that the notions of optimal strategy and value are not
suited anymore: players may not necessarily play against each other anymore. The equilib-
rium notion introduced by Nash [Nas50] plays a central role for the study of non-zero-sum
games. In such an equilibrium, we are interested in particular strategies, one for each player,
such that for each player, her strategy is optimal when played together with the particular
strategies of the other players, that are already fixed. On a graph structure, an equilibrium
forms a particular cooperation mechanism between the players, in order to visit profitable
states. What happens when a player does not respect the agreement depends on the exact
notion considered, as players in a Nash equilibrium prefer to retaliate to maintain their equi-
librium, instead of continuing to optimize their own utility. This last observation justified the
introduction of particular notions of Nash equilibria called subgame perfect equilibria [Sel65],
where equilibrium must be ensured from any state.

The assumed behaviour of the other players, that may want to optimize their own utility
is called rationality. This hypothesis is particularly sound in the computer science area,
as players are programs, autonomous systems, or individual devices, that interact together,
through a protocol or some predefined patterns. Hence, a strategy for a player can be seen
as a program or firmware, that we may, depending on the studied problem, try to synthesize
or simply assume to exist [KPV15].

1.4 Outlines

We focus in this thesis on the power provided by stochasticity in games represented by finite
control-flow graphs, and mainly consider reachability and safety objectives of a particular
state. This choice can be considered as a first step to more general verification studies.

We are particularly interested in the study of the decidability and computability statuses
of solution concepts from the perspective of the following parameters: (a) the number of agents
involved, (b) the way they interact with each other, (c) the allowed memory in strategies,
(d) the allowed stochasticity in strategies, (e) the unpredictability of environment (stochastic,
and/or non-deterministic), (f) the relaxation of the solution concept.

We consider first a classical framework of concurrent games played on graphs by a fixed
number of agents, with stochastic behaviours coming from the environment and the strategies.
More precisely, we study how concurrent actions and stochastic strategies together harden the
decidability problem of the existence of a Nash equilibrium. In this general situation, which
we will see is undecidable, we investigate relaxed notions of equilibria to regain decidability.

Despite their very general specification, concurrent games have a rigid structure that we
argue is not suited to the representation of concrete problems. One main challenge that we
address is the study of a model that is flexible enough to capture the stochastic interactions
between an arbitrary number of agents, while remaining simple enough to keep decidability
and computation possible and tractable.

Therefore, we consider a model where the number of agents is a parameter, and consider
behaviours for large values. Because of this parametrized setting, the model of interaction
has to be discussed and made precise. We proceed to the study of interactions made through
a shared variable with finite domain, that each agent can access asynchronously. The system
is somehow turn-based, however, the order is chosen according to a (non-)deterministic or
stochastic scheduler, seen as an environment. On the one hand, this model is more general
than games as it is parametrized, that is to say it involves an arbitrary number of players.

4

CHAPTER 1. INTRODUCTION

On the other hand, it is more restricted since the communication primitives are limited to a
particular case of shared-register access between the players. Again, we study which role a
stochastic environment plays in this context. Then, we address the existence and even the
synthesis of strategies for players by characterizing the memory and randomization that they
may require. To simplify the study in this second part, our work focuses only on qualitative
reachability properties, that is to say reachability with probability 1, or strictly less than 1.

1.5 Related work

The seminal result of Nash [Nas50], shows that any one-shot game has an equilibrium in
mixed strategies. The crucial point of the proof is the introduction of strategy randomization
to ensure continuity then existence of a fixed point of a well-chosen function, for example
by applying Brouwer’s fixed-point theorem. Such arguments can be adapted to some games
played on graphs, for example in the finite horizon case, when the length of the play is
bounded. Discounted utility functions is a special case of infinite horizon, where reward on
each state exponentially decreases over time. Players are therefore encouraged to apply their
best strategies in the beginning of the play, which ensures continuity then existence of a Nash
equilibrium [Fin64]. The undiscounted infinite horizon case is usually harder, even when the
game involves only one player interacting with her stochastic environment. Such a game can
be seen as a Markov Decision Process, for which a family of asymptotically optimal strategies
is known to exist [Put94]. From a mathematical point of view, games with at least two
players are also studied under the name Competitive Markov Decision Process with similar
discounted and undiscounted objectives [FV96].

Here, our objectives consist in reachability and safety objectives on states, which can be
seen as a particular notion of undiscounted objective. Existence is ensured for games with
safety objectives for all players, that is to say staying inside a subset of safe states [SS01].
In the reachability case, the existence of a Nash equilibrium remains open, nonetheless, a
relaxed notion of equilibria where each player can still deviate to win up to a fixed imprecision
ε > 0 is known to exist for terminal-reachability objectives [CJM04]. Extensions to ω-regular
objectives have been considered in the two-player case [Cha05], while the general case remains
open. A more complete survey of known results of Nash equilibria and stochastic games in
general can be found in [CH12].

When restricting to deterministic games without randomization, a study of ω-regular ob-
jective is possible [Bre12], by encoding any Nash equilibrium in a two-player game. Stochastic
games have also been studied in the turn-based case by [Umm10], where the decision prob-
lem of the existence of a general Nash equilibrium is shown undecidable. More precisely,
the author shows that it is undecidable to determine whether a game involving 11 players
with terminal rewards and where a given player wins almost-surely has a Nash equilibrium.
When restricting to memoryless strategies, we can decide in PSPACE whether there exists a
Nash equilibrium whose average payoff profile lies between two given threshold profiles, which
provides a method for approximating the resulting payoff. This has to be compared to the
complexity of computing a Nash equilibrium in matrix games which is PPAD-complete, even
with only two players [CDT09]. Note that the two studies focus on decision and computation
problems since the existence of a Nash equilibrium is not ensured in their restriction. Indeed,
randomization and concurrent actions are the main ingredient of the existence proof.

Considering an arbitrary number of agents is a form of parametrized system, for which

5

1.6. STRUCTURE OF THE THESIS

verification has been introduced by German and Sistla [GS92]. In general, systems that in-
teract together, concurrently, can be modeled as a vector-addition system, or equivalently a
Petri net. Reaching a particular control state by any agent can be seen as a coverability prop-
erty, which is known to be decidable and EXPSPACE-complete [Rac78, Lip76]. Therefore
we realize that parametrized verification may be an already difficult problem and has mainly
been studied in the non-stochastic case. However, some studies of population protocols,
like [EGLM15], include fairness properties and ask for reachability of a strongly connected
component, which relates to almost-sure reachability, that is to say a qualitative property.
Petri nets and population protocols are nonetheless very powerful models, that we may want
to restrict. Several restricted communication primitives are presented in [Esp14], and their
impact on the complexity of verification problem is discussed. The non-atomic shared register
protocols, chosen as the communication scheme of the second part of the thesis, have been for
example studied in [EGM13, DEGM15]. The authors consider only the non-stochastic case,
but do not restrict their analysis to finite control-flow graph and also consider agents described
by pushdown machines. Similar models as reconfigurable broadcast networks [BFS14], can
also be studied with their stochastic behaviours, while local distributed strategies are intro-
duced in [BFS15].

1.6 Structure of the Thesis

After providing in Chapter 2 the basic concepts, tools and notations used along the thesis,
the rest of the manuscript is divided into two independent parts:

• The first one is devoted to the study of concurrent stochastic games with terminal-
reachability objectives and a fixed number of agents. Chapter 3 defines the whole
game framework, from stochastic arena to state-of-the-art results on Nash equilibria.
Chapter 4 develops a proof of the undecidability of the existence of Nash equilibria
and discusses several implications. Finally, Chapter 5 introduces a relaxed notion of
equilibria that is proven to always exist and enjoy computability properties.

• In the second part, we shift to a more realistic model where the number of involved
agents is not fixed a priori and information is only partial. Here, we mainly focus
on qualitative reachability properties of our systems, assuming that the behaviour of
agents is fixed. Chapter 6 introduces the parametric verification concepts and relates
the studied model to the different communication classes already considered in the liter-
ature. Chapter 7 introduces formally the model and describes the considered semantics.
Chapter 8 recalls some preliminary results on the deterministic case, or equivalently, on
the stochastic case with positive probability. Chapter 9 studies the almost-sure reacha-
bility question. The techniques are then generalized to some extensions in Chapter 10.
The last Chapter 11 tries to bridge the gap with the first part, by introducing a local
strategy concept for agents, and presents decidability results in some restricted cases.

1.7 Scientific publications

Several results presented here complete previous conference publications that the author of
this thesis has co-authored: Chapter 4 describes the undecidability result of [BMS14], and ex-
poses further discussions on the invisibility of played actions as well as several implications to

6

CHAPTER 1. INTRODUCTION

the study of Nash equilibria in games with qualitative reachability and safety objectives. The
existence and computation of equilibria under imprecise deviations developed in Chapter 5
have been published in [BMS16]. Finally, the second part of the thesis extends [BMR+16],
whose main theorem is presented in Chapter 9, to the case of a distinguished agent, called
a leader, and to more general reachability objectives. Extensions to multiple registers and
strategy concepts are also studied as further improvements.

7

1.7. SCIENTIFIC PUBLICATIONS

8

Chapter 2

Preliminaries

We briefly describe in this chapter some notations and concepts that will be intensively used
in the sequel.

2.1 Usual notations

We respectively denote by N, Z, Q and R the sets of natural, relative, rational and real
numbers, with the usual comparison relation ≤.

For a set A ⊆ R, we will write A≥0 = {x ∈ A | x ≥ 0}, A>0 = {x ∈ A | x > 0}.

2.2 Operations over a monoid

Let (R, ·) a monoid with identity element 1, and A,B ⊆ R, two subsets.

We extend notations on · to sets by A ·B = {a · b | a ∈ A, b ∈ B}. For x ∈ R and n ∈ N,

x0 = 1 A0 = {1} and xn+1 = xn · x An+1 = An ·A

We define the Kleene plus of A as the smallest subset of R containing A, and stable
under · operation, and denoted A+ = ∪n>0A

n. Similarly, the Kleene star of A is written
A∗ = A ∪ {1} = ∪n≥0A

n.

We give several examples of monoids that will be considered through this thesis.

2.2.1 Monoid over words

For a finite set Σ called an alphabet, we consider R the set of finite sequences of elements of
Σ, namely words. In particular, ε is the empty sequence, or empty word.

For a word w ∈ R, we denote by |w| ∈ N its length, and for any position i, for 1 ≤ i ≤ |w|,
we write w[i] the i-th element of w. · is defined as the concatenation of two words: for any
w1, w2, w1 · w2 is defined as

|w1 · w2| = |w1|+ |w2|
∀1 ≤ i ≤ |w1| (w1 · w2)[i] = w1[i]

∀|w1|+ 1 ≤ i ≤ |w1|+ |w2| (w1 · w2)[i] = w2[i− |w1|]

9

2.3. SETS AND MULTISETS

We can check that (R, ·) is indeed a monoid with identity element ε, and that Σ∗ = R.
For a word w ∈ Σ+, we write first(w) = w[1] and last(w) = w[|w|]. For w,w′ ∈ Σ∗, we write
w v w′ whenever there exists w′′ ∈ Σ∗ such that w′ = w · w′′.

With the exception of the last operator, we extend previous notions on words to ω-words,
defined on set Σω.

2.2.2 Relations over a set

Let us now consider a set V and the class R of binary relations over V that is to say elements
of the form E ⊆ V ×V . For x, y ∈ V , we write xEy whenever (x, y) ∈ E. For E1 and E2 two
binary relations, we denote by E1 · E2 = {(x, y) ∈ V 2 | ∃z ∈ V xE1z ∧ zE2y}. We can then
define for any class C of binary relations C∗ and C+. By analogy with the previous notations,
we write E−1 = {(y, x) | (x, y) ∈ E}. Notice that in general, 1 ⊂ E−1 · E but 1 6= E−1 · E.
E∗ and E+ are called respectively the transitive and strict transitive closure of E.

2.2.3 Paths

Let E be a binary relation over V . We denote by paths (E) the set of paths on E, that is to
say:

paths (E) =
{
π ∈ V +

∣∣ ∀i ∈ N 1 ≤ i < |π| ⇒ (π[i], π[i+ 1]) ∈ E
}

For x, y ∈ V and π ∈ V , we write π : x E∗ y whenever π ∈ paths (E), π[1] = x and
π[|π|] = y.

2.2.4 Partial functions

Partial functions from V to V are particular binary relations E over V , that are stable by ·
operations, hence that form a sub-monoid.

For a property ϕ, we will write 1ϕ for the value 1 if ϕ holds and 0 otherwise. When X is
a set, we also write 1X for the function x 7→ 1x∈X . For any function f defined on a monoid
R, and any x ∈ R, we write f(x · −) for the function: y ∈ R 7→ f(x · y).

2.3 Sets and multisets

If A is an arbitrary set,] [A] denotes its cardinal which is a natural number or ∞.

A multiset over A is a function µ : A→ N. Its cardinality is denoted by |µ| = ∑a∈A µ(a) ∈
N] {∞} while its support is µ = {a ∈ A | µ(a) > 0}. The set of multiset of cardinality n
is written NAn , while the whole set of multisets is NA =]nNAn . ⊕ and 	 respectively denote
point-wise addition and subtraction of multisets.

2.4 Well-quasi-orders

Let A be a set equipped with a quasi-order �, that is to say a reflexive and transitive binary
relation over A. We say that (A,�) is a well-quasi-order (wqo for short), whenever any infinite
sequence w ∈ Aω contains two elements w[i] and w[j] with 1 ≤ i < j such that w[i] � w[j].

A subset U of A is upward closed whenever for all x � y and x ∈ U , we also have y ∈ U .
When (A,�) is a wqo, we see that any upward closed set U can be represented by a unique

10

CHAPTER 2. PRELIMINARIES

finite subset B ⊆ U , in the following way: U = {y | ∃x ∈ B.x � y}. Remark that cardinality
] [U] is potentially infinite, although U can be finitely represented.

2.5 Probability theory

In order to give semantics to our different models, we will equip them with a probability
distribution over their possible runs. A run will usually be represented as a maximal word,
possibly of infinite length, whose all finite prefixes are paths in the considered model.

Theorem 2.1 (Carathéodory’s criterion [RF10]). Let P a function of the form P : 2Σ+ → R≥0

such that for all w ∈ Σ+,∑
a∈Σ

P(w · a · (Σ∗] Σω)) ∈ {0, P(w · (Σ∗] Σω))}

Then, P can be uniquely extended as a measure on the σ-algebra B(Σ) generated by the class
of languages with a common prefix, namely {w · (Σ∗] Σω) | w ∈ Σ∗}. For any finite word
w ∈ Σ+, we usually identify notations P(w) with P(w · (Σ∗] Σω))

If w v w′ and P(w′) > 0, then by induction, we show that P(w) > 0. Finite words w such
that P(w) > 0 and ∀a P(w · a) = 0, are called terminal words. For any infinite sequence of
words of the form (wi)i>0 with ∀i wi v wi+1 with ∀i P(wi) > 0, the limit of such sequence is
a finite or infinite word w ∈ Σω] Σ+, which has measure limi>0 P(wi).

Our main goal is to study probabilistic properties. As the notation P suggests it, for a
given prefix w0 ∈ Σ+, if P(w0) > 0, then ∀X ∈ B(Σ) 7→ P(w0 ·X) is a probability measure. In
the following, if A is an at most denumerable set, Dist(A) will denote the set of probability
distributions over A. If µ is such a distribution, µ denotes the support of µ, that is the subset
{a ∈ A | µ(a) > 0}. Pointwise addition for distributions will be written +, and multiplication
by a scalar is written ·, so that for any two distributions µ and µ′ on the same set A, and for
any p ∈ [0, 1], p · µ+ (1− p) · µ′ is still a distribution on A.

11

2.5. PROBABILITY THEORY

12

Part I

Mixed Strategies in Concurrent
games

13

14

Chapter 3

Concurrent games

In this chapter, we introduce the game framework used in the first part. We describe how
players can interact together, by the means of an arena, which roughly corresponds to a finite
directed and labelled graph. Then, several classes of strategies are defined, that will later
induce an outcome, seen as a probability measure over the possible runs in the arena. Game
theory is focused on how players can enforce an outcome that is profitable for them, so we
have to define how outcomes can be compared, that is to say to define payoffs for the players.
Finally, we consider game theoretical concepts such as optimal strategies and Nash equilibria
in our framework and discuss known results.

Definition 3.1. A concurrent arena A is a tuple A = (States,Agt,Act,Tab, (Allowi)i∈Agt)
where

• States is a finite set of states;

• Agt is a finite set of players;

• Act is a finite set of actions;

• For all i ∈ Agt, Allowi : States −→ 2Act is a function describing authorized actions in a
given state for Player i;

• Tab : States× ActAgt → Dist(States) is the transition function.

A state s ∈ States is said terminal (or final) if it allows no action for any player:∏
i∈Agt Allowi(s) = ∅. We write FA (or simply F when the underlying arena is clear

from the context) for the set of terminal states of A.

We argue below that this model is very general, and captures several frameworks from
the litterature.

We say that the arena is deterministic whenever the transition function is deterministic
i.e., only makes use of Dirac distributions, stochastic otherwise. When refering to an arena
with n =] [Agt] players, we can refer to the probabilistic behaviour as a last player, usually
called the environment, who resolves the probabilistic transitions. As a consequence, we will
say that an arena is a n+ 1/2-player arena if it is stochastic, or n-player otherwise.

We say that the arena is turn-based whenever for any s ∈ States, there is at most one
player i ∈ Agt who has more than one allowed action: ∀j 6= i] [Allowj(s)] ≤ 1.

15

3.1. STRATEGIES

q0,0 q0,1

q1,0

bbb

bab,bba

baap

1− p

q1,1

†bb

†ab,†ba
†aa p

1− p

a∗∗

Figure 3.1 – Graphical representation of a 3+1/2-player arena. Player 1 can enforce transition
from q0,0 to q0,1 by playing a. Player 1 has no move left from this state since Allow1(q0,1) = {†},
on the other hand, players 2 and 3 can trigger a probabilistic transition if they both play action
a.

Graphical representation. In the sequel, we usually identify each agent i ∈ Agt, with
a positive integer from 1 to] [Agt], that is to say Agt = J1,] [Agt]K.

Thus, an action profile of all players is a word A ∈ ActAgt, of length] [Agt], and for any
player i ∈ Agt, A[i] is the action played by player i.

An example of stochastic arena1 is represented in Figure 3.1. We provide several graphical
conventions:

• Non-terminal states are drawn with non-empty circles filled with their state label.

• Rectangle states are terminal.

• If Tab(s1, A) is a distribution containing a unique state s2, we write an arrow from s1

to s2 labelled with the word A.

• If several action profiles link a state s1 to another state s2, we can draw a single arrow
labelled with the language describing the corresponding set of action profiles.

• The symbol ∗ is a shortcut for the language of the whole alphabet Act.

• The action † is used whenever it is the only action allowed for a given player.

• If Tab(s1, A) is a distribution, we write a first A-labelled arrow to a stochastic node
then several arrows to each state s2 in the distribution support, labelled with the cor-
responding probability in the distribution.

3.1 Strategies

During a play, players in Agt choose their next moves in Act concurrently and independently
of each other. They can even sample the played actions from a chosen distribution.

1 In fact, this arena can model a system of three agents that try to emit at the same time, inducing
interferences, but where agent 1 has higher priority (or more transmission power). Probability of a collision
when agents 2 and 3 are emitting simultaneously is denoted by p. The terminal states correspond to situations
where at least player 2 or 3 have successfully transmitted their own message.

16

CHAPTER 3. CONCURRENT GAMES

In order to make their choice, players must be aware of the current location of the game
since the set of allowed actions may differ for each state. In the general setting, players
are even given the complete sequence of visited states from the beginning of the play. Such
sequence h ∈ States+ will be called an history, and the current state will be denoted by
last(h) = h[|h|]. The choices operated by each agent are represented by strategies, that we
define below.

Definition 3.2. A mixed strategy for player i ∈ Agt is a mapping σi : States
+ → Dist(Act),

with the requirement that for all h ∈ States+, σi(h) ⊆ Allowi(last(h)).
We denote by SAi the class of (general, mixed) strategies for player i in arena A. We will
usually simply write Si when A is clear in the context.

We consider several subclasses of strategies, defined below:

Definition 3.3. Let σi ∈ Si and k ∈ N, we define M(k)i, Mi, Fi as follows:

• σi ∈ M(k)i if the strategy requires a memory of size k, that is to say, if there exists a
deterministic finite-state automaton with

– state-space M of cardinality k + 1;

– transition function2 δ : M× States→M, with initial state m0 ∈M;

– for all hq, h′q ∈ States+, if δ∗(m0, h) = δ∗(m0, h
′), then σi(hq) = σi(h

′q).

Intuitively, such a strategy stores m = δ∗(m0, h) the current state in the automaton,
seen as a memory information, that can be updated iteratively. The decision of σi from
history h and memory m is expressed as a function of (last(h),m).

• σi ∈ Mi = M(0)i, if σi is a stationary (or memoryless) strategy, that is to say
∀h ∈ States+ σi(h) = σi(last(h)).

• σi ∈ Fi if σi requires finite memory, that is to say Fi =
⋃
k′≥0 M(k′)i.

• We also define the class of pure strategies Si in which all probability distributions are
Dirac functions, that is, strategies are deterministic:

σi ∈ Si ⇔ ∀h ∈ States+]
[
σi(h)

]
= 1

Each previously listed class can also be restricted to its pure counterpart: M(k)i =
M(k)i ∩ Si, Mi = Mi ∩ Si, Fi = Fi ∩ Si.

A strategy profile is a tuple σ = (σi)i∈Agt, in which σi is a strategy for player i. Following
the definitions introduced above, we consider the full class SA, or simply S, of mixed strategy
profiles. More generally, given a strategy class Ci for each player i ∈ Agt, we will write C the
corresponding class of strategy profiles.

For a ∈ Act, i ∈ Agt and h ∈ States+, we write σi(a | h) for the quantity σi(h)(a). We
also identify a with the Dirac distribution 1{a}, allowing us to write σi(h) = a whenever
σi(a | h) = 1.

2δ and m0 induce a general transition function δ∗ defined for any m ∈ M by δ∗(ε,m) = m0 and for any
hq ∈ States+, δ∗(m,hq) = δ(δ∗(m,h), q)

17

3.2. VISIBILITY OF ACTIONS

A strategy profile σ naturally induces a distribution over ActAgt for any history h by

∀A = (ai)i∈Agt ∈ ActAgt, σ(A | h) =
∏
i∈Agt

σi(ai | h)

For an action profile A ∈ ActAgt, σ(A | h) and σ(h) = A are defined similarly to the actions
and strategies for a specific player.

Remark 3.4. A strategy profile σ for a game G can be seen as a strategy σC for a unique
player C in a game GAgt where all agents are seen as only one agent C, a coalition, with set
of allowed actions from state s, AllowC(s) =

∏
i∈Agt Allowi(s). Notice however the converse

is not true: a strategy for player c may not be a strategy profile in the original game as the
unique player may introduce dependencies between concurrently played actions. For example,
from a state s, the coalition strategy σC(s) = 1

21{ab,ba} cannot be decomposed as a strategy
profile for two players with two allowed actions a and b.

3.2 Visibility of actions

Note that strategies, as defined above, can only observe the sequence of visited states along
the history, but they may not depend on the exact distributions chosen by the players along
the history, nor on the actual sequence of actions played by the players. Usually, actions are
made visible in the game models considered in the literature—see for instance [Umm08] and
[BBMU11, section 6] or [CD14] for discussions—and the results presented here may differ.

One motivation for action-visible models comes from the fact that invisibility of actions
is a particular case of partial information, which is a concept usually inducing undecidable
models [BBG08]. However, we allow this little source of unobservability in our model, as
it makes it more general, and recent results like [Bre12] tend to prove that such a lack of
observation is not crucial.

Moreover, we can still consider subclasses of arenas for which the observation of history
determines which action has been played. Such arenas are defined below:

Definition 3.5. An arena A is action-visible if, for every non-final states s1, s2 ∈ States\F,
there exists at most one action profile A ∈ ActAgt such that Tab(s1, A)(s2) > 0.

Remark 3.6. We can see that any arena A can be transformed into Av which is action-
visible. Indeed, we can encode the played actions inside the current state, by setting Statesv =
States × ActAgt and Tabv((s1, A1), A)((s2, A2)) = Tab(s1, A)(s2) · 1A=A2. A strategy σ ∈ SA
can be seen as a strategy σv ∈ SAv that ignores the second coordinate of each state that appears
in any history.

When considering solution concepts like Nash Equilibria, or algorithms based on concur-
rent games, our framework is more general as it does not require action-visibility. Hence,
existential and algorithmic results from Chapter 5 are stronger in this framework.

However, when considering hardness results, as the undecidability proof of Chapter 4, ex-
ploiting the lack of visibility can be seen as a weakness, as imperfect information in stochastic
games usually leads to undecidability. Although similar undecidability results have been de-
veloped for example by [UW09] without this hypothesis, we argue that this extra hypothesis
allows us to narrow the gap between decidability and undecidability problems, since the un-
decidability result only leaves open the two-player case, which improves our understanding of
concurrent games.

18

CHAPTER 3. CONCURRENT GAMES

3.3 Semantics

For a given strategy profile σ in arena A, we can define a distribution over histories, that we
will write Pσ. This section is devoted to its definition and its related properties.

Definition 3.7. Let σ ∈ S a strategy profile for A. We define Pσ(h) by induction on
h ∈ States+.

• For any s ∈ States, Pσ(s) = 1

• For any h ∈ States+ and s ∈ States,

Pσ(h · s) =

{
Pσ(h) ·∑A∈ActAgt σ(A | h) · Tab(last(h), A)(s) if last(h) /∈ F,
0 otherwise.

If last(h) /∈ F, we check that∑
s∈States

Pσ(h·s) =
∑
s

Pσ(h)·
∑

A∈ActAgt
σ(A | h)·Tab(last(h), A))(s) = Pσ(h)·

∑
A

σ(A | h) = Pσ(h)

Therefore, we can apply Carathéodory’s criterion stated in Theorem 2.1 to extend Pσ as a
measure to any finite or infinite sequence on States. Notice that maximal sequences belong
to the language (States\F)∗ · F] Statesω.

Intuitively, for any history or infinite run h ∈ States+] Statesω, Pσ(h) will denote the
probability of generating h with strategy (profile) σ, when starting from state h[1].

Definition 3.8 (Conditional probability). Let h ∈ States+ be a history, we define the condi-
tional probability measure Pσ(− | h) for any finite history or infinite run h′ ∈ States+]Statesω,
by

• Pσ(h′ | h) = Pσ(h′)
Pσ(h) if Pσ(h) > 0 and h v h′;

• Pσ(h′ | h) = 0 otherwise.

We can check that such a conditional measure is indeed always a probability measure over
(States\F)∗ · F] Statesω, as the choice of h fixes the initial state.

Remember that when considering a finite history h ∈ States+, we are in fact considering
the probability of the whole cylinder h · ((States\F)∗ · F] Statesω). This property also applies
to conditional properties.

Another interpretation of Pσ(h′ | h) is to say that arena and strategies are “initialized”
with history h, and we are considering the probability that the resulting stochastic process
generates a run that starts with h′.

3.4 Outcome of a game

An arena as previously described, only gives information about how the agents can interact,
to make the game progress. However, at this point, no information was given about the
incentive of each player. Several choices can be made at this point to define such a concept:

19

3.4. OUTCOME OF A GAME

• When the arena involves at most two players, we can define a set Ω of states that have to
be reached. First player (if he exists) will try to enforce reaching such a state, whereas
second player (if he exists) will try to avoid it.

• In the same setting, we can define a set W ⊆ Statesω] States∗ · F of winning runs for
first player. In the previous setting, this approach boils down to W = States∗ · Ω ·
(Statesω] States∗ · F).

• More generally, we can provide a total ordering relation � over Statesω]States∗ ·F, which
will be called a preference relation for the first player. With the previous approach, this
is equivalent to define ∀r, r′ r � r′ ⇔ r′ ∈W .

• When the game involves more than two players, the roles of the players is not necessarily
antagonistic, so we can give to each player a set of target states, a set of runs, or a
preference relation, to define their objectives.

In a deterministic setting, we have listed above any possible objective: when considering a
deterministic arena A, a pure strategy profile σ and an initial state s0, we can define precisely
the outcome of the game as the unique finite or infinite maximal path starting from s0,
denoted Outs0,A(σ). The last preference relation is in some sense the most general one, as it
allows to compare any run, seen as an outcome, for each player.

However, this approach is not suited anymore when introducing probabilities in our model,
as the outcome cannot be defined as runs in the arena. More precisely, the outcome of a game
starting from s0 in arena A with arbitrary distributions consists in the resulting probability
measure, that is to say Outs0,A(σ) = Pσ(− | s0). As a consequence, comparing outcomes in
a stochastic setting boils down to defining preference relations over probability measures of
paths.

Instead of providing such a general and complex definition of objectives, we limit ourselves
to the first and second settings where objectives are given as measurable functions from the
set of possible runs to the real numbers.

Definition 3.9. G = (A, s, (Φi)i∈Agt) is given by an arena A, an initial state s, and for every
player i ∈ Agt, a real-valued function Φi : States∗] Statesω → R, which is measurable over
the set of runs of A.

As explained before, we will not define a general preference relation over outcomes, which
are general distributions over runs, but give a more concrete characterization based on reward
functions. For any history h, and any function measurable over the set of runs of A, we denote
by Eσ(φ | h) the expected value of the reward function φ induced by the probability measure
Pσ(− | h).

As for strategy profiles, we write by extension Eσ(Φ | h) for the tuple (Eσ(Φi | h))i∈Agt
when (Φi)i∈Agt is a family of measurable functions, one for each player.

Finally we say that an history h is activated, or enabled by a strategy profile whenever it
is visited with positive probability under that profile.

Some measurable reward functions

In this thesis, we will be particularly interested in simple objective functions that consists in
assigning a reward to a player only if she manages to reach a final state, or complementary,
if she manages to visit as few different states as possible.

20

CHAPTER 3. CONCURRENT GAMES

Definition 3.10. An objective function φ is:

• a reachability objective if for any run r, φ(r) = max{φ(r[k]) | 1 ≤ k < |r|+ 1};

• a safety objective if for any run r, φ(r) = min{φ(r[k]) | 1 ≤ k < |r|+ 1};

• a terminal-reachability objective if for any run r,

φ(r) =

{
φ(last(r)) if r ∈ States∗ · F,
0 otherwise.

We can easily check that terminal-reachability is a particular case of reachability objective
where the payoff profile is determined by the final state reached in the game, and that each
non-final state has reward 0.

The study of terminal reachability objectives is crucial for the understanding of general
reachability objectives, so our study will mainly focus on this particular class of objectives.
When considering games where all players have terminal-reachability objectives, the payoff
functions are entirely characterized by the vectors Φ(f) ∈ RAgt for each f ∈ F. Thus, a final
state f will usually be directly denoted and graphically represented by its payoff profile Φ(f).

Definition 3.11. A reward objective φ is non-negative whenever each φ is a non-negative
function. It is qualitative whenever each φ takes values in {0, 1}, in the opposite case, it is
quantitative.

A reachability or safety objective φ, can be represented by a subset of states G ⊆ States
representing the goal of the player, that is to say the states that she has to reach or, respec-
tively, to not leave.

Qualitative reachability and safety objectives for Nash equilibria have been studied inten-
sively in the general case of ω-regular objectives in [Bre12]. In the quantitative case, terminal
reachability objectives can be generalized to limit-average rewards, as in [UW11a], where re-
ward values are attached to each state and where the reward function consists in computing
the upper or lower limit of the mean value of visited states. At the expense of a exponential
blow-up3, average-reward objectives can even encode general quantitative reachability and
safety objectives.

3.5 Two-player zero-sum games

In this section, we develop known results in the 2 + 1/2-player case. More precisely, we
revisit results of the zero-sum fragment. A 2-player stochastic game G with payoff function
Φ = (Φ1,Φ2) is called zero-sum if Φ1 + Φ2 ≡ 0, that is to say ∀r ∈ Statesω] States+ Φ1(r) +
Φ2(r) = 0.

In such games, the roles of players 1 and 2 are totally antagonistic. When considering
qualitative objectives, player 1 usually has a qualitative terminal reachability objective, while
the second player goal has to avoid the same reachability set of states, that is to say ensure
a safety condition.

3by encoding inside each state the set of already visited states

21

3.5. TWO-PLAYER ZERO-SUM GAMES

Borel determinacy

In his seminal work, [Mar75] studied Gale-Stewart games [GS53] and established their deter-
minacy in a very general setting. Such games are played by two players, who pick in turn one
an element at a time from a possibly infinite set A, which generates an infinite word in Aω.
Winning condition for player 1 is given as a subset Ω ⊆ Aω of infinite runs. Whenever Ω is
a Borel set, the game is shown to be determined, that is to say there exists a deterministic
winning strategy either for player 1, or for player 2.

This result can be rephrased in our framework to state that any deterministic, 2-player,
qualitative zero-sum, turn-based game with qualitative measurable payoff function φ is de-
termined, that is to say:

• either there exists a winning strategy for player 1, σ1 ∈ S1, such that for all σ2 ∈ S2,
E(σ1,σ2)(φ | s0) = 1,

• or there exists a winning strategy for player 1, σ2 ∈ S2, such that for all σ1 ∈ S1,
E(σ1,σ2)(φ | s0) = 0.

Notice this notion does not involve any probabilistic property, as the game and its strate-
gies are assumed deterministic: all possible outcomes of such a game are therefore single runs.
Notice however that a winning strategy is still winning against a randomized adversary, which
allows us to generalize the result to randomized strategies.

However, the result is not valid anymore when considering games with stochastic transition
functions, as both players may win with positive probability. A similar phenomenon occurs
when allowing concurrent games. Such models form first examples of imperfect information
as each player is not aware of the action played by the other player at a given step. Moreover,
objectives are not necessary qualitative.

Nonetheless, some another notion of determinacy may be introduced, that captures the
quantitative features and imperfect information of our model.

Value determinacy

In the quantitative setting, an interesting concept to introduce is the maximal expected value
that a player can reach no matter what her opponent is doing. A dual approach consists in
looking at the minimal expected payoff this opponent can achieve, when strategy of player 1
is not known in advance.

Note that ”maximal“ and ”minimal“ are here to be interpreted in an asymptotic manner,
as we are not guaranteed that these optimal values can be reached.

Definition 3.12. Let G be a stochastic two-player game, such that the reward function Φ1

of player 1, is measurable. We define the upper value and the lower value from state s as the
quantities:

ν1(s) = inf
σ2∈S2

sup
σ1∈S1

E(σ1,σ2)(Φ1 | s) ν1(s) = sup
σ1∈S1

inf
σ2∈S2

E(σ1,σ2)(Φ1 | s)

In general ν1(s) ≥ ν1(s). The converse inequality is the so-called value determinacy of a
game. This unique value is then called value from state s, denoted by ν1(s).

Value determinacy is achieved for a large variety of zero-sum games including Blackwell
games, that is to say concurrent games with a Borel measurable payoff function [Mar98].

22

CHAPTER 3. CONCURRENT GAMES

In [Mar98], the author suggests that the corresponding strategies somehow require as much
memory as needed to compute the payoff function: the more complex the reward, the more
complex the strategy.

When the reward function is a terminal reachability objective, results from [Sec97] and
[KS81] allow to consider only memoryless strategies to asymptotically achieve the game value.
This means there exist pairs of ε-optimal strategies that are memoryless, for both players and
for any ε > 0:

Theorem 3.13. Let φ be a terminal reachability payoff function of an action-visible zero-sum
game G. Then for any state s, ν1(s) = ν1(s), denoted from now on ν1(s), and there exists a
family of memoryless strategies (σε1)ε>0 (resp. (σε2)ε>0) such that for any state s:

∀ε > 0 inf
σ2∈S2

E(σε1,σ2)(φ | s) ≥ ν1(s)− ε

and respectively,
∀ε > 0 sup

σ1∈S1
E(σ1,σε2)(φ | s) ≤ ν1(s) + ε

Action invisibility

The previous theorem is stated in the particular case of action-visible games. Although the
proof can be adapted to the case of invisible actions, we give here a simpler argument in
our setting, based on the fact that memoryless ε-optimal strategies are not aware of played
actions.

Let us consider a stochastic game G and a terminal reachability payoff function φ. We
define A′ the corresponding action-visible arena defined from A as in Remark 3.6. For a
run r of A′, we define φ′(r) = φ(p(r[1]) · p(r[2]) · · ·) where p is the projection on the first
coordinate4.

From now on, we reason on a game G′ with arena A′ and objective φ′, so S = SG′ denotes
the class of strategies that see actions in the history. We define, the subclass of strategy
profiles Su ⊆ S, that do not see actions, that is to say σ ∈ Su if, and only if,

∀h ∈ States+, ∀α, α′ ∈ (ActAgt)|h|,

σ((h[1], α[1]) · (h[2], α[2]) · · · (h[|h|], α[|h|])) = σ((h[1], α′[1]) · (h[2], α′[2]) · · · (h[|h|], α′[|h|]))

We define the νu1 and νu1 by the following mapping over any s ∈ States and A ∈ ActAgt:

νu1((s,A)) = inf
σ2∈Su2

sup
σ1∈Su1

E(σ1,σ2)(φ′ | (s,A)) νu1((s,A)) = sup
σ1∈Su1

inf
σ2∈Su2

E(σ1,σ2)(φ′ | (s,A))

We can see that these quantities does not depend on A, and correspond in fact to the values
in the original game G. Indeed, the reward function Φ′ and transition table do not observe
any action.

Also, we still have νu((s,A)) ≥ νu((s,A)).
Moreover, Su ⊆ S so by introducing a pair of ε-optimal memoryless strategies (σε1, σ

ε
2) for

each ε > 0, from Theorem 3.13, we have:

∀ε > 0 inf
σ2∈Su2

E(σε1,σ2)(φ | (s,A)) ≥ inf
σ2∈S2

E(σε1,σ2)(φ | (s,A)) ≥ ν1((s,A))− ε

4 That is to say ∀s ∈ States, ∀A ∈ ActAgt, p((s,A)) = s.

23

3.5. TWO-PLAYER ZERO-SUM GAMES

and respectively,

∀ε > 0 sup
σ1∈Su1

E(σ1,σε2)(φ | (s,A)) ≤ sup
σ1∈S1

E(σ1,σε2)(φ | (s,A)) ≤ ν1((s,A)) + ε

Moreover, these ε-optimal strategies are uniform, as they try to optimize the expected payoff
from any state. Since this payoff does not depend on the played action, we argue that we
can assume, without loss of generality, that σε1(s,A) and σε2(s,A) do not depend on A for any
state s, that is to say σε ∈Mu = Su ∩M.

As a consequence, when ε goes to 0, we get the inequality νu1((s,A)) ≥ ν1((s,A)) ≥
νu1((s,A)) hence νu1((s,A)) = ν1((s,A)) = νu1((s,A)).

We conclude that action-visibility hypothesis can be omitted from Theorem 3.13.

Values may not be achieved

We emphasize here on the fact that the value of a game may not be achieved exactly, and only
ε-optimal values may exists. Consider the 2-player zero-sum game H (hide-or-run), depicted
in Figure 1.2 on page 3 in the introduction.

First of all, we show that ν(s0) = (1,−1), by considering a fixed strategy for player 1 who
is hiding at each round with probability ε > 0. As a matter of fact, player 2 can only shoot,
which generates average payoff (1− 2ε, 2ε− 1), or wait, which yields payoff (1,−1) or iterate
the game again. In both cases, the game almost-surely terminates, with a payoff for player 1
larger than 1− 2ε. Hence, ν1(s0) = ν1(s0) ≥ 1− 2ε for any ε > 0.

However, no optimal strategy σ1 exists for player 1, as it would require to avoid state
(−1, 1) almost-surely for any strategy of player 2. This would imply that player 1 plays
deterministically in each history sn0 . Moreover, such a strategy would require reaching (1,−1)
almost-surely, that is to say, player 1 should not play hide action ~ forever. However, when
playing action run r, player 2 has positive chances to shoot her (for some strategy) so reaching
(1,−1) almost-surely no matter the strategy of player 2 is impossible.

Nevertheless, we can identify some game classes that allow existence of optimal strategies
for both players. For example, it is well-known that an optimal policy exists for Markov
Decision Processes with reachability objectives [Put94]. In our terminology, a policy is a
strategy, and a Markov Decision Process is a 1 + 1/2-player game. In a multi-player setting,
such results have been extended to the case of turn-based zero-sum games, with any limit
average reward objective. For example, [LL69] shows that game values are achieved by pure
memoryless strategies, for both players. Again, visibility of actions makes little difference to
the result, and can be omitted.

As a consequence, deciding whether the value of a player in such a game is larger than a
given threshold is in NP ∩ coNP (see [Con92] for the qualitative reachability case, or [ZP96]
for the study in the deterministic average payoff case), by guessing pure memoryless strategies
achieving or refuting a value larger than the threshold. This has to be compared with parity
games: where deciding which of the two players has a winning strategy is in NP ∩ coNP, as
well as in UP ∩ coUP [Jur98].

Notice also another consequence of the existence of pure memoryless strategies in the
turn-based case: the values become rational, whenever the game involves rational numbers
for discounted factors, probability transitions and rewards. On the contrary, concurrent games
may have irrational values, even for terminal qualitative reachability objectives with rational
probabilities [AM04, page 382].

24

CHAPTER 3. CONCURRENT GAMES

Qualitative analysis

Let us consider qualitative terminal reachability objectives. Even when ν1(s0) = 1, that is to
say when player 1 can yield her maximal payoff, she can win in several manners:

• Limit-surely, if there exists a family of strategies ensuring payoff 1− ε for any ε > 0,

• Almost-surely, if there exists a strategy ensuring an average payoff of 1,

• Surely, if furthermore this strategy ensures the game terminates in finite time.

The qualitative analysis focus on the existence of strategies for such winning modes, while the
goal of the opposite player is only to spoil the winning condition. Notice that in the limit-sure
case, a unique spoiling strategy should be resilient against a whole family of strategies that try
to achieve a reachability objective with probability arbitrarily close to one, hence this context
is slightly different from the existence of ε-optimal strategies for both players, as presented
before.

In [AHK07], the authors showed determinacy for each three winning conditions. When a
winning strategy exists for player 1, no memory is required for winning (although randomiza-
tion may be required). When a winning strategy for player 2 exists, that is to say a spoiling
strategy, counting5 memory is required only for almost-sure reachability, whereas memoryless
strategies suffice to spoil sure and limit-sure winning modes. This last result should be kept
in mind as it relates to the value of a game, which in turn connects to Nash equilibrium
concepts.

3.6 Nash Equilibria

We shift now to the study of games with more than two players. By analogy with the previous
study, for any game with reachability and safety objectives, we denote by νi(s) the value from
state s for player i, in a new game played by i against the coalition composed of all agents
except i.

Definition 3.14. Let G be a stochastic n + 1/2-player game, with payoff function φ, s a
state, and i ∈ Agt one of the players. Assume that Φi is a terminal reachability or safety
reward function, then we define νi(s) by:

νi(s) = inf
σ∈S

sup
σ′i∈Si

Eσ[i/σ′i](Φi | s) = sup
σ′i∈Si

inf
σ∈S

Eσ[i/σ′i](Φi | s)

Where σ[i/σ′i] denotes the strategy profile where strategy for player i has been changed to σ′i.

Furthermore, ν(s) can be seen as a vector of RAgt representing for each player, the supre-
mum of her achievable payoffs, no matter what the other players do.

As opposed to the two-player case, it is not clear how actions from one player can be
opposed to the actions of the other player, so the zero-sum condition is usually omitted, that
is to say, there may exist two runs r1, r2 such that

∑
i Φi(r1) 6= ∑i Φi(r2).

5A strategy requires counting memory whenever it depends on the current state and the length of the
history, this is a particular case of infinite memory.

25

3.6. NASH EQUILIBRIA

3.6.1 Definition

To address this issue, John Nash introduced a new concept [Nas50], where emphasis is put on
each individual objective, and strategy for each player should be stable with respect to the
strategies of the others.

Definition 3.15. Let G = (A, s,Φ) be a stochastic game. A strategy profile σ forms a Nash
equilibrium for G, when no player has a profitable deviation; in other terms, for all i ∈ Agt
and for all σ′i ∈ Si, it holds

Eσ[i/σ′i](Φi | s) ≤ Eσ(Φi | s)

Equivalently, the average payoff of an equilibrium σ, denoted by the vector Eσ(Φ | s),
satisfies, for all player i ∈ Agt:

Eσ(Φi | s) = sup
σ′i∈Si

Eσ[i/σ′i](Φi | s)

This last form immediately implies that the average payoff of an equilibrium is component-wise
larger than the value of the game from the same state.

Deterministic deviations

When defining the Nash equilibrium concept, we used the term deviation to denote a single
strategy σ′i ∈ Si for player i that may increase her payoff. Such deviation σ′i is called deter-
ministic, or pure, whenever σ′i ∈ Si. An important remark when analyzing Nash equilibria
is that randomization in our context is not required for deviations: if a profitable deviation
has to be found, a deterministic one also exists. Randomizing its strategy is necessary only
to ensure stability, that is to say prevent the other players from deviating. This observation
is summarized in the following proposition:

Proposition 3.16. Let G = (A, s,Φ) be a stochastic concurrent game with safety and reach-
ability objectives and σ be a strategy profile. Then σ is a Nash equilibrium if, and only if, for
all i ∈ Agt and all deterministic deviation σ′i ∈ Si, it holds Eσ[i/σ′i](Φi | s) ≤ Eσ(Φi | s).

Proof. This result is similar to [UW11c, proposition 3.1] for turn-based games with qualitative
Borel objectives (the payoff is 1 if the run belongs to the designed objective and 0 otherwise).
Intuitively, for a given σ ∈ S, the composed game G 〈σ〉−i where the actions of all players but
i are fixed, is a one-player stochastic game (with possibly countably many states), that can
be seen as a Markov Decision Process. Our safety and reachability payoffs can be interpreted
as a total-reward payoff that can be taken only once (by encoding in each state the set of
already visited states). Under our hypothesis, this Markov Decision Processes are known
to have an ε-optimal pure memoryless6 strategy, for any ε > 0, see for example [Put94,
Theorems. 7.2.7 and 7.3.7]. As a consequence, if σ is not a Nash equilibrium, there exists
a strategy improving the payoff of some player i by some positive quantity ε > 0, and a
deterministic one that improves her payoff by ε/2 > 0.

Remark 3.17. It may not be possible, in general, to achieve the best profitable value in a devi-
ation, and randomization or memory may be required. First remark that if the initial strategy
profile σ has finite memory, the resulting Markov Decision Process has also a finite state space

6The strategy is memoryless in the composed game, hence, may require memory in the original game.

26

CHAPTER 3. CONCURRENT GAMES

and an optimal deterministic and memoryless strategy exists in this case. However, the result
does not hold in the case of infinite memory: consider for example the game composed of a
unique non-terminal state s, with Tab(s, a∗) = s, Tab(s, ba) = (1, 0), Tab(s, bb) = (0, 0), and
strategy profile ∀n ≥ 1, σ1(a | sn) = 1/2, σ2(b | sn) = 1/2n−1. If player 1 deviates by deciding
to always play b with probability p > 0, then he yields payoff

∑
n≥0 p(1− p)n · (1− 1

2n) = 1−p
1+p .

Thus, the optimal value that player 1 can yield by deviating is 1, although this value cannot
be achieved by any deviation. Moreover, if σ′1 ∈ M(n)1 is a deterministic deviation using
memory of size n, then he plays his first b action after at most n steps, which yields a payoff
of at most 1− 1/2n. In particular, there is no profitable memoryless deterministic deviation
in this case.

3.6.2 Sub-game characterization

We explore some further characterization of a Nash equilibrium in terms of its sub-game. In
order to do so, we extend the notion of Nash equilibrium to any history, in the following way:

Definition 3.18. Let G = (A, s,Φ) be a stochastic game. A strategy profile σ forms a Nash
equilibrium after a history h ∈ States+ when the following conditions are met:

• h ∈ States+ is enabled by σ from first(h);

• No player has a profitable deviation; in other terms, for all i ∈ Agt and for all σ′i ∈ Si
such that h is enabled from σ[i/σ′i], it holds

Eσ[i/σ′i](Φi | h) ≤ Eσ(Φi | h)

We then write that (σ, h) is a Nash equilibrium for G.

This notion generalizes a classical Nash equilibrium σ in a game (A, s,Φ) as a Nash
equilibrium (σ, s). Intuitively, we can assume that strategy σi is not changed for any history
h′ /∈ hStates+, and that the game is initialized with an initial history h.

In his seminal work, Nash concluded that Nash equilibria always exists for one-shot games,
that is to say, games that terminates after one iteration. The result can be extended to games
played on finite trees, as we can prove the result by induction. We have indeed the following
results:

Lemma 3.19. Let G be a stochastic concurrent game, and (σ, h) be a Nash equilibrium. If
(σ, h) enables h′, then, (σ, h′) is a Nash equilibrium.

The proof is immediate by expressing conditional probabilities from history h.

A converse property is harder to define in the general case because we cannot assume that
any history h′ that extends h is enabled by σ. More precisely, whenever an history h′ is not
enabled by a strategy σ but can be enabled in a new strategy profile σ[i/σ′i] by the deviation
of some player i, the other players but i have no incentive to improve their payoff, so (σ, h′)
is not necessarily a Nash equilibrium.

When the game is action-visible, the other players have a perfect knowledge of the player
that started a deviation and can retaliate to ensure as much stability of the strategy profile
as possible. We conclude on the following property:

27

3.6. NASH EQUILIBRIA

Proposition 3.20. Let G be a stochastic action-visible concurrent game, σ be a strategy
profile and h an history enabled by σ. We construct the following one-shot game Gh =
(Ah, last(h),Φh) that starts from last(h), with same actions, and same transition functions
but where any state s is supposed to be final, with payoff Φh(hs) that equals:

• ν(s) whenever hs is not enabled by σ in the original game;

• Eσ(Φ | hs) otherwise.

Assume moreover that

• for any disabled history hs, σ(hs−) is an optimal strategy that achieves value νi(s) where
i is the unique player who can perform transition from last(h) to s,

• for any enabled history hs, (σ, hs) is a Nash equilibrium,

• σ is a Nash equilibrium of Gh.

Then, (σ, h) is a Nash equilibrium of G.

Again, the property is proven immediately by expressing conditional expectations from
history h and possible deviations for any player i.

In the case of action invisibility, the situation is less clear, as players may not be imme-
diately aware of the player actually deviating, hence we cannot directly consider the value
function previously defined. This suggested some new constructions like the suspect game
defined in [Bre12], that encodes in a new 2-player game the set of possible deviating players.
The first player wins if she manages to construct a Nash equilibrium while the other player
tries to dismiss it by exhibiting a potential deviation, that can be done by one of the remain-
ing players in set of suspects. However, this technique does not extend well when considering
mixed strategies, as the resulting suspect game would contain a continuous set of allowed
actions (distributions) from each state.

3.6.3 Subgame perfect equilibrium

An alternative and stronger notion consists in considering strategy profiles that yield a Nash
equilibrium, when the game is initialized with any history, even if not enabled. With this
approach, detecting deviations is pointless, as players always have to stick to the Nash equi-
librium from any history. From a game theoretical point-of-view, players are more eager to
pursue their own objective, instead of threatening each other to prevent deviations. Note
however that such an equilibrium is less likely to occur, as it requires more stability than a
Nash equilibrium.

Definition 3.21. Let G = (A, s,Φ) be a stochastic game. A strategy profile σ forms a sub-
game perfect equilibrium for G, when for any history hs′ ∈ States+, (σ(h · −), s′) is a Nash
equilibrium in Ghs′ = (A, s′,Φ(h · −)).
Equivalently, no player has a profitable deviation from hs′: for all i ∈ Agt, h ∈ States+ and
σ′i ∈ Si, it holds

Eσ[i/σ′i](h·−)(Φi(h · −) | s′) ≤ Eσ(h·−)(Φi(h · −) | s′)
Where for any function f , f(h · −) is the function that maps each h′ to f(h · h′).

For prefix independent objectives, like terminal-reachability, and whenever the considered
history hs is enabled by σ, (σ(h · −), s′) is a Nash equilibrium in Ghs′ if, and only if, (σ, hs′)
is a Nash equilibrium in G.

28

CHAPTER 3. CONCURRENT GAMES

1, 0 0, 1

s0

~s, rw rs

~w

Figure 3.2 – A shifted version of game of Figure 1.2 on page 3.

3.6.4 Example of equilibria

In the following section, we recall some known facts about the existence status of Nash
equilibria, for games with terminal reachability objectives.

In general, several Nash equilibria may coexist (see e.g. later Figure 4.4a on page 39), in
finite, countable, or uncountable number. They may require finite memory as depicted in a
turn-based example of [Umm10].

Moreover, there exist games that admit no Nash equilibria.

Lemma 3.22. The game hide-or-run H of Figure 1.2 on page 3 has no Nash equilibria.

Proof. Since H is zero-sum, any Nash equilibrium σ is also an optimal strategy, which has
been proven to not exist for this game.

Even if H is a terminal reachability game, it involves negative values as payoffs. A possible
way to remove these negative values consists in shifting then rescaling the payoff profiles,
which has no effect on the dynamics of the game, since expectation operator E is linear. Let
us define φ′ = φ+1

2 , which assigns (1, 0) (resp. (0, 1)) to any history ending in the leftmost
(resp. rightmost) final state, but also assigns (1, 1) to the infinite run sω0 . As a consequence,
the new game admits no Nash equilibrium, but is not terminal-reachability anymore.

In order to have only non-negative terminal-reachability payoffs, we could remove this last
reward on loop sω0 , which corresponds to the game H′ depicted on Figure 3.2. But then one
easily sees that the strategies σ0(~ | sn0) = 1 and σ1(s | sn0) = 1 form a Nash equilibrium,
contrary to a claim in [CJM04]. In fact, it is not known whether there always exists a
Nash equilibria in concurrent game with nonnegative terminal-reachability (Chapter 5 tries
unsuccessfully to solve this issue).

However, the intuition behind this example remains valid as the authors of [CJM04]
successfully establish the existence of a relaxed notion of Nash equilibrium, where players can
deviate to improve their payoff by at most ε, for a fixed positive ε. The existence of such an
ε-Nash equilibrium is proven with memoryless strategies, the take-away message being that as
for the value of a zero-sum game, considering ε-optimality (here ε-Nash equilibrium) suffices
to establish the existence of memoryless strategies.

29

3.6. NASH EQUILIBRIA

30

Chapter 4

Decidability of Nash Equilibria

In this chapter, we study the existence problem of a Nash Equilibrium with arbitrary mem-
ory and precision in games with reachability and safety objectives. We will prove that the
following general problem is undecidable:

eNE

INPUT: A stochastic terminal reward game G with rational probability distributions
and rewards.

QUESTION: Whether there exists a Nash equilibrium for G.

Notice that from a complexity point of view, we need to ensure that G can be finitely
represented to make the decision problem clear. This is why we require distributions and
rewards to be rational, hence finitely representable.

We will focus on a more precise problem in this chapter, that we can describe as follows:

cNE

INPUT: A deterministic terminal-reachability game G, with non-negative integral ter-
minal rewards, and three players.

QUESTION: Whether there exists a Nash equilibrium for G, which is 1-maximal, that is
Eσ(Φ1 | h) = maxr Φ1(r).

One may notice our second problem cNE is way more restrictive, as we allow only three
players, rewards ranging over N, and deterministic transition functions only. However, we
require in this second problem a constraint, the 1-maximality, so cNE does not reduce im-
mediately to eNE. This extra requirement can be justified by several consideration

• First of all, we are often not only interested in knowing whether a Nash equilibrium
exists, but also in computing one. Given two payoff profiles x1, x2 ∈ RAgt, we may
be interested in checking whether there exists a Nash equilibrium, with payoff profile
lying between x1 and x2. In this particular setting, 1-maximality is a special case of
constraints.

• When fixing to its maximal value the payoff of the first agent, we are interested in
synthezing a strategy for this particular player, interacting with other components which
are non-cooperative, but still behave rationally according to a Nash equilibrium. Thus,
this problem is similar to the rational synthesis problem, studied in the non-deterministic
setting by [KPV15] and [CFGR16].

31

4.1. TOOLS

Undecidability of eNE will be derived from cNE by replacing 1-maximality with gadgets
with possibly negative rewards.

This chapter is devoted to the proof of undecidability of cNE, and its consequences. The
core argument is a reduction of the non-halting problem of a Minsky machine [Min67], namely
a 2-counter machine. This proof is composed first of the study of some game constructions
that help manipulate equilibrium payoffs and observation properties of strategies. Then, we
will describe several modules, or gadgets, that will be able to carry on the encoding of a 2-
counter machine. By plugin together these modules, any control structure of such machine will
be encoded and correctness of the reduction will be proven. Finally, we derive undecidability
results for several classes of existence problems.

Similar proofs based on the non-halting problem of a Minsky machine appear in the
litterature: first of all, [Umm08] proved a similar undecidability result for deterministic turn-
based games, with 14 players and 1-maximality condition. This result was later improved
by [DKM+15] to 1-maximal equilibria with finite memory and pure strategies in turn-based
games with at least 5 players. In the concurrent setting, [UW11a] adapted his proof to
the existence of a Nash equilibrium in 14-player concurrent deterministic games, without
1-maximality condition.

All these techniques rely on the encoding of any pair of counter values (c1, c2) by an
average payoff of 1 + 1

2c13c2 for some player, while another player plays an antagonistic role
and gets an average payoff of 1− 1

2c13c2 . The reduction proceeds to construct several gadgets
in order to test and update the counters and move to the next state of the counter machine.
These constructions usually rely on the maximality condition, that is placed on a third player.

Keeping counter values as the simulated machine makes a transition to the next state
usually requires to duplicate the two antagonistic players that encodes the counter. As a
consequence, the resulting reductions cited before require at least 5 players. Here, the re-
duction exploits the concurrent action framework in order to avoid the duplication of the
players and to keep reduction valid with 3 players. The proof is done at the expense of more
complex gadgets, that we show to be reducible to single states each, thanks to the lack of
action visibility.

4.1 Tools

4.1.1 One-shot games

In this section, we state useful properties of Nash equilibria in two-player two-action one-shot
games (that is, in one step the game ends up in a terminal state).

Such games can be represented by a graph as shown in Figure 4.1a, where terminal states
are labeled with their payoff functions φ for both players. Alternatively, these games, also
known as one-shot games, can be represented as a payoff matrix as in Table 4.1b.

Lemma 4.1. Consider the two-player two-action one-shot concurrent game G of Figure 4.1,
and pick some strategy profile σ. If (σ, s0) is a Nash equilibrium, then for every player
i ∈ {1, 2}, it holds

σi(m | s0) < 1 ⇒ [(di − ci) + (ai − bi)] · σ3−i(m | s0) ≤ di − ci (4.1)

σi(m | s0) > 0 ⇒ [(di − ci) + (ai − bi)] · σ3−i(m | s0) ≥ di − ci (4.2)

32

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

a1, a2 b1, c2

c1, b2 d1, d2

s0 nn

nm

mn

mm

(a) A generic two-player two-action one-shot game

m

n

m n1
2

a1, a2 b1, c2

c1, b2 d1, d2

(b) Associated matrix representation

Figure 4.1 – Representations of a one-shot game

s0a1, a2 b1, b2
EkEk

Figure 4.2 – Matching-pennies game

Proof. (σ, s0) is a Nash equilibrium if, and only if, it is resilient to deterministic deviations
(Proposition 3.16). Considering the deterministic deviation of player 1 returning move m,
we get (omitting to mention s0 in σi(m) = σi(m|s0)):

a1σ1(m)σ2(m) + b1σ1(n)σ2(m) + c1σ1(m)σ2(n) + d1σ1(n)σ2(n) ≥ a1σ2(m) + c1σ2(n).

As σ1(m) + σ1(n) = 1, we get b1σ1(n)σ2(m) + d1σ1(n)σ2(n) ≥ a1σ1(n)σ2(m) + c1σ1(n)σ2(n),
which, assuming σ1(n) > 0 (or, equivalently, σ1(m) < 1), gives

[(a1 − c1)− (b1 − d1)] · σ2(m) ≤ d1 − c1.

The other cases are similar.

4.1.2 k-action matching-pennies games

The classical matching-pennies games are a special case of the games of the previous section,
where ai = di and bi = ci: basically, there are two outcomes, depending on whether the
players propose the same action or not. This game can be generalized to k ≥ 2 actions, as
depicted on Figure 4.2. In this figure (and in the sequel), Ek (resp. Ek) is a shorthand for
all pairs of identical (resp. different) actions taken from a set of k actions Σk = {c1, . . . , ck}.
In other terms, Ek represents the set {cici | 1 ≤ i ≤ k}.

Lemma 4.2. In the k-action matching-pennies game, playing uniformly at random for the
two players defines a Nash equilibrium. This is the unique Nash equilibrium of the game if,
and only if, either (a1 < b1 and b2 < a2), or (a1 > b1 and b2 > a2). The payoff profile of this
Nash equilibrium is

(
1
k · b1 +

(
1− 1

k

)
· a1,

1
k · b1 +

(
1− 1

k

)
· a1

)
.

Proof. First of all, we check that when σi(s0) is uniform for both i = 1 and i = 2, σ is
always a Nash Equilibrium. Indeed, for any i ∈ Agt and σ′i a deviation, Pσ[i/σ′i](s0 · (b1, b2)) =
Pσ(s0 · (b1, b2)) = 1

k . Thus, the payoff profiles of σ and σ[i/σ′i] are equal to the announced
result.

We prove now that this equilibrium is the only one if, and only if, (a1 < b1 and b2 < a2),
or (a1 > b1 and b2 > a2).

33

4.1. TOOLS

(⇒) We prove the contraposition, by assuming the condition on payoffs is not satisfied, that
is to say (a1 ≥ b1 or b2 ≥ a2), and (a1 ≤ b1 or b2 ≤ a2), and exhibit a pure Nash
equilibrium in each case.

– If a1 ≥ b1 and a1 ≤ b1, we let σ1(s0) = c1 and one of the best profitable actions
for player 2 (c1 if b2 ≥ a2, c2 otherwise). Player 1 has no incentive to deviate since
she always wins a1, and player 2 already yields her maximal payoff.

– If a1 ≥ b1 and b2 ≤ a2, then σ(s0) = c1c1 is a Nash equilibrium.

– The two last cases are symmetric.

(⇐) Assume a1 < b1 and b2 < a2 (the other case is symmetric) and σ is a Nash equilibrium.
By shifting payoff of player 1 (resp. 2) by−a1 (resp. −b2) then by rescaling by b1−a1 > 0
(resp. a2 − b2 > 0), we can assume without loss of generality that (a1, a2) = (0, 1)
and (b1, b2) = (1, 0). The resulting game is of constant-sum and has value

(
k−1
k , 1

k

)
.

Similarly, if player 1 does not play uniformly, some action cα occur with probability
smaller than 1

k , then player 2 can ensure winning with probability bigger than 1
k by

avoiding playing cα. If player 2 does not play uniformly, some action cα occur with
probability smaller than 1

k , then player 1 can ensure winning with probability bigger

than k−1
k by playing purely cα. Both cases are incompatible with the value payoff, thus

are not Nash Equilibria.

(⇒) We prove the converse property, by noticing a Nash equilibrium that agrees on a final
state exists whenever a1 = b1 or a2 = b2 or a1 ≤ b1 and a2 ≤ b2 or a1 ≥ b1 and a2 ≥ b2.

4.1.3 Embedded game

In this section, we present another technical construction that will be useful for our reduction:
indeed, our reduction is modular, and consists in plugging several modules, sequentially, to
encode the counter value updates. Some modules may require several branching transitions
which are expected to lead to the same continuation of the simulation, from where a new
Nash equilibrium encodes the updated values of the counters.

However, since our strategies can observe the visited states, they can distinguish such
branchings, that in turn can represent different Nash equilibria hence different counter values.
We are willing to prevent this phenomenon to occur, to ensure a proper encoding of the
simulation, by hiding the different histories that may occur inside a module.

The basic idea consists in transforming each module, seen as a terminal-reachability
game G, into a one-shot game G′, where all but one state are terminal, embedding all the
histories and possible strategies in simple transitions. Intuitively, the states of G′ will be the
maximal runs of G, which we will assume to be finitely many.

This method is presented in a refined manner, since our modules are in fact plugged
together to form an entire simulation of a Turing machine. Some issues may arise when
applying such a transformation:

• The whole game may have cycles, hence an infinite set of strategies and histories, that
cannot be finitely described.

34

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

• Each agent now plays a whole strategy at a time. This means she can introduce a
probabilistic correlation between her past sampled actions, and the new played actions,
that were not possible otherwise. This may introduce new Nash equilibria that are
irrelevant for the encoding.

In order to circumvent these problems, we will perform the embedding with respect to some
subset of states, that we want to make undistinguishable, namely a sub-arena. We will see
that Nash equilibria are indeed preserved when we additionally assume the sub-arena to be
action-visible and without cycle, which is not true for the whole game.

Sub-arena

We proceed first tho define a sub-arena, which is intuitively just a subset of the states of the
original arena, with the same structure, interpreted as a concurrent arena.

Definition 4.3. Let G = (A, s, φ) be a terminal-reachability game. A sub-arena B of arena
A (and game G) denoted B ⊆ A (or B ⊆ G) is an arena B = (StatesB,Agt,Act,Tab,AllowB),
with a subset of states StatesB but the same set of agents, actions and transition function,
such that for all s ∈ StatesB, we have

• Either AllowB(s) = Allow(s) and ∀A ∈ Allow(s), Tab(s,A) ⊆ StatesB,

• Or AllowB(s) = ∅ (that is s ∈ FB) and ∀A ∈ Allow(s), Tab(s,A) ⊆ States\StatesB.

Where Tab(s,A) denotes the support of distribution Tab(s,A). Any latter quantity or object
relative to B will be denoted with an upper-script B.

By restricting the set of allowed actions, a previously internal state can become final in
the sub-arena. When a state is not final, the sub-arena structure requires all its successors to
be in the sub-arena.

In the sequel, the non-final nodes of a sub-arena B are marked on the figures with a
different color, to differentiate them, as shown on the examples on Figure 4.3. For notational
purpose, we write IntB = StatesB\FB the set of internal states of B.

Note that we do not require the sub-arena to be connected, and may have several dis-
joint connected components. This will appear to be useful as we want to mark all possibly
problematic states in all the modules used by our reduction.

Embedded game

Our main goal, as stated before, is to hide from a strategic point of view, the events occurring
in a sub-arena, and give information to the players, only about the entry point of the sub-
arena, and the resulting exit point, which will be a final state of the sub-arena. Note that the
normal game continues from those states.

Example 4.4. As an intuition of the construction, let us consider the games of Figure 4.3.
In the left game, players can enter the sub-arena from s0 or s1. In the first case, agent 1
playing action b leads to state s1 still in the sub-arena, then to states (x, y) or t1, which are
both terminal in the sub-arena. In the right-hand side of the figure, state s0 directly leads
to (x, y) and t1 without any intermediate state of the sub-arena. In order to do so, possible
actions for player 1 have been replaced by a word consisting of both her actions from s0 and s1,

35

4.1. TOOLS

s s0 s1 x, y

t0 t1

E2

E2

a†
b†

E2

E2

.

s s0 x, y s1

t0 t1

E2

E2

(a∗)(†∗)
(bc1)(†c2),
(bc2)(†c1)

(bc1)(†c1), (bc2)(†c2)

E2

E2

.

Figure 4.3 – Example of arenas, with differentiated states for a sub-arena composed of set
of states {si, ti | i ∈ {0, 1}}. Only s0 and s1 are marked, as internal states. Notice the only
internal transition in the left arena is from s0 to s1, which is action-visible. In the second
arena, we exit immediately the arena when entering s0 by hiding transitions that could have
occur through s1.

that is to say Allow1(s0) = {ac1, ac2, bc1, bc2}. Similarly, both actions for player 2 are encoded
simultaneously from s0: Allow2(s0) = {†c1, †c2}. Whenever the played action of player 1 starts
with letter a, the game continues to state t0. Otherwise, the second letter of her played action
has to be compared to the second letter of agent 2, which determines whether state (x, y) or
t1 is reached. We conclude that both games behave similarly, in the sense that probabilities to
reach one of the final states of the sub-arena t0, t1 or (x, y) are the same. Moreover, there
exists a single history connecting s0 to any of them, once the transformation has been applied.

The construction is made precise in the following definition:

Definition 4.5. Let G be a terminal-reachability game and B a sub-arena. We construct
G′ = G/B the quotient game G by B, by extending the set of states to

• States′ = States] {⊥}
• If s ∈ States\IntB, Allow′(s) = Allow(s) and Tab(s,−) = Tab′(s,−).

• If s ∈ IntB, ∀i Allow′i(s) = MBi which is finite, and ∀σ ∈ MB ∀s′ ∈ FB Tab′(s, σ)(s′) =
PσB((IntB)∗ · s′ | s) is the probability to eventually reach final state s′ from s in arena B
under strategy profile σ, considered here as an action profile in game G′.
We normalize by adding a transition to ⊥: ∀σ ∈ MB Tab′(s, σ)(⊥) = PσB((IntB)ω | s)
the probability to never reach a final state.

More informally, each non-terminal state of the sub-arena B, is converted into a bigger
state, where each allowed action corresponds to the whole strategy to a final state of the sub-
arena. In the resulting game, what happens from the entrance to the exit of the sub-arena
is encoded in one single state (for each entrance state). As a consequence, we can say that
the strategy, when exiting the state, cannot distinguish between the possible plays inside the
sub-arena. We formalize this notion below.

Definition 4.6. We define, ε/B = ε and for any h · s ∈ States+,

(h · s)/B =

{
h/B if h 6= ε and last(h) · s ∈ (IntA

u
)2

(h/B) · s otherwise

36

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

Intuitively, h/B only keeps from history h states that enter sub-arena B and terminal
states that leave this sub-arena.

For example, back to Figure 4.3, we have for both games, s · s0 · s1 · t1/B = s · s0 · t1.

Definition 4.7. We say a strategy σ is blind to a sub-arena B, or B-blind for short, if for all
h, h1, h2 ∈ States+, such that (h1/B) · h = (h2/B) · h, we have σ(h1 · h) = σ(h2 · h).

As we can expect, the previous notion allows us to consider Nash equilibria with blind-
ness to some sub-arena, from the perspective of a standard Nash equilibrium, thanks to the
following theorem:

Theorem 4.8. Let G be a terminal-reachability game and B an action-visible sub-arena and
payoff vector v ∈ RAgt. Assume that for two internal states s, s′ ∈ IntB, there exists at most
one path (with actions) from s to s′.

Then, there exists a Nash equilibrium with value v in G/B if, and only if, there exists a
Nash equilibrium with value v in G which is blind to B.

Remark 4.9. Notice the hypothesis on B is very strong, it implies first that the sub-arena is
action-visible, but also that it has no cycle. In particular, this means that ⊥ state won’t be
reachable. If the sub-arena is only action-visible and cycle free, one can convert it to add finite
memory inside the current state (as for the conversion from action-invisible to action-visible
arena). This transformation is not developed further as Definition 4.5 would require encoding
finite memory strategies as actions (instead of memoryless), and this more general result is
not useful in our reduction.

Before proving the lemma directly, we introduce some notations and justify why the
action-visible property is crucial:

Lemma 4.10. Let h be an history of B. Let Prev(h) = ({σ ∈MB | PσB(h) > 0}) and assume
B is action-visible, then for any i ∈ Agt, there exists a set Previ(h) such that Prev(h) =∏
i∈Agt Previ(h).

Proof. We prove the result by induction on |h|.

• If |h| = 1, the result is immediate, as Prev(h) = MB and ∀i Previ(h) = MBi .

• Let h · s be an history such that Previ(h) are already proven to exist. Let σ ∈MB, then
Pσ(h · s) > 0 is equivalent to Pσ(h) > 0 and Pσ(last(h) · s) > 0. However, there exists
at most one action profile A ∈ ActAgt such that Tab(last(h), A)(s) > 0. If A does not
exist, we have Prev(hs) = ∅, otherwise, Prev(hs) = {σ ∈ Prev(h) | σ(last(h)) = A} =∏
i∈Agt{σi ∈ Previ(h) | σi(last(h)) = Ai}, which concludes the induction step.

Thanks to this lemma, we can locally translate an embedded strategy profile into strategies
for each player:

Lemma 4.11. Let B an action-visible sub-arena, such that for any s1, s2 ∈ IntB two internal
states, there exists at most a path (with actions)from s1 to s2. Let σu ∈ SG/B, and σ ∈ SG
such that for any h ∈ (IntB)+

∀i ∈ Agt ∀a ∈ Act σi(a | h) = σui (first(h))
({
σ′i ∈ Previ(h)

∣∣ σ′i(h) = a
})

37

4.1. TOOLS

Then, for all s1 ∈ StatesB, sf ∈ FB, we have

Pσ
u

G/B(s1 · sf) =
∑

h∈(StatesB)∗

PσB(h · sf | s1)

Proof. If s1 ∈ FB then both sides are equal to 0.
We assume now that s1 ∈ IntB.
For any s2 ∈ IntB, we write ws2 ∈ (ActAgt)∗ the unique sequence of action profiles, if any,

leading from s1 to s2 in B, denoted by history hs2 .
Then, any h ∈ (StatesB)∗, such that PσB(h · sf | s1) > 0 can be uniquely described as

h = hs2 for some s2 ∈ IntB.
Previous sum can now be rewritten:∑

h∈(StatesB)∗

PσB(h · sf | s1) =
∑
s2

PσB(hs2 · sf) =
∑
s2

PσB(hs2)Pσ(hs2−)
B (s2 · sf) = Pσ

u

G/B(s1 · sf)

We now turn to the proof of Theorem 4.8.

Proof. We describe first how to convert a strategy profile σu for G/B into a strategy profile
σ which is B-blind.

For any h ∈ States+, let h′ be its maximal suffix in IntB, and define σi(a | h) by

σi(a | h) =

{
σui (a | h/B) if h′ = ε
σui (h/B) ({σ′i ∈ Previ(h

′) | σ′i(h) = a}) otherwise

We can check that the corresponding strategy profile σ is indeed B-blind by applying the
definition. Notice that the translation can be done the other way around, to obtain a strategy
for G/B from a blind strategy profile σ.

For such pairs of strategy profiles, we show that they have the same pay-off. In order to do
so, we introduce the measure µ(h) =

∑
h′|h′ /∈States∗(IntB)2∧h′/B=h P

σ
G(h′), which sums together

all equivalent history probabilities in G for B-blindness. We prove that ∀h ∈ States+ µ(h) =
Pσu(h) by induction on |h|. For the inductive case, we have to distinguish the case where
last(h) /∈ IntB which is immediate, to the opposite case, where we apply Lemma 4.11.

Since we are considering terminal-reachability games, and final states are preserved by
embedding, we conclude that σ and σu yield the same payoff vector v.

Finally, we have to show σ is a Nash equilibrium if, and only if, σu is a Nash equilibrium.
The reverse implication is immediate as we can extract from a deviation of σu a deviation of
σ which is still B-blind. The direct implication is concluded by noticing that a deviation can
be assumed to be deterministic, hence, we can build a B-blind deviation, which can then be
converted into a deviation in the embedded game.

On the action-visible hypothesis

We develop here why the restriction to action-visible games is crucial by considering the game
structures depicted in Figure 4.4 on the next page.

Game C′ is obtained from game C by making actions from s0 visible, as discussed in
Remark 3.6. Game C̃ will be shown to correspond both to games C/A and C′/A′.

38

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

3, 0 0, 0 2, 2

s1

s0

ab, ba aa, bb

E2 E2

(a) C, two equilibrium

payoffs:
{(

2, 12
)
,
(
5
2 , 1
)}

3, 0 0, 0 2, 2

sa1 sb1

s0

ab, ba aa bb

E2 E2E2 E2

(b) C′, with an additional equi-
librium payoff:

(
7
3 ,

2
3

)
3, 0 0, 0 2, 2

s0

a∗b∗,
b∗a∗

aciacj ,
bcibcj ,
i 6= j

aciaci,
bcibci

(c) C̃: Equivalent embedded
game.

Figure 4.4 – C is not action-visible whereas C′ is and has another equilibrium. This second
can be replaced by a single node which has the same Nash equilibria.

a

b

a b1
2

1, 1 3, 0

3, 0 2, 2

(a) Payoff matrix from state s0, assuming the
players agree on a deterministic action from state
sb1but play uniformly at random from state sa1 .

σ1(a | s0) =
2

2 + 1
=

2

3

σ2(a | s0) =
−1

−1− 2
=

1

3

Eσ(Φi | s0) =

(
7

3
,
2

3

)
(b) Associated equilibrium

Figure 4.5 – Computation of an additional equilibrium payoff in game C′.

There are only two possible equilibria in s1: either both players agree on playing the same
action, yielding payoff (2, 2), or both players play uniformly yielding payoff profile (1, 1).
From state s0, the second player has always an incentive to go to s1 whereas the first player
is always better off with profile (3, 0). We conclude that game C has two equilibrium :

• σi(s0) uniform and σ0(s1) = σ1(s1), with payoff profile
(

5
2 , 1
)
;

• σi(s0) and σi(s1) uniform, with payoff profile
(
2, 1

2

)
.

The previous equilibria can be achieved in the action-visible variant C′, but a new equi-
librium can occur: agents can play uniformly from sα1 and agree on an action in the other

state sβ1 (α 6= β). Let us consider the case where sa1 is played uniformly, the other case being
symmetric. From state s0, game can now be seen as a one-shot game with the following payoff
table represented in Figure 4.5a. This game has a unique equilibrium that can be computed
by Lemma 4.1 as seen in Figure 4.5b.

However, both embedded games C/A and C′/A′ are somehow equivalent: let us denote
the actions σi ∈ MA from s0 in C/A as a word w = σi(s0)σi(s1) ∈ Act2. We represented in
the same way actions in C′/A′ as a word w = σi(s0)σi(s

a
0)σi(s

b
0).

Even if C′/A′ allows more actions, we argue that these extra actions are equivalent. Indeed,
for any x, y ∈ Act, embedded action axy (resp bxy) in C′/A′ is equivalent to embedded action

39

4.2. MODULES

ax (resp by) in C/A from the point of view of transition function. This equivalence relation
is transposed to the expected payoffs of both players, and their possible deviations.

We conclude that C/A, C′/A′ and C′ have the same set of Nash Equilibria. This implies
that Theorem 4.8 cannot apply on C and sub-arena A which is not action-visible.

To summarize, we have in this section that several branchings in a module can be hidden
from strategies thanks to an embedding of all possible strategies seen as simple actions. The
reduction is shown to be sound whenever action are visible in the module and that there exists
a unique path from every two states in the module. Notice we can replace the latter condition
by a simple cycle-free hypothesis by using finite memory strategies as actions instead of simply
memoryless strategies. However, the action-visible hypothesis is crucial for the correction of
the proof. Notice also that paradoxically, the resulting embedded state has multiple actions
(one for each strategy) pointing to the same final state in the sub-arena. This means that
strategies should not see actions, which is the case in our model, in order to hide these
branchings.

4.2 Modules

In this section, we present a game that will be a building block in our undecidability proof,
which is based on an encoding of a two-counter machine.

4.2.1 Rescale game

We discuss here different ways of updating the values of a game when the strategy profile
forms a 1-maximal Nash equilibrium. This will be useful later for updating counter values in
the undecidability reduction. Assume the continuation of a game forms a Nash Equilibrium of
payoff (1, 4+x, 4−x) for some x ≥ 0. We want to produce a new 1-maximal Nash Equilibrium
with payoff (1, 4 + α · x, 4− α · x) for some constant α. A game achieving such a property is
described below.

Consider the 3-player game Rk depicted on Figure 4.6: in this game, player 1 has two
available actions a and b from r0, sk and sl, while the other two players can either continue
(action c), or unilaterally decide to stop the game (action s) and go to a terminal state (where
player 1 will have payoff 0). Notice that sk and sl have the same structure, but with different
values for their immediate terminal successors. In node tk, only players 2 and 3 have a choice:
they can either continue to final state n (when both of them play c), or decide to stop and
possibly go to a k-action matching-pennies game. In Figure 4.6, we write S as a shorthand
to represent any combination of moves of players 2 and 3 where at least one of them decides
to stop (action s). Node n is a final node with some payoff (1, 4 + x, 4− x) that will be later
replaced by the continuation of the game, when considering the actual reduction. Notice
that the sub-arena described by the set of states {r0, sk, sl, tk, (0, 4, 4), (0, 5, 3), (0, 5 + k, 3 −
k), (1, 4+k, 4−k), (0, 5+ l, 3− l), (1, 4+ l, 4− l)} is action-visible. Notice that tk is a terminal
node in this sub-arena, therefore not marked. Indeed, if tk was marked, there would have
been two paths from r0 to tk in the sub-arena, and Theorem 4.8.

We relate 1-maximal Nash equilibria from r0 and those from n:

Proposition 4.12. Consider game Rk from Figure 4.6, with some fixed parameter x ∈ R.
Then there exists a 1-maximal Nash equilibrium σ from r0 if, and only if, 0 ≤ k · x ≤ 1.

40

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

r0

sk

0, 4, 4

bS

0, 5 + k, 3− k

aS

1, 4 + k, 4− k

acc

acc

0, 5, 3

aS

0, 4, 4

bS

sk

1, 4 + l, 4− l

acc

0, 5 + l, 3− l

aS
0, 4, 4

bS

bcc

tk

bcc bcc

uk

0, 5, 3

0, 4, 4
†cs
†s∗

†Ek

†Ek
n : 1, 4 + x, 4− x †cc

sl

Figure 4.6 – The rescale game Rk for k ∈ {1, 2, 3} and l = k − 1

Moreover, for any such Nash equilibrium, terminal state n is reached with positive proba-
bility and expected payoff profile equals (1, 4 + k · x, 4− k · x).

We first give the proof of the necessary conditions:

Proof. Since the strategy profile has to be 1-maximal, any terminal state rewarding agent 1
with payoff 0 should be avoided. One of the two states sk or sl (or both) should be enabled
by σ. However, action profile acc cannot be played with probability 1 by all three players,
otherwise player 2 can deviate to win 5 + k (resp 5 + l) instead of 4 + k (resp 4 + l). This
means that tk is also enabled by strategy profile σ. Players should then agree to go to final
state n from tk in order to achieve 1-maximality.

Player 2 has no incentive to deviate from tk, so 4 + x ≥ 4, that is x ≥ 0. Value of state
uk can be computed and equals v(uk) = (0, 4 + 1/k, 4− 1/k). Since player 3 has no incentive
to deviate from tk to enable state uk, we also have 4− x ≥ 4− 1/k that is k · x ≤ 1.

The sufficient condition, and the exact computation value is carried on in the following
lemma. We assume that 0 ≤ k·x ≤ 1, and start to build a strategy profile which is 1−maximal
Nash equilibrium. We can already state that such profile must enable n with probability 1
from tk and play uniformly from state uk to avoid any deviation, from tk.

Lemma 4.13. Assume that there is a Nash equilibrium from sk ·tk with payoff (1, 4+x, 4−x).
If (σ, sk) is a 1-maximal Nash equilibrium from sk, then the state tk is activated by σ, and
the expected payoff of σ from sk is (1, 4 + (k + 1) · x

x+1 , 4 − (k + 1) · x
x+1). Furthermore

such a 1-maximal Nash equilibrium from sk exists and consists for player 1 in playing a with
probability x/(x+1) and b with probability 1/(x+1), and for the other two players, in playing c
almost-surely in sk, and then follow the given equilibrium from sktk.

Proof. Let (σ, sk) be a 1-maximal Nash equilibrium. Because the equilibrium is 1-maximal,
players 2 and 3 do not play action s: we have σ2(c | sk) = σ3(c | sk) = 1. Considering this

41

4.2. MODULES

s

c

a b1
2

0, 5 + k 0, 4

1, 4 + k 1, 4 + x

s

c

a b1
3

0, 3− k 0, 4

1, 4− k 1, 4− x

Table 4.1 – Two-player projections of Rk in sk assuming player 3 (left), resp. player 2 (right),
plays c almost-surely

fixed action for player 3, we can look at the 2-player game between players 1 and 2, which is
represented in matrix form in Table 4.1 (left).

Applying Lemma 4.1, using the fact that σ2(s | sk) < 1, we get that (x+1) ·σ1(a | sk) ≤ x.
The same argument applied to the projection to players 1 and 3 (see Table 4.1 (right))
gives (x + 1) · σ1(a | sk) ≥ x. Hence (x + 1) · σ1(a | sk) = x. This entails that x 6= −1
(actually, x will be forced to be nonnegative in the sequel), so that the action profile bcc has
probability 1/(x + 1) in the Nash equilibrium (σ, sk). We conclude that tk is reached with
positive probability, and that

Eσ(φ | sk) =

(
1,

(4 + k)x+ (4 + x)

x+ 1
,
(4− k)x+ (4− x)

x+ 1

)
.

Conversely we check that the strategy profile from sk where player 1 plays a with proba-
bility x/(x+ 1) and b with probability 1/(x+ 1) in sk, and where the other two players play
c almost-surely, is a 1-maximal Nash equilibrium.

Notice the same reasoning (and lemma) can be done from state sl = sk−1, with the same
conclusions.

We now consider the global game Rk from its initial state r0, in order to conclude.

Lemma 4.14. Assume that 0 ≤ k · x ≤ 1. Then, any 1-maximal Nash equilibrium from r0

has payoff (1, 4 + k · x, 4− k · x). Moreover, such a strategy profile exists.

Proof. Since the equilibrium is 1-maximal, it holds σ2(c | r0) = σ3(c | r0) = 1. We first
consider the cases when only one of the states sk and sl is enabled:

• if only sk is enabled, i.e. σ1(a | r0) = 1, then from the previous lemma, we have
Eσ(Φ2) = 4 + (k + 1) · x

x+1 . This quantity should be greater than 5 (otherwise player 2
would better deviate), so that k · x ≥ 1, and using our hypothesis, k · x = 1. It follows
that the payoff of σ from r0 is (1, 5, 3) in this case.

• if only sl is enabled, i.e. σ1(a | r0) = 1, the value for player 3 is 4 − (l + 1) · x
x+1 .

This must be greater than or equal to 4 (otherwise player 2 has a profitable deviation).
We get x = 0, and the expected payoff of σ is (1, 4, 4).

We now consider the case where both states sk and sl are enabled, i.e. 0 < σ1(a | r0) < 1.
We again separately consider the strategies of players 2 and 3, as shown in Table 4.2. Let
us fix yi (for i ∈ {k, l}) and y such that Eσ(φ | r0si) = (1, 4 + yi, 4 − yi), and Eσ(φ | r0) =

42

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

s

c

a b1
2

0, 5 0, 4

1, 4 + yk 1, 4 + yl

s

c

a b1
3

0, 3 0, 4

1, 4− yk 1, 4− yl

Table 4.2 – Two-player projections of Rk in r0 assuming player 3 (left), resp. player 2 (right),
plays c almost-surely

(1, 4 + y, 4 − y). Applying Lemma 4.1 twice, we get (yl + 1 − yk) · σ0(a | r0) = yl. Then the
expected payoff for player 2 is

Eσ(Φ2 | r0) = 4 + y = σ1(a | r0) · (4 + yk) + (1− σ1(a | r0)) · (4 + yl).

This simplifies as y = yl/(yl − yk + 1). Replacing yl and yk with their values (Lemma 4.13),
we end up with y = k · x.

Now to reconstruct a 1-maximal Nash equilibrium from r0, it is sufficient for player 1 to
play a at r0 with probability k ·x, and for the other two players, to play c almost-surely at r0,
and then to follow the 1-maximal Nash equilibrium from sk and sl. This yields a 1-maximal
Nash equilibrium from r0, with the announced expected payoff profile.

To summarize this section, we have built a module that takes a sub-game as an input
(from state n), which is assumed to have an equilibrium of payoff (1, 4+x, 4−x), and returns
a game which has an equilibrium of payoff (1, 4 + k · x, 4− k · x) for a given integer k. Notice
the reverse operation (dividing by k) is more natural, as it is sufficient to implement a k-
matching-pennies state to implement it. This way of the rescaling game was harder, as it
requires somehow to increase the gap of expected rewards between players 2 and 3. This has
been achieved thanks to the extra 1-maximality requirement.

4.2.2 Testing game

We present in this section the construction of a game for comparing the expected payoffs
in different nodes. This will be useful in our reduction to encode the zero-tests of our two-
counter machine. Once again, this construction heavily relies on the 1-maximal character of
our studied Nash Equilibria.

Consider the game T of Figure 4.7. Any non-terminal state is now marked, since the whole
game is action-visible. Two terminal states, n1 and n2, will be later replaced by continuation
of another reduction, but are given here with 1-maximal Nash equilibria payoff profiles of the
form (1, 4 + x, 4− x) and (1, 4− y, 4 + y) for some x, y ∈ R≥0.

Proposition 4.15. Consider the game T of Figure 4.7, for some parameters x, y ≥ 0. There
exists a 1-maximal Nash equilibrium from s0 if, and only if, x = y.

Moreover, when this condition holds, the expected payoff its equals (1, 4 + x/2, 4 − x/2).
Additionnaly, n1 and n2 are both enabled whenever x = y > 0.

Proof. If x = y, we build σ that plays uniformly from states sa2 and sb2, yielding an equilibrium
of value (1, 4, 4). Playing uniformly from s0 then playing action profile †cc from sa1 and sb1

43

4.2. MODULES

s0

sa1

sb1

0, 4, 4

sa2

sb2

n2 : 1, 4− y, 4 + y n1 : 1, 4 + x, 4− x†ab

†ba

†S

†S

†cc

†cc

†E2

†E2

†E2†E2

†E2

Figure 4.7 – Testing module T

s0

s21, 3, 5 1, 4, 4

s1

†aa †ba
†ab

†bb
†Ek

†Ek
game Ck: s0

s2 0, 3, 51, 3, 5 1, 4, 4

s1

†aa †ba
†ab

†bb acc, bS
aS

bcc

game D:

Figure 4.8 – The modules Ck (for k ≥ 2) and D. Notice that state s2 should be considered
terminal, as it only carries a self-loop. We could replace it by a two-state loop. We could also
see it as a terminal state with reward (0, 0, 0), but for technical reasons (in Section 4.3.2),
we want the terminal rewards of players 1 and 2 to always sum to 8, which we could not
achieve easily in this case.

generates the announced payoff, and we can check that no deviation to (0, 4, 4) is profitable
for any player.

Conversely, if σ is a 1-maximal Nash equilibrium from s0,

• if n1 (resp n2) is enabled alone, then x = 0 (resp y = 0), otherwise player 3 (resp 2)
could deviate to (0, 4, 4).

• Otherwise, both n1 and n2 are enabled, then at least one of the two states sa1 or sb1
is visited, which means by stability that x = y (otherwise one of the two players can
deviate). Then, by stability, both players should play uniformly from s0.

4.2.3 Counting modules

Previous testing module allows us to test two sub-games which have similar (when reversing
player 2 and 3) payoff profiles. Our reduction strategy will consist in simulating on the one
hand a 2-counter machine, and on the other hand, check that the resulting encoding has a
particular form. In order to check for this particular form, we introduce below games that
can generate some specific families of Nash equilibria with a particular expected payoffs.

44

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

Lemma 4.16. Consider the games of Figure 4.8. For n ∈ N] {+∞}, we define

rk(n) =

(
1, 4− 1

kn
, 4 +

1

kn

)
s(n) =

(
1, 4− 1

n+ 1
, 4 +

1

n+ 1

)
Then the set of 1-maximal Nash equilibrium values is {s(n) | n ∈ N] {∞}} in D, and
{rk(n) | n ∈ N] {∞}} in Ck for all k ≥ 2.

Proof. Fix k ≥ 2. We begin with proving that these values are indeed the payoffs of Nash
equilibria. For this, we define the witnessing strategy profiles. For all history h, we let

γ∞(hs0) = abb γ∞(hs1) = ac1c2 δ∞(hs0) = abb δ∞(hs1) = bss

One easily observes that (γ∞, s0) and (δ∞, s0) are Nash equilibria with payoff (1, 4, 4) in Ck
and in D, respectively.

For n ∈ N, we define γn and δn inductively. First, we let γ0(s0) = δ0(s0) = aaa, which
gives rise to Nash equilibria with payoff (1, 3, 5) from s0 both in Ck and in D.

Then, for n ∈ N, we define the strategies inductively on the length of the history. The base
cases are γn+1(s0) = δn+1(s0) = abb and

γn+1
1 (s0s1) = a ∀1 ≤ j ≤ k. γn+1

2 (cj | s0s1) = γn+1
3 (cj | s0s1) = 1/k

δn+1
1 (a | s0s1) =

1

n+ 2
δn+1

2 (s0s1) = δn+1
3 (s0s1) = c.

The inductive case is

∀1 ≤ i ≤ 3, γn+1
i (s0s1h) = γni (h) δn+1

i (s0s1h) = δni (h)

We can indeed check that these strategy profiles form Nash equilibria with the expected
payoffs.

Conversely, let us fix a 1-maximal Nash equilibrium (σ, s0), and let us show that the
expected payoff of that Nash equilibrium is one of the above values. By 1-maximality, players 2
and 3 have to play deterministically the same actions after all histories ending up in s0 (state
s2 should not be enabled under (σ, s0)). We can reason on the number of histories enabled
from s0. For that, we define Ns0(σ) = sup{|h| | h enabled by σ and last(h) = s0} (this is
somehow the maximal number of visits of s0 enabled by σ).

• If Ns0(σ) = +∞, then the transition †aa from s0 is never taken (since it would then be
played deterministically and it would then stop the game immediately). Since (σ, s0) is
1-maximal, it then means that the terminal state (1, 4, 4) is reached almost-surely (only
possibility for Player 1 to get payoff 1).

• Otherwise, Ns0(σ) is finite and we reason by induction on this number:

– first if Ns0(σ) = 1, the game ends up immediately in (1, 3, 5).

– if Ns0(σ) > 1, then a transition to s1 occurs with probability 1. If the path
s0 · s1 · (1, 4, 4) has probability 1 under σ, then the results holds; otherwise s0s1s0

is enabled from s0, and (σ′, s0), with σ′ : h 7→ σ(s0s1h), is another 1-maximal Nash

45

4.2. MODULES

equilibrium such that Ns0(σ′) < Ns0(σ). By induction, it has an expected payoff
of the form (1, 4 − x, 4 + x), with either x = 1

kn (for Ck) or x = 1
n+1 (for D) for

some n ∈ N] {∞}. If x = 0, the results holds immediately, as the expected
payoff of (σ, s0) is also (1, 4, 4). Now assume x > 0, and consider the game Ck,
and the distributions proposed by the strategies σ2 and σ3 after s0s1. For this to
be a Nash equilibrium, both distributions must be uniform; this leads to payoff
(1, 4 − x

k , 4 + x
k), and proves the result. For D, if it were σ1(s0s1) = b, then

Player 2 would have a profitable deviation. Hence σ1(a | s0s1) > 0, and the best
response for players 2 and 3 is to play c. We can then analyze the projections on
agents 1, 2 and 1, 3 (as done in Section 4.2.1) and apply Lemma 4.1, which yields
(x + 1)σ1(a | s0s1) ≥ x and (x + 1)σ1(a | s0s1) ≤ x; it follows σ1(a | s0s1) = 1

n+2

and Eσ(φ | s0s1) = (1, 4− 1
n+2 , 4 + 1

n+2).

4.2.4 Description of the reduction

We now turn to the global undecidability proof of the constrained-existence problem in three-
player games. The proof is a reduction from the recurring problem of a two-counter machine.

We first recall the definition of a two-counter machine as a tuple M = (Q, q0,∆) where:

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• ∆ ⊆ Q×Γ×Q is the transition table with Γ = {inc(j), dec(j), zero(j), !zero(j) | j ∈ {1, 2}}
is the set of operations on counters.

Without loss of generality, we assume that any considered machine M never decreases a
counter with value 0. This can be syntactically enforced by placing a non-zero test before
any decrement operation.

The semantics of M = 〈Q, q0,∆〉 is given as a transition system where configurations
are tuples C = (q, c1, c2) ∈ Q × N × N and for any two configurations C = (q, c1, c2) and
C ′ = (q′, c′1, c

′
2), for every δ = (q, γ, q′) ∈ ∆, there is a transition C →δ C

′ if, and only if:

• c′k = ck + 1 and c′3−k = c3−k, if γ = inc(k);

• c′k = ck − 1 and c′3−k = c3−k, if γ = dec(k);

• ck = 0 and (c′1, c
′
2) = (c1, c2), if γ = zero(k);

• ck > 0 and (c′1, c
′
2) = (c1, c2), if γ = !zero(k).

We fix for the rest of this section a two-counter machine M = (Q, q0,∆), and we build a
terminal-reachability game GM as depicted in Figure 4.9 on the facing page: for every machine
state q ∈ Q (resp. every δ ∈ ∆) we have a corresponding state q̃ (resp. state δ̃) in the game
GM, as depicted on Figure 4.9b (resp. Figures 4.9c to 4.9f). These states are connected
together thanks to the described translation which takes into account the transition table of
M. We write φ for the terminal-reachability payoff function that is given by GM.

The states of the game GM are Q̃] ∆̃] T , where T represents the set of states that
were introduced by our reduction, as part of one of the different gadgets, with multiplicity.
Moreover, we have seen that these modules may have some branching, that will be hidden

46

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

in

q̃0

0, 5, 3
∗S

∗cc

(a) Input gadget of GM

q̃ s†En

δ̃1

δ̃2 δ̃3

δ̃4

†δ1δ1

†δ
2
δ 2

†δ4δ4†δ
3 δ

3

(b) Translation of q (where {δ1, ..., δn} is
the set ∆q of transitions leaving q)

δ̃

q̃′

1, 4, 4
†Ek+1

†Ek+1

(c) translation of
δ = (q, dec(k), q′)

δ̃

Rk+1

n = q̃′

r0

(d) Translation of
δ = (q, inc(k), q′)

δ̃

R2

r0

T

s0
n2

n1 = q̃′ C4−k

(e) translation of
δ = (q, zero(k), q′)

δ̃

R2

r0

T

s0

n1 = q̃′

n2

D

1, 4, 4

†Ek+1

†Ek+1

(f) translation of δ = (q, !zero(k), q′)

Figure 4.9 – Description of the encoding GM. Modules are Rk and T are copied several times.
n = q̃ means the terminal state n of a module is replaced by further encoded state q̃.

by considering the embedded game construction with respect to B, which is the sub-arena
composed of the marked states of the modules. For the sake of simplicity, we assume, from
now on, that GM has already been quotiented by this sub-arena. In the sequel, any considered
Nash equilibrium or strategy profile will therefore become implicitly a B-blind strategy profile
in the original game.

We will evaluate the existence of a 1-maximal Nash equilibrium from all the main nodes of
the game. The relation betweenM and GM is made explicit thanks to the following predicate.
Let s ∈ Q]∆, and c1, c2 ∈ N. We denote by P (s, c1, c2) the predicate:

∃σ ∈ S.
[
σ is a Nash equilibrium from s̃ and Eσ(φ | s̃) =

(
1, 4 +

1

2c13c2
, 4− 1

2c13c2

)]

Lemma 4.17. Assume C = (q, c1, c2) is a configuration of M such that P (q, c1, c2) holds.
Then there are a transition δ and a configuration C ′ = (q′, c′1, c

′
2) such that (i) C →δ C

′ and
(ii) P (δ, c1, c2) and P (q′, c′1, c

′
2) hold.

Proof. Write σ for a 1-maximal Nash equilibrium witnessing the truth of predicate P (q, c1, c2).
In particular,

Eσ(φ | q̃) =

(
1, 4 +

1

2c13c2
, 4− 1

2c13c2

)
47

4.2. MODULES

In GM from q̃, only one state δ ∈ ∆q is activated, otherwise σ would not be 1-maximal, as
with positive probability the play would end up in state s of Figure 4.9b. Hence P (δ, c1, c2)
holds as well.

We write x = 1
2c13c2 , and we distinguish the different cases for δ.

• First assume δ = (q, dec(k), q′). Since x > 0, the next state q′ has to be activated by σ,
and (σ, q̃δ̃q̃′) needs to be a 1-maximal Nash equilibrium as well. Applying the analysis
of k-action matching-pennies games of Section 4.1.2, it must be the case that the payoff
of σ after q̃δ̃q̃′ is (1, 4 + y, 4 − y) with y = (k + 1) · x. If k = 1, it is the case that
y = 1

2c1−13c2
, and if k = 2, it is the case that y = 1

2c13c2−1 . Writing c′k = ck − 1 and
c′3−k = c3−k, we get that (q, c1, c2)→δ (q′, c′1, c

′
2) and that P (q′, c′1, c

′
2).

• Then assume δ = (q, inc(k), q′). Applying Proposition 4.12, we get that q̃′ is activated
by σ, and that there is a 1-maximal Nash equilibrium from q̃′ whose expected payoff is
(1, 4 + y, 4 − y) with y = x/(k + 1). As in the previous case, writing c′k = ck + 1 and
c′3−k = c3−k, we get that (q, c1, c2)→δ (q′, c′1, c

′
2) and that P (q′, c′1, c

′
2).

• Assume δ = (q, zero(k), q′). Applying Proposition 4.12, we get that the first node s0 of
Gt is activated by σ, and that there is a 1-maximal Nash equilibrium from that node
whose payoff is (1, 4+x/2, 4−x/2). Then, applying Proposition 4.15, we get that q̃′ and
the initial node of Ck+1 are activated, and that σ after q̃′ and σ after entering Ck+1 are
1-maximal Nash equilibrium. Furthermore, writing (1, 4 + z, 4− z) and (1, 4− y, 4 + y)
for the payoffs of those equilibria respectively, we should have z = y and x/2 = z/2. In
particular, P (q′, c1, c2) holds. Now thanks to Lemma 4.16, we know that there exists m
such that y = 1

(4−k)m . This implies that ck = 0: (q, c1, c2)→δ (q′, c1, c2).

• Finally, assume that δ = (q, !zero(k), q′). Again applying Proposition 4.12, we get that
the first node of Gt is activated by σ, and that there is a 1-maximal Nash equilibrium
from that node whose payoff is (1, 4 + x/2, 4− x/2). Then, applying Proposition 4.15,
we get that q̃′ and node n2 are activated, and that σ after q̃′ and σ after entering n2 are
1-maximal Nash equilibria. Furthermore, writing (1, 4 + z, 4 − z) and (1, 4 − y, 4 + y)
for the payoffs of those equilibria respectively, we should have z = y and x/2 = z/2. In
particular, P (q′, c1, c2) holds.

Note that there is a 1-maximal Nash equilibrium from n2 of payoff (1, 4− y, 4 + y) with
y > 0 if, and only if, there is a 1-maximal Nash equilibrium in D of payoff (1, 4−y′, 4+y′)
with y′ = (k+1) ·y. Now, thanks to Lemma 4.16, we know that there exists h such that
y′ = 1

h+1 , hence y = 1
(k+1)·(h+1) . This implies that ck > 0: (q, c1, c2)→δ (q′, c1, c2).

We can now show the following correspondence between M and GM:

Proposition 4.18. The two-counter machine M has an infinite valid computation if, and
only if, there is a 1-maximal Nash equilibrium from state in in game GM.

Proof. We use the reduction from the non-halting problem of a two-counter machine we have
described. Given a two-counter machine M, we construct game GM as on Figure 4.9. For
technical reasons, we syntactically require that each incrementation is followed by a non-zero
test: since decrements are preceded with a zero-test, this enforces infinitely many visits to
module G̃t in GM along any infinite run, so that infinite runs will have probability zero in
strategy profiles we will build (we will see that later).

48

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

Assume a 1-maximal Nash equilibrium exists from the initial state in. Then it must be
the case that its payoff profile is at least (1, 5, 3), hence equal to (1, 5, 3) as the payoffs sum
of player 2 and 3 always sum to 8 and payoffs of player 1 are at most 1. As the predicate
P (q0, 0, 0) is true, we can inductively apply Lemma 4.17 to build the corresponding valid
infinite run of the counter machine.

Conversely assume that M has an infinite (valid) run C0 →δ0 C1 →δ1 . . . with Ci =
(qi, c

i
1, c

i
2), and c0

1 = c0
2 = 0. We build a strategy profile σ inductively as follows:

• in state in, players 2 and 3 should play c almost-surely;

• we assume we have built σ for the prefix C0 →δ0 C1 →δ1 . . . Ci, and that the “main
stream” of σ traverses successively the gadgets starting in in, q̃0, δ̃0, . . . , δ̃i−1 and arrives
in state q̃i, from which we now need to define the strategy profile σ. In state q̃i, the
players should select transition δi almost-surely, and then enter gadget state δ̃i. We now
distinguish the possible cases for δi:

– if δi = (qi−1, dec(k), qi), then players 2 and 3 should play uniformly at random
among the k + 1 actions;

– if δi = (qi−1, inc(k), qi), then, in Rk+1, the players should follow the strategy
described in Proposition 4.12 with x = 1

(k+1)·2c
i−1
1 ·3c

i−1
2

;

– if δi = (qi−1, zero(k), qi), then, in R2, the players should follow the strategy de-
scribed in Proposition 4.12 with x = 1

2·2c
i−1
1 ·3c

i−1
2

; in Gt, the players should follow

the strategy described in Proposition 4.15, and in C4−k, they should follow the
strategies described in the proof of Lemma 4.16, for the correct values of the coun-
ters;

– if δi = (qi−1, !zero(k), qi), then we apply a strategy as described in the previous
item (except that we replace the strategy in C4−k by that in D).

First, due to the hypothesis on (non-)zero-tests in every syntactic loop of the machine, under
the above strategy profile, the game ends up almost-surely in a terminal state, where Player 1
has reward 1. This is because in any state δ̃ where δ is a test-to-zero, or a test-to-nonzero, the
game ends up in gadget C4−k or D with probability 1/2, and the previously defined strategies
from these gadgets ensure almost-sure termination.

More formally, for every ε > 0, there is a length Nε that we can easily compute such that

Pσ(reach terminal in no more than Nε steps | in) ≥ 1− ε.

We write GM(Nε) the game GM(Nε) truncated after Nε computation steps of M, in which
we replace any outgoing transition by a terminal node with reward (1, 0, 0). We note σε the
truncated strategy profile.

We have that
Eσε(Φj | in) ≤ Eσ(Φj | in) ≤ Eσε(Φj | in) + 8ε

We can now show by induction on i ≤ Nε that Eσε(φ | in) is (1, uε1, u
ε
2) with |5− uε1| ≤ 8ε

and |3 − uε2| ≤ 8ε, which entails that Eσ(φ | in) = (1, 5, 3). We can then show inductively
that for every i,

Eσ(φ | in · T ∗ · q̃0 · T ∗ · δ̃0 · T ∗ · · · δ̃i−1 · T ∗ · q̃i) =

(
1, 4 +

1

2c
i
13c

i
2

, 4− 1

2c
i
13c

i
2

)
49

4.3. CONCLUSIONS

Assume that σ is not a Nash equilibrium, and pick σ′j a deviation of Player j (with j ∈
{2, 3}) which improves her payoff. By Proposition 3.16 we can assume that σ′j is deterministic.
Under σ′ = σ[j/σ′j], we can first notice that the same gadgets are visited as under σ, since
Player j cannot improve her payoff by switching the choice of the transitions (gadgets starting
from q̃ for any q ∈ Q). We also realize that in all states of the game, under σ, the choice
of Player j is either deterministic (play c) or she plays matching-pennies games uniformly at
random against Player 5 − j. Switching the choice of Player j in a matching-penny game
does not change the probabilities of the two output-edges. So only a switch from action c to
action s can possibly improve the payoff of Player j.

This is not the case, since by construction, we have a local Nash equilibrium in every
gadget. Hence, no deterministic deviation of Player j can improve her payoff.

4.3 Conclusions

We summarize our construction as follows: for any 2-counter machine M, we built a game
GM which has the following properties:

• Deterministic with three players;

• Reward functions are terminal, with non-negative integers;

• Rewards of agents 2 and 3 always sum up to 8;

• Rewards of agent 1 are either 0 or 1, and agent 1 is always winning, its only purpose is
to balance the game for the two other players;

• M has an infinite run if, and only if, GM has a Nash equilibrium which is 1-maximal.

The immediate consequence of our reduction is the following undecidability theorem:

Theorem 4.19. The constrained existence problem with non-negative rewards (cNE) and
three players is undecidable.

We consider in the sequel several extensions of this result. We first state two straightfor-
ward corollaries in this section, and develop more involved extensions to terminal-reachability
and safety games in the next sections.

First of all, we realize that in the reduction, there is a 1-maximal Nash equilibrium from
in if, and only if, there is a Nash equilibrium with social welfare larger than or equal to 9,
where the social welfare is defined as the sum of the expected payoffs of all players. As an
immediate corollary, we get:

Corollary 4.20. We cannot decide whether there exists a Nash equilibrium with some lower
bound on the social welfare (or with optimal social welfare) in three-player terminal-reachability
games with non-negative payoffs.

4.3.1 Unconstrained problem

We discuss in this section how to get rid of the 1-maximality condition. The main idea is
similar to [Bre12] where the initial state of the game is replaced by a branching to a sub-
module which is a game known to not have a Nash equilibrium in the considered model.

50

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

Here, the considered module is the game H of Section 3.6.4, which is known to not have a
Nash equilibrium even in mixed strategies with arbitrary memory. Note however this game
has negative terminal reward values, so the reduction is done at the expense of introducing
negative terminal rewards.

Lemma 4.21. Let G be a terminal-reachability game. We can build a terminal-reachability
game G′ such that G has a 1-maximal Nash equilibrium if, and only if, G′ has a Nash equilib-
rium.

Proof. Without loss of generality, we can rescale payoffs in G and assume the maximal reward
of player 1 is 1. The game G′ is depicted on Figure 4.10, where player 1 can decide in s′0 whether
to go toH or to G. Assume there is a Nash equilibrium in G′. SinceH has no Nash equilibrium,
in any Nash equilibrium of G from s′0, player 1 will play action continue (with probability 1)
in s′0. This entails that G has a Nash equilibrium (since the payoffs are prefix-independent).
Moreover, the payoff of player 1 in this Nash equilibrium must be 1, as otherwise player 1
could secure a better payoff by going to H (see proof of Lemma 3.22). Conversely, if there is
a 1-maximal Nash equilibrium in G, then it gives rise to a Nash equilibrium in G′ by letting
player 1 move to G in s′0. This is easily seen to be a Nash equilibrium, in particular because
deviating to H in s′0 cannot benefit to player 1.

s′0 GH continue s0
stop

Figure 4.10 – A game that has a Nash equilibrium if, and only if, G has a 1-maximal Nash
equilibrium

It follows:

Corollary 4.22. The existence of a Nash equilibrium in a deterministic game with only
three players and (relative) integral terminal rewards is undecidable. In particular eNE is
undecidable.

One drawback of the above proof is the use of the game H which has negative rewards so
removing a constraint has been done at the expense of introducing negative rewards. In fact,
game H can be replaced by any game with no Nash equilibria, such that player 1 can still
secure a payoff 1 − ε for every ε > 0. For instance, one could use a game with limit-average
payoff and nonnegative rewards only as shown in [UW11b], hence giving undecidability re-
sults for the limit-average payoff case. However, it is not known if there exists a concurrent
deterministic game with at most three players and non-negative rewards which has no Nash
equilibrium. Existence of such game would imply undecidability of the existence of a Nash
equilibrium with non-negative terminal rewards.

4.3.2 Qualitative objectives

In order to strengthen our result, we are interested in qualitative objectives, that is to say
objective functions ranging over {0, 1}. More precisely, we study here how we can trans-
form our previous reductions in order to use only qualitative terminal reachability and safety
objectives.

51

4.3. CONCLUSIONS

s (x, y, 8− y) s vx,y

x, 8, 0

x, 0, 8

†Ey8

†Ey8

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

=E3
8 =E4

8 =E5
8

Figure 4.11 – Transformation of a terminal node (x, y, 8− y) with an intermediate node vx,y.

The table on the right gives the value of Ey8 for some values of y (notice that Ey8 ⊆ Ey
′

8 when
y ≤ y′, so that for instance]

[
E4

8

]
= 32).

Terminal-reachability games

We now explain how to extend our main theorem to games with terminal-reachability objec-
tives (in other terms, with terminal payoffs in {0, 1}). The crucial point to achieve this is
that in all our terminal states of GM, the sum of the rewards of players 2 and 3 is 8. Our
construction amounts to replacing these terminal rewards with a simple module in which the
payoffs of players 2 and 3 are (8, 0) and (0, 8).

Proposition 4.23. Let G = (A, s0, (Φi)i) be a 3-player terminal-reachability game such that
in any final state s, the terminal payoff Φ(s) = (x, y, z) satisfies the following conditions:

x ∈ {0, 1} y, z ∈ N y + z = 8

Then we can construct an arena A′, and a qualitative terminal-reachability reward φ′i for
each player i, such that (σ, s0) is a 1-maximal Nash equilibrium in G if, and only if, it is a
1-maximal Nash equilibrium in G′ = (A′, s0, (φ

′
i)i).

Proof. We replace every final node (x, y, 8 − y) with a constant-sum game as depicted in
Figure 4.11. In this figure, for all i ∈ {1, 2}, the set Allowi(vx,y) of allowed actions is the set
{ci | i ∈ J0, 7K}, and for any k, y ∈ N, Eyk = {ci · cj | ∃0 ≤ r < y. i − j = r mod k}. Notice
this definition generalizes the k-action construction of Section 4.1.2, where Ek = E0

k.
By playing uniformly at random, player 2 can ensure winning (i.e. reaching state (x, 8, 0))

with probability y/8, whatever player 3 does. She then gets payoff y. Similarly, player 3 can
ensure winning with probability 1− y/8 by playing uniformly. We conclude that (x, y, 8− y)
is the only equilibrium payoff.

We built this way a new game G′ where all final payoffs are of the form (x, 8, 0) or (x, 0, 8).
Every Nash equilibrium in G can be converted into a Nash equilibrium with the same payoff
(by playing uniformly in every new node vx,y) in G′.

Conversely, if (σ, s0) is a Nash equilibrium in G′, then for every hvx,y ∈ States+,

• If hvx,y is enabled by σ, we have Eσ(φ | hvx,y) = (x, y, 8− y);

• Otherwise, hvx,y is not enabled and we can assume σi(hvx,y) is the uniform distribution
for both i ∈ {1, 2}. This assumption does not change the final reward of the game
(as hvx,y is not enabled) and preserves the equilibrium because a deviation of player 2
in this branch can already ensure at least payoff y (respectively at least 8−y for player 3).

52

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

Finally, every branch ending up in vx,y has payoff (x, y, 8−y) so (σ, s0) is in fact an equilibrium
in G with the same value.

To conclude, we can divide every terminal reward for players 2 and 3 by 8, so that every
final state satisfies φ′(s) ∈ {0, 1}Agt. By linearity, every 1-maximal Nash equilibrium in the
original game is a Nash equilibrium in G′ with average payoffs for players 2 and 3 divided
by 8.

We conclude with the following corollary:

Corollary 4.24. The existence of a 1-maximal Nash equilibrium in a 3-player game with
qualitative terminal rewards is undecidable.

Safety games

We explain now how the previous proof can also be transformed to prove the undecidability
of the constrained existence of a Nash equilibrium in a safety game.

This result is interesting since [SS01] shows that there always exists a Nash equilibrium
in safety games (called stay-in-a-set games), without constraints. We must remark that
the existence result is established for action-visible games only. Nevertheless, the authors
notice that the constructed strategies require relatively low memory, as players only have
to remember the set of players that already lost their objective. This information does not
depend on the played actions, and when encoded inside the current state, the authors remark
that memoryless Nash equilibria are proven to exists. Therefore we conclude that the action-
visible hypothesis can in fact be omitted.

The following result comes in contrast:

Corollary 4.25. The existence of a Nash equilibrium in a 3-player game, with qualitative
safety objectives, where player 1 loses almost surely, is undecidable.

By analogy, a strategy profile losing for player 1 will be called 1-minimal.

Proof. Proposition 4.23 along with the reduction presented in Proposition 4.18 allows us
to compute for every two-counter machine M a concurrent qualitative terminal-reachability
game G such that M does not halt if, and only if, G has a 1-maximal Nash equilibrium.

For each player i, we can write her payoff function as a function φri = 1States∗·Ri with
Ri ⊆ F.

We now define safety conditions for this arena by:

G1 = States\R1

∀i ∈ {2, 3}. Gi = States\F]Ri

We define reward function φsi , for each player i, by φsi = 1Gωi]G∗i .
First remark that we defined all internal states as winning for all players so an infinite

run is a possible Nash equilibrium for the safety game. Let us now consider the constraint
Eσ(φs1 | s0) = 0. In the following, we will say that a 〈σ, s0〉 is an 1-minimal Nash equilibrium
if it is a Nash equilibrium of the safety game which satisfies the above constraint.

Let us notice that φs1 = 1−φr1 and for i ∈ {2, 3}, φsi = 1States∗Ri +1(States\F)ω The following
analysis is mostly concerned with the term 1(States\F)ω that is the difference between terminal-
reachability objectives and safety objectives. Based on the reduction of Proposition 4.18, we

53

4.3. CONCLUSIONS

will show that this term can be neglected, in the original profile σ, but also when considering
any deviation.

• Assume σ is a 1-minimal Nash equilibrium. We have Eσ(φr1 | s0) = 1 so σ is 1-maximal
for the reachability objective.

Moreover, R1 ⊆ F is reached with probability 1 so Eσ(1(States\F)ω | s0) = 0. So ∀i ∈
{2, 3}, Eσ(φsi | s0) = Eσ(φri | s0).

For i and any deviation σ′i ∈ Si, let σ′ = σ[i/σ′i], then Eσ′(φsi | s0) = Eσ′(1States∗Ri |
s0) + Eσ′(1(States\F)ω | s0) ≥ Eσ′(φri | s0). So Eσ′(φri | s0) ≤ Eσ′(φsi | s0) ≤ Eσ(φsi | s0) =
Eσ(φri | s0).

We conclude that σ is a 1-maximal Nash equilibrium for the reachability objectives.

• Conversely, assume there exists a 1-maximal Nash equilibrium. Thanks to the reduction
proof, we know this corresponds to an infinite run of M. Without loss of generality,
we can assume such run has infinitely many counter tests, so that the underlying Nash
equilibrium enables the testing module G̃t infinitely often. This strategy profile σ makes
both players 2 and 3 play uniformly at random so even if one decides to deviate, there
is still a fixed positive probability 1

4 to branch to submodules n2 and eventually reach a
final state. We conclude from this analysis, that for every deviation σi ∈ Si (i ∈ {2, 3}),
Eσ[i/σi](1(States\F)ω | s0) = 0. Hence σ is resilient to deviations of 2 and 3 for safe
objectives.

It remains to check that player 1 has no incentive to deviate, so we have to carefully
look at the states where several allowed actions are given to her. Such constructions
happen only in modules Rk and D, where player 1 can play actions a or b. However,
since σ encodes a correct simulation ofM, we know by construction that players 2 and 3
always play action c concurrently. Hence, a deviation for player 1 is not profitable, since
it always yield the same payoff 1, for the reachability objective φr1, or 0 for the safety
objective φs1.

We conclude that the strategy profile σ is also a 1-minimal Nash equilibrium.

Unconstrained problem revisited

The previous game H used to get rid of 1-maximality condition in Corollary. 4.22 can be seen
as a zero-sum 2-player game, where player 1 has a terminal reachability objective and second
player has the complementary safety objective.

We introduce a family of decision problems, where we allow a given number of terminal
reachability and several safety objectives:

Definition 4.26. For w ∈ {R,S}∗, we define the Nash equilibrium decision problem for
w-qualitative objectives by:
qNE(w)

INPUT: A |w|-player game G such that for all i ∈ [1, |w|],
• If w[i] = R, player i has a qualitative terminal reachability objective: there exists Gi ⊆ F

such that Φi(r) = 1r∈States∗Gi .

• If w[i] = S, player i has a qualitative safety objective: there exists Gi ⊆ States such
that Φi(r) = 1r∈Gωi .

54

CHAPTER 4. DECIDABILITY OF NASH EQUILIBRIA

R
S

0 1 ≥ 2

0 Ensured (Stay-in-a-set games)

1 Ensured (MDP) ??
≥ 2 ?? Undecidable

Table 4.3 – Summary of the decidability status of exact Nash Equilibria in games with several
agents with qualitative reachability or safety objectives.

QUESTION: Whether there exists a Nash equilibrium for G.

In the previous proof of Corollary. 4.25, we replaced reachability objectives of all players by
safety objectives. We argue that this replacement can be done one by one for each player, with
the same proof. We conclude that we can build games GM for anyM, that have reachability
objectives for player 1 (resp. 1 and 2) and safety objectives for players 2 and 3 (resp. 3), such
that GM admits a 1-maximal Nash equilibrium if, and only if, M does not halt.

Mixing at least one reachability player with a safety player allows us to apply the same
reduction as in Corollary. 4.22, to derive the following result:

Corollary 4.27. Both problems qNE(RS2) and qNE(R2S) are undecidable.

As a comparison, two particular classes of decision problems are trivial, since Nash equi-
libria always exist:

• Games with at most one reachability/safety player can be seen as Markov decision
processes. Existence of an optimal policy is ensured, which corresponds to a Nash
equilibrium.

• When only safety objectives are at stake, we can rephrase the main existence results
of [SS01] on stay-in-a-set games.

Theorem 4.28. For any n ≤ 1, the decision problem qNE(Rn) is trivial (always true).
For any n ∈ N, the decision problem qNE(Sn) is trivial (always true) hence decidable.

A summary of these qualitative results is depicted in Table 4.3. Notice two cases remain
open:

• qNE(RS) contains problems such as whether the value of a zero-sum reachability game
has 0-optimal strategy. As H does not satisfy this property, we can already say that
the decision class is not trivial. Moreover, the class contains instances of games that
are not zero-sum.

• For n ≥ 2, qNE(Rn), no examples of instances (games) without Nash equilibria are
known.

4.3.3 Summary

In this chapter we have shown the undecidability of the existence of a constrained Nash
equilibrium in a three-player concurrent game with terminal-reachability or safety objectives.

55

4.3. CONCLUSIONS

Several similar results were shown in the literature, for example by [UW11a], where the
reduction is made for 14 players in a turn-based setting with arbitrary (relative integers)
terminal rewards. Variants of the reduction are reducing the problem to the existence of a
finite (arbitrary) memory Nash equilibrium. On the other side, our proof exploits intensively
the concurrent aspects of the framework, as long as the action-invisibility property, to lower
the undecidability bound to three players and qualitative objectives.

This lets open the two-player positive rewards case, where little is known. In fact, even
the existence of Nash equilibria in such games is an open problem: it was believed until
recently that there are two-player games with nonnegative terminal rewards having no Nash
equilibrium [CJM04, UW11a], but the proposed example was actually wrong (as explained
in Section 3.6.4). On the one hand, if one can find such a game with no Nash equilibrium,
then Corollary. 4.22 extends to nonnegative terminal-reachability games, and possibly to
qualitative terminal-reachability games.

On the other hand, the existence of exact Nash equilibria remains open, as classical
proof techniques based on fixed point theorem fail to apply. As a matter of fact, terminal
reachability cannot preserve continuity of payoff functions when cyclic behaviours occur.
A classical example of such discontinuity is exhibited in game H, with strategy patterns
consisting in waiting more and more in the internal state. Such phenomena are usually
tackled by introducing relaxed equilibrium notions, as discussed in the next chapter.

56

Chapter 5

Games that almost-surely terminate

In the previous chapter, we have seen that deciding the existence of an arbitrary Nash equilib-
rium is undecidable in the general case. Moreover, there exist games without Nash equilibria,
as soon as we consider three players and at least one reachability and one safety qualitative
objective.

In the case of non-negative reachability objectives, the decidability status is still open,
however undecidability can still be derived when looking at computability questions, since
the constrained problem remains undecidable.

Among the causes of undecidability, we may invoke:

• The arbitrary precision for the strategies and payoffs.

• The arbitrary memory for the strategies.

In this chapter, we focus on a relaxed notion of Nash equilibrium, with limited precision.
Such a relaxation ensures existence, even under memoryless strategies. As a consequence,
we are able to develop efficient computation techniques, and bring back decidability for this
model. We are mainly focusing on games with terminal-reachability objectives, with possibly
negative rewards, although the presented results may be generalized to other objectives.

The chapter is divided into three sections: first of all we study a restriction of the strategy
space to particular memoryless strategies, that ensures the existence of a “stable” point in the
restricted space. Then, we characterize properties of such profiles, against arbitrary strategies,
and interpret it as a particular notion of equilibrium. Finally, we explore computational
questions on the newly introduced equilibrium notion.

5.1 Avoiding cycling behaviours

The classical approach for the proof of equilibrium profiles consists in defining a best-response
function, that maps each strategy profile σ, to a set of memoryless strategy profiles where
each player has an optimal value against the rest of the players in σ. As we can characterize
the equilibrium profiles as fixed points of this best-response, it is sufficient to prove the
existence of such fixed point, thanks to some regularity properties of the function. Usually,
such regularity properties are derived from structural properties of the game, that ensures
the run to eventually terminate. We can cite for example the following cases:

57

5.1. AVOIDING CYCLING BEHAVIOURS

1, 1
3

1
3 , 1

1 2

s†

c†

†s†c

Figure 5.1 – The first player to quit the cycle loses

• The existence of exact Nash equilibria in the one-shot case, of the original work of [Nas50].
Termination is ensured after one round. The existence of Nash equilibria in surely
(within a fixed number of steps) eventually terminating games can be proven the same
way, or by induction.

• For qualitative safety objectives, [SS01] showed that exact Nash equilibria exist, with
linear memory. The key argument consists in bounding from below the probability for
any player to lose, whenever players cannot agree on a run that stays safe for all of
them.

• In [CJM04], a discounted version of terminal reachability objectives is considered. The
discounted factor λ can be interpreted as a probability to finish the game, with proba-
bility λ and reward 0, at each step. In this context, the authors showed the existence
of a relaxed notion of Nash equilibrium in terminal-reachability games, namely ε-Nash
equilibrium, where deviations may only improve the payoffs by at most ε > 0.

In general, the best-response function is not continuous when considering terminal reach-
ability objectives (see later Remark 5.11 on page 63), as the probability to not terminate the
game can be arbitrarily close to 0, as seen on the hide-or-run game of Figure 1.2. As opposed
to [CJM04], where termination is forced from the game structure, we explore here a dual
approach, by considering a restriction on strategies, that enforces players to leave cycles of
the game, hence terminating.

Example 5.1. Consider Figure 5.1 which displays an example of a turn-based game, where
state i ∈ {1, 2} is controlled by player i. The number labelling each node corresponds to the
player controlling the state. She can decide whether to stop (action s) or to continue (action
c) playing the game. However, each player has an incentive to wait for the other player to
terminate the game. Again, the payoff is (0, 0) if the play does not reach a terminal state. This
game has pure Nash equilibria: for instance, the memoryless strategy profile where player 1
plays c and player 2 plays s is an equilibrium, with payoff (1, 1/3). Another solution concept
would allow a trade-off between players who will commit a fixed probability each to exit the
game (for example ε > 0). In general, such a trade-off is not a Nash equilibrium as the other
player can change her mind (and continue to play c to yield payoff 1).

We fix for the rest of this section a stochastic concurrent game with terminal-reachability
payoffs G = (A, s0, (Φi)iAgt), with A = (States,Agt,Act, (Allowi)i∈Agt ,Tab)

58

CHAPTER 5. GAMES THAT ALMOST-SURELY TERMINATE

5.1.1 Non-cycling games

Definition 5.2. A state s of A is said cycling if there exists a mixed strategy profile σ ∈ S
such that no single player can enforce (by deviating) reaching a final state, that is:

∀i ∈ Agt ∀σ′i ∈ Si, Pσ[i/σ′i](States∗F | s) = 0.

The arena A (and by extension, the game G) is said cycle-free if it contains no cycling
state.

Computing the set of cycling states can be done in polynomial time, for example by
computing the set of states that are almost-surely winning for the first player, in the following
turn-based zero-sum qualitative safety game where:

• Player 1 suggests an action profile σ(s) from any state s;

• Player 2 agrees or starts a deviation σi(s) for an agent i that is now fixed;

• The game continues to the next state determined by both action propositions.

• Player 2 has a qualitative reachability objective equal to F.

Moreover, this game is determined by pure memoryless strategies, so we can assume in the
previous definition that σ, σ′ ∈M .

We further notice that from any cycling state, there is a Nash equilibrium with pay-
off zero for all the players (playing profile σ from the definition). They are therefore somehow
pathological behaviours, that we may want to remove. This is formalized as follows:

Proposition 5.3. Assume G contains a final state with payoff profile 0Agt. One can construct
a new transition function T̃ab such that the resulting game G̃:

• has the same set of states, final states, rewards and allowed actions,

• is cycle-free,

• and has “fewer equilibria” than G, from any state s: for any σ̃ ∈ S, there exists σ ∈ S
such that:

Eσ̃G̃(φ | s) = EσG(φ | s)

and

∀i ∈ Agt ∀σ′i ∈ Si. E
σ[i/σ′i]
G (φ | s) = Eσ̃[i/σ′i]

G̃ (φ | s)

Notice that since only the transition function is modified, strategies in G and G̃ coincide,
which allows us to consider σ̃[i/σ′i] as a strategy profile of G̃. Moreover, this proposition
implies that any Nash equilibrium of G̃ can be converted into an equilibrium of G with the
same payoff. The theorem is stated in a more general context in the hope to be applied to
later notions of equilibria. In particular, keeping the same strategy space allows us to keep
more easily further relations between a strategy profile and its allowed deviations.

59

5.1. AVOIDING CYCLING BEHAVIOURS

Proof. Let f ∈ F such that φ(f) = 0Agt and C = {s ∈ States | s cycling in A}.
We construct T̃ab from Tab by immediately ending the game to state f from any cycling

state. More precisely, for every A ∈ ActAgt, and s /∈ F: T̃ab(s,A) = f if s ∈ C;

T̃ab(s,A) = Tab(s,A) otherwise
We can easily see that the underlying defined arena has the same set of final states, and is
cycle-free.

Let σC ∈ M be a (partial) stationary strategy profile in G which allows to stay within
C (and hence prohibits reaching a final state from every s ∈ C, even under single-player
deviations). This is possible since C is the set of cycling states of A.

We prove that

∀σ̃ ∈ S. Eσ̃(φ | h) = Eσ(φ | h)

whenever

• last(h) ∈ F, since we are considering the same reward function, or

• last(h) ∈ C, since both sides are equal to 0Agt.

Let s ∈ States a fixed state. Moreover, we assume that s ∈ Int (otherwise the result is
immediate). We decompose all maximal runs starting from s into the following disjoint union:

s · (Intω] Int∗ · F) = s · (Int\C)ω]
⊎

h∈s·(Int\C)∗·F

h]
⊎

h∈s·(Int\C)∗·C

h · (Intω] Int∗ · F)

Since Tab and T̃ab functions coincide on Int\C, we can show by induction that for any n ∈ N,

• If An = s · (Int\C)n · (Intω] Int∗ · F), then PσG(An) = Pσ̃G̃(An). (An)n is a decreasing

sequence whose limit equals s · (Int\C)ω, hence PσG(s · (Int\C)ω) = Pσ̃G̃(s · (Int\C)ω);

• For any h ∈ s · (Int\C)n · F, PσG(h) = Pσ̃G̃(h);

• For any h ∈ s · (Int\C)nC, let A = h · (Intω] Int∗ · F), then PσG(A) = Pσ̃G̃(A) (or

PσG(h) = Pσ̃G̃(h) when using usual shorthand notations).

We conclude by applying the total probability formula:

EσG(φ | s) =
∑

h∈s·(Int\C)∗·F

EσG(φ | h)︸ ︷︷ ︸
Eσ̃
G̃

(φ | h)

·Pσ̃(h)︸ ︷︷ ︸
Pσ(h)

+
∑

h∈s·(Int\C)∗·C

EσG(φ | h)︸ ︷︷ ︸
Eσ̃
G̃

(φ | h)

·Pσ̃(h)︸ ︷︷ ︸
Pσ(h)

= Eσ̃G̃(φ | s)

Same reasoning applies to σ̃[i/σ′i] for any i ∈ Agt and any deviation σ′i ∈ Si.

Thanks to this proposition, we restrict our analysis to the case of cycle-free games. In this
context, we aim at developping an equilibrium concept that is ensured for cycle-free games,
and that can be later extended to arbitrary games.

60

CHAPTER 5. GAMES THAT ALMOST-SURELY TERMINATE

s1 s2

t1 t20, 3 3, 0

a†

b†

†a

†b

aa,bb

ab,ba aa,bb ab,ba

Figure 5.2 – Example of an arena with some exiting actions

5.1.2 Strong components

The main argument of our existence theorem relies on the structure of the strategy profiles,
which can be forced to terminate the game, even in the presence of deviations. We define
in this section a set of constraints we impose on our strategies. These constraints should
be tight enough for the game to terminate, thus implying the existence theorem of a stable
profile, but should also be loose enough to allow “interesting” deviations.

Definition 5.4. Let C be a non-empty set of non-terminal states of A, and σ ∈ M be a
stationary strategy profile. We say that σ stabilizes C if for every s ∈ C, for every s′ ∈ States,
Pσ(States∗ · s′ | s) > 0 if, and only if, s′ ∈ C. When such a profile exists for C, we say that C
is a strong component, and write SC the set of strong components.

Notice that for defining the stabilization property, one could equivalently require the
probability to be equal to 1, as C would be a recurring set under Pσ.

Definition 5.5. Let C ∈ SC be a strong component, and s ∈ C. An action a ∈ Act is an
exiting action from C for a state s and player i if there exists σ ∈ S that stabilizes C such
that:

Pσ[i/(s 7→a)] (s · (States \ C)) > 0.

We set Exit(C) = {(a, i, s) | a is an exiting action from C for a state s and player i}.
As an illustration, let us consider Figure 5.2, whose game has two strong components:

Exit({s1, s2}) = {(b, 1, s1), (b, 2, s2)} Exit({t1, t2}) = {a, b} × {1, 2} × {t1, t2}

5.1.3 Fixed point analysis

We now restrict the set of strategy profiles in which we search for equilibria. Under this
restriction, we will show that each play almost-surely reaches a final state, which will provide
the main argument for the existence of a “stable strategy profile”, that is yet to be defined.

For the rest of this section, we assume that A is cycle-free, hence for any C ∈ SC,
Exit(C) 6= ∅.

Definition 5.6. Let ε > 0. For every strong component C ∈ SC, we define the set of
(ε, C)-exiting stationary strategy profiles as follows:

∆ε(C) = {σ ∈M | ∀(a, i, s) ∈ Exit(C) σi(a | s) ≥ ε}

We also let ∆ε =
⋂
C∈SC ∆ε(C).

61

5.1. AVOIDING CYCLING BEHAVIOURS

Note that, to be properly defined (non-empty), ∆ε requires the assumption that the game
arena is cycle-free:

Lemma 5.7. For all ε ≤ 1
][Act] and A cycle-free, it holds ∆ε 6= ∅.

Proof. Consider the stationary strategy profile σu which makes each player play uniformly at
random over the set of allowed actions, at each state.

For any C ∈ SC, since Exit(C) is non-empty, this strategy profile is in ∆ε(C). Hence
σu ∈ ∆ε.

Under a strategy profile of ∆ε, almost-sure reachability of a final state is ensured, but
even more precisely, the probability to reach a final state, after a finite number of steps, is
bounded from below by a positive constant:

Proposition 5.8. Assume ε > 0. Then there exist 0 < p < 1 and k ∈ N such that for every
σ ∈ ∆ε, for every s ∈ States, for every n ≥ 0, Pσ(Statesk·n · Fω | s) ≥ 1− pn.

We remark that under different hypothesis, the conclusion of this proposition is similar to
the one of [SS01, lemma 2.1, p483] for stay-in-a-set games. The proof is a direct consequence
of the following lemma:

Lemma 5.9. Let ε > 0 and X ⊆ States\F. For every s ∈ X, there exists psX > 0 such that
for every σ ∈ ∆ε, Pσ(X≤][X] ·X | s) ≥ psX .

Proof. Notice first that for any σ ∈ M, the absence of memory ensures that Pσ(X≤][X] ·X |
s) > 0 if, and only if, Pσ(X∗ ·X | s) > 0.

Assume that this were not the case: that is to say, for any k, there exists σk ∈ ∆ε such
that

Pσ
k
(X≤][X] ·X | s) < 1

k
.

One can assume by extraction that σk converges to some σ ∈ ∆ε (∆ε is compact).
By continuity, we get

Pσ(X≤][X] ·X | s) = 0

Hence, Pσ(X∗ ·X | s) = 0.
Let s0 ∈ X be such that Pσ((X∗s0)ω | s) > 0, that is to say one of the states that

can appear infinitely often with positive probability under σ from s (it is in X due to
Pσ(X∗ ·X | s) = 0). We consider C ⊆ X minimal subset containing s0 and such that if
s1 ∈ C and Pσ(s1s2 | s1) > 0 then s2 ∈ C. One can verify that such a set is a strong
component stabilized by σ. However, σ ∈ ∆ε hence a contradiction (by definition of ∆ε).

Our proof will rely on the following well-known fixed-point theorem, that we will apply
to a well-adapted set of strategy profiles.

Theorem 5.10 ([Kak41]). Let X be a non-empty, compact and convex subset of some Eu-
clidean space. Let f : X → 2X be a set-valued function on X with a closed graph and the
property that f(x) is non-empty and convex for all x ∈ X. Then f has a fixed point.

A Nash equilibrium σ can be characterized as a strategy profile such that for each player i,
σi lies in the set of the best-response strategies against the other players, denoted by BRi(σ).
By extension, the best-response function, which returns the profile of sets of best-responses
for a given strategy profile, is written BR and its possible fixed points correspond to the Nash
equilibria of the game ([Nas50]).

62

CHAPTER 5. GAMES THAT ALMOST-SURELY TERMINATE

Remark 5.11. Nevertheless, for games over graphs, continuity of this best-response function
is not ensured. More precisely, the graph of the function is not closed. Let us consider for
example the game of Figure 5.1, and write any stationary strategy profile σ in this game as
the tuple (σ1(s | 1), σ2(s | 2)). Then, if one player decides to stop the game with any positive
probability, the other player has all incentive to deterministically continue the game, until
reaching the terminal state (almost-surely), hence: BR((x, y)) = {(0, 0)} for every x, y > 0,
where BR denotes the best-response function. In particular, let (xn)n (yn)n two sequences of
positive probability numbers, both converging to 0, and let σ′n ∈ BR((xn, yn)) for any n. Then
σ′n equals (and converges to) (0, 0). However, if one player decides to continue the game with
probability 1, the only way to win some positive payoff 1/3 is to play the stopping action with
positive probability, hence: BR((0, 0)) = {(x, y) | x, y > 0}. We conclude that the graph is
not closed, so Theorem 5.10 cannot apply to the best-response function in this strategy profile
space. This is not surprising as we know that Nash equilibria need not always exist (recall the
example given in Figure 1.2).

In the following we will see that the (standard) best-response function will fit well in our
setting, with strategy restrictions:

Definition 5.12. We consider T ⊆M a subset of stationary strategy profiles. Let BRT : T →
2T with

BRT (σ) =
{
σ′ ∈ T

∣∣∣ ∀i ∈ Agt. ∀s ∈ States. σ′i ∈ argmaxσ′′i s.t. σ′[i/σ′′i]∈T Eσ[i/σ′′i](Φi | s)
}

Note that BRM is the usual notion of best response function.
The fundamental application of Theorem 5.10 combined with our study of almost-sure

termination is given below:

Lemma 5.13. Assume that A is cycle-free and 0 < ε ≤ 1
][Act] . Then BR∆ε has a fixed point.

Proof. We show that Theorem 5.10 applies:

• First notice that T = ∆ε can be viewed as a non-empty compact convex subset of
RN where N = Act × Agt × States. Moreover, T can be decomposed in a product of
individual strategy sets for each player T = T1 × . . . T][Agt] where

∀i ∈ Agt Ti = {σi | ∀(a, s) (a, i, s) ∈ Exit(C)⇒ σi(a | s) ≥ ε}
Hence, for every (σ, σ′) ∈ T 2, and i ∈ Agt, we still have σ[i/σ′i] ∈ T .

• Let k and p be the constants appearing in the statement of Proposition 5.8. For every
n ≥ 0, we define gn for the function assigning to every pair of strategy profiles (σ, σ′) ∈
T 2 the following vector in RAgt×States: k·n∑

j=0

∑
f∈F

Pσ[i/σ′i]
(
(States \ F)j · f | s

)
· νi(f)

i∈Agt,s∈States

Then, we obviously see that for every (i, s) ∈ Agt × States, limn→∞ gn(σ, σ′)i,s =
Eσ[i/σ′i](Φi | s). Furthermore, as an application of Proposition 5.8, we get:

|Eσ[i/σ′i](Φi | s)− gn(σ, σ′)i| ≤ K · pn

where K = maxi∈Agt,f∈F |νi(f)|. This implies that the above convergence is indeed

uniform, and that g∞ : (σ, σ′) 7→
(
Eσ[i/σ′i](Φi | s)

)
i,s

is therefore continuous on T 2.

63

5.2. EQUILIBRIA UNDER IMPRECISE DEVIATIONS

• Let us now show that the graph of BRT is closed. In order to do so, we consider a
converging sequence of strategy profiles (σk)k>0 with limit σ∞ and for each k > 0,
σ′k ∈ BRT (σk) converging to σ′∞. We will prove that σ′∞ ∈ BRT (σ∞). For a fixed

σ′, we have Eσk[i/σ′i](Φi | s) ≤ Eσk[i/σ′ki](Φi | s), hence by continuity, Eσ∞[i/σ′i](Φi | s) ≤
Eσ∞[i/σ′∞i](Φi | s).

• It remains to show that BRT (σ) is convex. We fix i ∈ Agt and show that (BRT (σ))i
is convex hence the result. Let 0 < λ < 1 and σ′, σ′′ ∈ BRT (σ): this means that both
vectors (Eσ[i/σ′i](Φi | s))s and (Eσ[i/σ′′i](Φi | s))s are maximal, and equal to some vector
mi. Indeed, if two different maximal vectors exist, we take the combined strategy that
uses best action in each state, this new strategy is still in Ti.

By convexity of T = ∆ε, σ
λ = σ[i/λ ·σ′i + (1−λ) ·σ′′i] ∈ T , so ∀s, Pσλ(States∗F | s) = 1.

This implies that the payoff vector (Eσλ(Φi | s))s is the unique solution of the equation

∀f ∈ F Eσ
λ
(Φi | f) = νi(f)

∀s /∈ F Eσ
λ
(Φi | s) =

∑
s′

Tab(s, σλ(s))(s′)Eσ
λ
(Φi | s′)

=
∑
s′

[
λTab(s, σ[i/σ′i](s)) + (1− λ)Tab(s, σ[i/σ′′i](s))

]
(s′) · Eσλ(Φi | s′)

On the other hand, mi satisfies the following equation:
∀f ∈ F mi,f = νi(f)

∀s /∈ F mi,s =
∑
s′

Tab(s, σ[i/σ′i](s))(s
′)mi,s′ =

∑
s′

Tab(s, σ[i/σ′′i](s))(s′)mi,s′

We can check that (Eσλ(Φi | s))s∈States = mi is a valid solution, hence the actual value,
so σλi ∈ BRT (σ)i.

5.2 Equilibria under imprecise deviations

We have proven that the best-response function admits a fixed point, when restricting the
strategy profiles to subset ∆ε. This set is somehow close to the whole class of memoryless
strategies, as ε goes to 0: intuitively, the “volume” of strategy spaces M and ∪ε>0∆ε are
equal.

However, such restriction does not allow us to prove the existence of a Nash equilibrium:
for a given fixed point σ ∈ ∆ε of BRε, and a deviation σ′i ∈ Mi of player i, it is not guar-
anteed that σ[i/σ′i] ∈ ∆ε. Nonetheless, there exists another deviation σ′′i ∈ Mi such that
σ[i/σ′′i] ∈ ∆ε, which is close to σ′i. More precisely, σ′′i and σ′i can differ from each other by at
most ε for each involved probability value.

Thanks to this observation, we introduce the following equilibrium concept, where devia-
tions are required to have a certain form of robustness:

Definition 5.14. An equilibrium under ε-imprecise deviations from state s0 is a strategy
profile σ ∈ S such that:

∀i ∈ Agt. ∀σ′i ∈ Si. ∃σ′′i ∈ Si s.t. Eσ[i/σ′′i](Φi | s0) ≤ Eσ(Φi | s0) and d(σ′i, σ
′′
i) ≤ ε

64

CHAPTER 5. GAMES THAT ALMOST-SURELY TERMINATE

where d(σi, σ
′
i) is the supremum distance between the two distributions:

d(σi, σ
′
i) = sup

h∈States+,a∈Act
|σ(a | h)− σ′(a | h)|

The intuition behind that definition is that, to have an incentive to deviate, a player
should ensure to improve her payoff, even if her deviation is perturbed by ε (this corresponds
to some noise the other players can add, or to a lack of precision in playing distributions).
Said differently, a deviation is only considered profitable when all the surrounding (up to a
distance of ε) strategies are also profitable.

5.2.1 Restricting to memoryless deviations

The notion of equilibria under imprecise deviations has been introduced in a very general
setting with arbitrarily strategies and deviations. Lemma 5.13 provides the existence of a
memoryless strategy profile, that is resilient to memoryless deviations, even when perturbed
by a distance ε, in a memoryless manner. In other words, previous fixed-point lemma cannot
directly conclude on the existence of an equilibrium under imprecise deviations.

Intuitively, we can even wonder if we can, as in the case of a memoryless Nash Equilibria,
only consider pure memoryless deviations, which are in finite number. This subsection is
devoted to this question, through the proof of the following key lemma:

Lemma 5.15. Let s0 be a state of a stochastic concurrent game G with terminal-reachability
payoffs. For any stationary strategy profile σ ∈ M, it holds: σ is an equilibrium under ε-
imprecise deviations from s0 if, and only if,

∀i ∈ Agt. ∀σ′i ∈Mi. ∃σ′′i ∈Mi. d(σ′i, σ
′′
i) ≤ ε ∧ Eσ[i/σ′i](Φi | s0) ≤ Eσ(Φi | s0)

In other terms, it is sufficient to consider memoryless deviations when checking if a stationary
strategy profile is an equilibrium under imprecise deviations.

We prove this lemma by considering an intermediate 2 + 1/2-player game to represent
deviations of player i and her counter-deviations at distance ε.

Let G a game, σ a stationary strategy profile and i ∈ Agt a player. We write G 〈σ〉−i for
the 1+1/2-player game obtained from G by assigning to all players, but player i, her strategy

in σ. Note that for any σ′i ∈ Si, we have Eσ[i/σ′i]
G (Φi | s) = Eσ

′
i

G〈σ〉−i
(Φi | s) In the following,

we are mainly interested in the possible ε-imprecise deviations of player i alone in this new
game.

In order to make the reduction clear, we consider in the following the particular case of
games where each player is allowed at most two actions. When exactly two distinct actions
are allowed, they will be noted a and b. The general case will be discussed in Remark 5.20.

For a stationary profile σ, we consider the 1 + 1/2-player game G 〈σ〉−i as defined above
(with player i alone, all other strategies being fixed) and construct a 2 + 1/2-player turn-
based game with an additional antagonistic player î, whose role is to “change” the strategy
of player i by a distance at most ε. Formally, for any state s where player i has two allowed
actions a and b (resulting in distributions δ(s, a) and δ(s, b), resp.), we modify the game as
follows:

• from s, player i is given the opportunity to move to one of the following four states:
(s, [0, ε]), (s, [0, 2ε]), (s, [1− 2ε, 1]) and (s, [1− ε, 1]).

65

5.2. EQUILIBRIA UNDER IMPRECISE DEVIATIONS

(ŝ, [α, β])

Tab(s, a) Tab(s, a)Tab(s, b)

a b

α
1−
α β1
− β

(a) Simple (ŝ, I) node with I interval of
[0, 1] played by î, ensuring any distri-
bution pTab(s, a) + (1− p)Tab(s, b) for
any p ∈ I, hence a deviation range I.

s

(ŝ, [0, ε]) (ŝ, [1− ε, 1])

(ŝ, [1− 2ε, 1])(ŝ, [0, 2ε])

(b) Replaced node s, where i can choose between 4
ranges of probabilities to play action a.

Figure 5.3 – Translation of a node s with initial allowed actions a and b.

ε

0 ε

2ε

δ(a)

δ(a) + ε

δ′(a)

0 ε

2ε

δ(a)

δ′(a)− δ(a)

ε+ δ′(a)− δ(a)

δ′(a)

Figure 5.4 – Intuition of the construction for δ(a) ≤ ε: seeing δ(a) as a convex combination
of 0 and ε, we obtain δ′(a) as the same convex combination of the black dots.

• from each state (s, [α, β]), player î has two actions, leading to distributions α·Tab(s, a)+
(1 − α) · Tab(s, b) and β · Tab(s, a) + (1 − β) · Tab(s, b), respectively. If player î plays
action a with probability p, then the final distribution is [pα + (1 − p)β] · Tab(s, a) +
[(1− p)(1− α) + p(1− β)] · Tab(s, b).

For a 1 + 1/2-player game G for i, we denote by Ĝε the previous transformation. Our
aim is to provide a correspondence between (stochastic) moves of player i from s in G, and
her move from the corresponding state ŝ in Ĝε. Our notion of correspondence is defined as
follows:

Definition 5.16. Let σi, σ
′
i ∈ S two strategies for the 1 + 1/2-player game G (played by i)

such that d(σi, σ
′
i) ≤ ε, and σ̂ a strategy profile in Ĝε. We say that (σi, σ

′
i) corresponds to σ̂

if the following holds for any history ĥ ending in state s of Ĝε:

Tab(s, σ′i(πStates(ĥ))) = T̂ab(s, σ̂(ĥ))

where πStates(h) is the projection on the letters corresponding to the original states States.

We now make explicit the purpose of the construction by establishing a correspondence
between strategies in the original game and strategies in our 2 + 1/2-player version.

Lemma 5.17. For any σi strategy of G, there exists a strategy σ̂i in Ĝε for player i, such
that, for any strategy σ′i of G with d(σi, σ

′
i) ≤ ε, there exists σ̂î such that (σi, σ

′
i) corresponds

to σ̂.

66

CHAPTER 5. GAMES THAT ALMOST-SURELY TERMINATE

Moreover, any pure memoryless strategy profile of Ĝε corresponds to some pair of strate-
gies (σi, σ

′
i) in G where σi is pure memoryless and σ′i is stationary.

The constructed game is a turn-based stochastic game with a quantitative terminal reach-
ability objective, which can be interpreted as a special case of limit-average objective. Hence,
thanks to a result of [LL69], such a game is determined with pure memoryless optimal strate-
gies for both players.

As a consequence of this construction, we can infer two possible characterizations of
imprecise deviations in stationary profiles:

Corollary 5.18. The value of Ĝε at state ŝ can be expressed as the following quantity on
game G:

sup
σ∈MG

inf
σ′∈MG
d(σ,σ′)≤ε

Eσ
′
(Φi | s)

Corollary 5.19. A stationary strategy profile σ ∈ MG in G is an equilibrium under ε-
imprecise deviations from state s0 if, and only if,

∀i ∈ Agt. ∀σ′i ∈MGi . ∃σ′′i ∈MGi s.t. Eσ[i/σ′′i](Φi | s0) ≤ Eσ(Φi | s0) and d(σ′i, σ
′′
i) ≤ ε

Remark 5.20. One can notice the construction of the deviation game and inferred results
have been applied to states with only two allowed actions. In fact, the same reasoning can be
generalized to an arbitrary number of allowed actions at the expense of an exponential blowup:
player i has to announce simultaneously, for each allowed action a, if its probability in the
expected distribution will be larger than ε and/or smaller than 1− ε. Note however that for a
given fixed bound on the number of actions, the size of Ĝε is still polynomial.

5.2.2 Existence theorem

We finally conclude with the following existence theorem of an ε-imprecise:

Theorem 5.21. Let G be a stochastic concurrent game with terminal-reachability payoffs, and
let s0 be a state of G. For every ε > 0, there always exists an equilibrium under ε-imprecise
deviations from state s0.

The proof consists in compiling together the several previous results:

Proof. We first consider a cycle-free game G̃ obtained from G through Proposition 5.3.

Let ε′ = min(1/] [Act] , ε). Let us consider a fixed-point σ̃ ∈ SG̃ of BR∆ε′ , which exists
thanks to Lemma 5.13.

Such a profile σ̃ is an equilibrium under ε′-imprecise deviations from every state s, thanks
to Corollary. 5.19. Since ε′ ≤ ε, this is also an equilibrium under ε-imprecise deviations.

Finally, we apply last implication of Proposition 5.3 to σ̃ to obtain an equilibrium under
ε-imprecise deviations of G.

67

5.3. COMPUTING STATIONARY EQUILIBRIA UNDER IMPRECISE DEVIATIONS

0, 0 1, 0

s

aa, ab, ba bb

σ1(a | s) = 1
σ2(b | s) = ε

Figure 5.5 – A game with an ε-Nash equilibrium which is not an equilibrium under
ε′-imprecise deviation, for any ε′ > 0.

5.2.3 Discussions

We discuss the newly introduced notion of equilibrium under ε-deviation and compare it to
ε-Nash equilibrium as introduced in [CJM04].

Both notions generalizes Nash equilibria, that is to say any Nash equilibrium is both an
ε-Nash equilibrium and an equilibrium under ε-deviation.

First of all, consider the game of Figure 5.5, and the strategy profile (σ1, σ2): the payoff is
then (0, 0), and player 1 can improve her payoff by ε by playing action b from s. So (σ1, σ2)
is an ε-Nash equilibrium but not an equilibrium under ε-imprecise deviations: any strategy
at distance ε from σ′1 strictly improves the payoff of player 1.

In the previous game of Figure 5.1, the strategy profile where each player plays s with
probability ε yields payoffs 1− 2/(6− 3ε) for player 1 and 1− (2− 2ε)/(6− 3ε) for player 2
from the initial state. It is an equilibrium under ε-imprecise deviations. The only way to
really improve the payoff for a player is to play with higher probability action c. But with the
lack of precision, she might lose some payoff anyway. The payoff values get arbitrarily close
to 2/3 as ε goes to 0. Such an equilibrium is neither a Nash equilibrium, neither a ε-Nash
equilibrium, since the pure deviation c allows an improvement of almost 1/3.

This concludes that the two concepts are incomparable.

Remark 5.22. For any ε > 0 small enough, there exists σε ∈ M fixed point of BR∆ε. As ε
goes to 0, one can extract a converging sequence of (σε)ε, whose limit can be denoted by σ0.

When G is a one-shot game, one can prove that σ0 is still a fixed point of BR∆0 = BRM,
that is to say σ0 is a Nash equilibrium. Such particular Nash equilibrium is called trembling-
hand equilibria (in [Sel75]) because of its extra properties. However, this converging procedure
does not work anymore in the sequential games framework, as depicted again on Figure 5.1
and strategy profile where each player exits with probability ε. At the limit, strategy profile σ0,
which stays in the game almost-surely, is not a Nash equilibrium.

An interesting open question consists in restricting again the strategy space M in order
to force convergence to a trembling-hand Nash equilibrium, if any. As a matter of fact, such
proof may require additional assumptions on G, as some games require finite memory for a
Nash equilibrium to exist (see [Umm10]), so looking at an equilibrium in M may fail otherwise.

5.3 Computing stationary equilibria under imprecise devia-
tions

We describe a polynomial-space algorithm for computing stationary equilibria under imprecise
deviations for non-negative terminal reward games. A similar proof for Nash equilibria in

68

CHAPTER 5. GAMES THAT ALMOST-SURELY TERMINATE

turn-based stochastic games is given in [UW11c]. We briefly describe the latter proof, which
will help understand our current encoding.

The algorithm proceeds by encoding a Nash Equilibrium as an existential first-order for-
mula over the reals, whose satisfiability can be decided in PSPACE. The formula quantifies
over all stationary strategy profiles and payoffs at each state, and expresses that:

1. the strategy profile σ under consideration is properly defined;

2. the payoff in each state corresponds to the real payoff of the strategy profile;

3. for any i, player i cannot benefit from deviating in G 〈σ〉−i.

These properties cannot, in general, be expressed locally, but in the setting of [UW11c], one
can first, non-deterministically, guess the support of the strategy. On the one hand, this
allows us to compute (in linear time) the set of states from which F is never reached. Those
states have payoff 0 for all agents, and the payoff in the other states (from which F is reachable
with some positive probability) can be expressed as a combination of the payoff values of the
successor states and the (local) strategy profile. On the other hand, we can also compute
(still in linear time) the set of states that are reachable from s0. It is easy to see that player i
has an incentive to deviate if, and only if, her payoff can be increased by deviating locally
from such a reachable state. Hence we can express stability of the Nash Equilibrium as a
(polynomial size) conjunction of inequalities.

Another way of expressing this stability property is by saying that for any player i,
s0 should yield a payoff in the equilibrium that is larger than the optimal value vi(s0) in
the Markov decision process representing the possible deviations of player i, namely G 〈σ〉−i.
Since the initial guess can be done in NPSPACE and the generated formula is of polynomial
size, the whole algorithm runs in PSPACE.

In the case of equilibria under ε-imprecise deviations, we apply a similar technique but

deviations are now to be considered as strategies for player i in Ĝ 〈σ〉−i
ε

against the worst

strategies of player î. In fact, we want to check that s0 has a payoff (in the equilibrium)
larger for player i than the maximal value she could get by imprecisely deviating. Thanks to

Corollary. 5.18, this optimal value is the same as in Gi = Ĝ 〈σ〉−i
ε
, denoted by vε,i(s). In order

to compute these values for each game Gi, we non-deterministically compute optimal strategies
for players i and î. These strategies can be supposed to be pure memoryless. In order to

do so, we first guess a strategy for player i in the game game Ĝ 〈σ〉−i
ε
. Without knowing the

exact probability values of this game (which depends on σ), we can still derive its structure
since the support is known, thus we can compute the set of states for which player î can
totally spoil i’s payoff, that is, enforce a non-terminating run; such a run has payoff 0, which
is optimal for player î. We later guess a pure memoryless strategy for player î keeping in
mind that î has to play such a cycling strategy from any state where she is able to. From the
other states, for which player i can still ensure positive probability to terminate, the value of
the game can again be expressed locally as a combination of the guessed strategy profile and
the values of the successor states. As for the previous algorithm for Nash Equilibrium in G,
the optimality of both strategies can be expressed as stability by local deviations. Finally,
stability by imprecise deviations in G consists in coding the fact that payoff in G for player i
should be larger than the optimal value vε,i(s0).

We now make precise the result and the algorithm.

69

5.3. COMPUTING STATIONARY EQUILIBRIA UNDER IMPRECISE DEVIATIONS

Theorem 5.23. Let k > 0. Let G = (A,Φν) be a stochastic concurrent game with non-
negative terminal rewards with] [Act] ≤ k. Let s0 ∈ States and ε > 0. For every i ∈ Agt, we
fix xi, yi ∈ R+ two real numbers. We can decide in PSPACE whether there is a stationary
equilibrium under ε-imprecise deviations σ from s0, such that for every i ∈ Agt, xi ≤ Eσ(Φi |
s0) ≤ yi.

Remark 5.24. The previous theorem can be applied to compute some equilibria in the case
of negative payoffs by considering the new payoff function ν ′ = ν − min ν ≥ 0. However,
φ′ = Φν−min ν and Φν′ coincide only on runs that reach a final state since φ′ assigns positive
value −min ν to non-terminating runs. A possible work-around is to first compute the cycle-
free arena Ã and exiting conditions ∆ε, whose size is bounded by the number of pairs (a, i, s) ∈
Act× Agt× States. Then we can apply the previous theorem on game 〈Ã,Φν′〉 with the extra
formula σ ∈ ∆ε. Thanks to this last constraint, we ensure that the run always terminates, thus
the payoff functions coincide. Finally we conclude the computation by applying Proposition 5.3
to get back an equilibrium on G.

70

Part II

Parametrized Stochastic Systems

71

72

Chapter 6

Interaction models

In the first part, we studied systems with a fixed finite number of agents, that have in each
round arbitrary interactions. Such agents may have different roles, objectives and strate-
gies. Moreover, as noticed before, introducing partial information may lead to undecidability,
therefore our previous model allows all agents to have a complete view (apart from action
visibility) of the current global state.

We may argue that more realistic models should include more structural properties,
namely:

• All agents, except possibly one, for the environment, a server or some other leader
mechanism, should have a similar structure, entailing some symmetry for the global
system.

• Interaction and communication between agents should have some particular structure.

• Agents should be aware of their own current state only, and only be able to deduce
others’ statuses thanks to interaction and communication.

• Even the number of initial agents should a priori be unknown, potentially large.

In this part, we are mainly interested in verification problems on such systems, although
we keep in mind strategy synthesis as a further goal. Since interaction between agents is
encoded with a particular structure, we usually refer to such systems as protocols (instead of
games) composed of processes (instead of agents).

Parametrized verification: a global picture. When dealing with several identical
processes, the naive approach based on building, by composition, the concrete system for
a fixed number of processes then applying classical analysis techniques can be replaced by
more clever techniques based on symmetry reduction, as shown in [ES96], which focuses on
verification of symmetric systems.

However, as pointed out by the fourth requirement, the number of processes is not fixed a
priori, so these techniques only provide partial answers for our systems, where the number of
processes can be a parameter. Therefore, we switch to another setting where we want to solve
verification for parametrized systems. In such a parametrized setting, the natural question is
to characterize the set of parameter values for which the system is correct.

Although the problem may seem to be harder in general, it allows us to consider large
parameter values for which we may reach limit behaviours. When such a limit is reached,

73

answering verification and synthesis questions becomes easy as it suffices to compute the
answers for a finite number of parameter values up to some limit parameter.

Moreover, not only the latter approach is more general, but it might also turn out to
be easier and more efficient, since large parameters may involve regularity properties in our
model. For example, adding more and more agents in a system may result in a kind of
saturation mechanism ensuring that each action can always be performed by at least one
process. Such concepts are usually related to upward closure, as described in Section 2.4 of
Chapter 2.

More formally, we are interested in determining the existence of a cut-off for a property
ϕ, i.e., an integer N such that a system composed with more than N processes, ensures
property ϕ.

Network of protocols. The presence of a leader often makes computation harder as it
can ensure some additional synchronization mechanisms, so models that avoid its election may
allow easier computations. Moreover, when the election mechanism can be generalized, we
can imagine each agent to get its own identity, which usually leads to undecidable problems.
For example, we can think of a system that allows each agent to encode one cell of the tape
of a Turing machine, and be able to communicate (addressing) to its next and previous cell
tape.

Processes may also be restricted to communicate within some communication graph.
When topology does not correspond to a complete graph, broadcast communication with
neighbours does not allow every process to receive a message. Therefore, some topologies
may allow processes to earn identities, hence implying undecidability. However, we can usu-
ally recover decidability by allowing the communication topology to be unreliable, or to change
over time as in [BFS14]. In this context, allowing reconfiguration of a message-passing com-
munication network will usually be equivalent to considering shared register with non-atomic
operations. This dual view of our protocols explain why such systems will be later abusively
named networks.

Different means of communication. Literature on parametrized verification intro-
duces several models that usually vary by the choice of interaction scheme between processes.
In his nice survey on parametrized models [Esp14], Esparza shows that minor changes in the
setting, such as the presence of a controller in the system, might drastically change the com-
plexity of the verification problems. Nonetheless, he summarizes the communication classes
in the following four groups with decreasing expressivity:

• Broadcast communication;

• Shared register with atomic operations (locking);

• Rendez-vous communication;

• Shared register with (only) non-atomic operations.

Intuitively, two main models exist either based on message passing, or on shared variable
accesses. Differences between these classes occur when looking at their ability to ensure that
an information has been transmitted (last class cannot ensure such property) and whether
the system can elect a leader (only two first classes can do so), which means some agent is
eventually differentiated from the others.

74

CHAPTER 6. INTERACTION MODELS

Further analysis of the relative expressiveness of some of those models can be found
in [ARZ15], yielding several reductions of the verification problems for some of those classes
of models.

A seminal paper on parametrized verification of such distributed systems is the work of
German and Sistla [GS92]. In this work, the authors consider networks of processes all fol-
lowing the same finite-state automaton; the communication between processes is performed
thanks to rendez-vous communication. Various related settings have been proposed and stud-
ied since then, which mainly differ by the way the processes communicate. Among those, let
us mention broadcast communication [EFM99, DSZ10], token-passing [CTTV04, AJKR14],
shared register with ring topologies [ABG15], or shared memory [EGM13, DEGM15].

Asynchronous shared-memory systems. We consider a communication model where
the processes asynchronously access a shared register, and where read and write operations
on this register are performed non-atomically, i.e. one transition can only perform a read or
write operation at a time. A similar model has been proposed by Hague in [Hag11], where
the behaviour of processes is defined by a pushdown automaton. The complexity of some
reachability and liveness problems for shared-memory models have then been established
in [EGM13] and [DEGM15], respectively. These works also consider networks with a specific
distinguished process, called the leader, which runs a different program, from the beginning,
and address the problem whether, for some number of processes, the leader can satisfy a given
reachability or liveness property. In the case where there is no leader, and where processes
are finite-state machines, the parametrized control-state reachability problem (asking whether
one of the processes can reach a given control state) can be solved in polynomial time, by
adapting the approach of [DSTZ12] for lossy broadcast protocols.

Example: network of sensors. As discussed before, such model is the weakest on
the scale of communication mechanisms. For example, lack of atomicity does not allow our
processes to implement mutual exclusion. However, we argue that this model still contains
interesting questions.

As an illustration, let us consider a system composed of several small devices, for example
sensors in a room, that report their data to a central receiver, through a wireless protocol. The
wireless technology allows several communication channels (11 for example for 2.4Ghz WiFi).
Because of short distance considerations, we can assume that radio resources are totally shared
among sensors. The situation is depicted as a small C multi-threaded program, presented in
Figure 6.1. When a sensor starts emitting on a channel i, it sends a particular message saying
that channel i is in use, then the data, then another message saying that channel i is now
free. A sensor usually tries to avoid sending data on a channel that is already in use, however,
it has very low computation capacity and between the instant where it checks that a channel
is not in use, and the instant where it effectively decides to emit, some other process may
decide to transmit too, which results in data collision.

Sensors are not capable of avoiding such collisions, but can always try to change their
channel in order to use all the radio resources. In this example, we may consider the following
properties:

• Coherence: at any time, for all i ∈ [0, 10], if t[i] = 1, there exists at least one thread-
/process transmitting on channel i.

75

1 // An array o f c u r r e n t l y used channe l s
2 int t [1 1] = {0} ;
3
4 void thread () {
5 // S e l e c t e d channel f o r curren t thread
6 int i = 0 ;
7
8 while (1) {
9 i f (t [i] == 0) {

10 t [i] = 1 ;
11 // Actual t ransmiss ion
12 t [i] = 0 ;
13 } else i f (rand () < P) { // Branching wi th p r o b a b i l i t y P
14 i = (i +1) % 11 ;
15 }
16 }
17 }

Figure 6.1 – Simple specification of wireless sensors (seen as threads) communicating through
eleven radio channels. P is a constant between 0 and 1 describing the probability to switch
to next channel if current one is already used.

• Optimality : all channels are eventually used.

• Repeated optimality : all channels are used infinitely often.

The resulting system is of course stochastic as there is some constant probability to switch
to next channel if the current one is in use. Moreover, the composition of the multiple sensors
is also non-deterministic, and may induce some stochastic behaviours. More formally, we con-
sider the transcription of the program into a finite automaton, as depicted in Figure 6.2, with
input alphabet Σ = {Ri (d) ,Wi (d) | i ∈ [0, 10], d ∈ {0, 1}}. A non-deterministic semantics
is usually given, as in [EGM13], on a language theoretical approach, by considering the shuf-
fling of an arbitrary number of words accepted by the process automaton, then intersected
with the language of words over Σ∗ that are consistent with the shared register (for example,
Wi (0) ·Ri (1) is not consistent).

We will adopt in the next chapter a more operational approach suited to the probabilistic
setting.

Non-determinacy, fairness and qualitative stochasticity In this second part of
the thesis, we further insert fairness assumptions in the model of parametrized networks
with asynchronous shared memory, and consider again terminal reachability problems in this
setting. There are different ways to include fairness in parametrized models: One approach is
to enforce fairness expressed as a temporal-logic properties on the executions (e.g., any action
that is available infinitely often must be performed infinitely often); this is the option chosen
for parametrized networks with rendez-vous [GS92] and for systems with disjunctive guards
(where processes can query the states of other processes) in [AJK16]. Another equivalent

76

CHAPTER 6. INTERACTION MODELS

0, 9011 i, 9

i, 10 i, 11

. . .

R
i
(0

)

Ri (1)

Ri−1 (1) Ri (1)

Wi (1)
W
i (0)R
0
(0

)

. . .

R0 (1)

R0 (1)
. . .

R10 (1) . . .

W
0 (0)

. . .

Figure 6.2 – Underlying (simplified) automaton for one thread of program of Figure 6.1. Each
possible state of the thread is modeled by a node containing the current value of local variable
i and current line number.

view consists in equipping our networks with a stochastic scheduler that, at each step of the
execution, assigns the same probability to the available actions of all the processes. From a
high-level perspective, both forms of fairness are similar.

However, notice that expressing fairness via temporal logic has to be done with care, as
some formulae may allow very regular patterns (e.g., round-robin execution of the processes),
whereas the stochastic approach always implies considering all possible interleaved runs with
probability 1.

77

78

Chapter 7

Parametrized register protocols

In this section, we define different categories of parametrized register protocols and provide
an operational semantics based on a transition system. This first semantics will allow us to
consider the reachability/safety problem, as studied in [EGM13] or [DEGM15], namely reach-
ability under a non-deterministic scheduler. We will then introduce a stochastic scheduler by
introducing probabilities on distribution and introduce stochastic properties to be studied.

First of all, we define the operations that can be operated on the shared register.

Definition 7.1 (Operations over a set). Let D be a set. We denote by Op (D) the set of
register operations, which are partial functions from D to D.
The exact definition domain of an operation f ∈ Op (D) is denoted by dom (f) ⊆ D.
Given two operations f, f ′ ∈ Op (D), the sequential composition f·f ′ is defined on dom (f · f ′) =
dom (f) ∩ f−1(dom (f ′)) by d 7→ f ′(f(d)).
For d ∈ D, W (d) and R (d) represent the following particular partial functions:

W (d) :

{
dom (W (d)) = D

d′ 7→ d
R (d) :

{
dom (R (d)) = {d}

d 7→ d

We denote by OpR,W (D) the set of such register operations and OpR,W (D)∗ its closure by
sequential composition.

Here W means write in the register a new value, no matter the current content of the
register, while R means read the content of the shared register. This last operation can only
be triggered if the correct value is already stored in the register.

Intuitively, we will define finite state automata over the alphabet Op (D). A protocol
will be given as two automata, the leader and the contributor, the last one being possibly
duplicated several times:

Definition 7.2. A register protocol is given by P = (Ql, Qc, D, d0, ql, qc, Tl, Tc), where

• Ql is a finite set of control locations for the leader;

• Qc is a finite set of control locations for the contributors, disjoint from Ql;

• D is a finite alphabet of data for the shared register, with initial data d0;

• ql ∈ Ql (resp qc ∈ Q) is an initial state for the leader (resp contributors);

• Tl ⊆ Ql ×Op (D)×Ql is a finite set of transitions of the leader;

79

7.1. NON-DETERMINISTIC TRANSITION SYSTEM

qlqc q1 q2 qf0
R(0)

W(1)

R(1)

W(2)

R(2)

W(2)

Figure 7.1 – Example of a leaderless non-atomic register protocol with D = {0, 1, 2} and
initial value 0. ql will usually be ommited for leaderless register protocols.

• Tc ⊆ Qc ×Op (D)×Qc is a finite set of transitions of the contributors.

Without further explicit precision, we will consider in the rest of the chapter a fixed
register protocol P = (Ql, Qc, D, d0, ql, qc, Tl, Tc).

Definition 7.3. We say that P is

• atomic if Tc ⊆ Qc ×OpR,W (D)∗ ×Qc and Tl ⊆ Ql ×OpR,W (D)∗ ×Ql;

• non-atomic if moreover Tc ⊆ Qc ×OpR,W (D)×Qc;

• leaderless if Tl = ∅.

Notice first that the leaderless concept is only relevant when dealing with non-atomic
protocols, as atomicity allows the election of a leader (start with extra data value ”not elected”
then first contributor to play jumps to ql by writing the actual initial value). Then, a non-
atomic register protocol is a particular case of atomic protocol, which is also a particular case
of register protocol.

Because of the monotonous properties we will describe later, we will be mainly interested
in non-atomic protocols. Hardness results will be developed in the leaderless non-atomic case.

The number of involved data values in any atomic register protocol is bounded by] [T].
This allows us to legitimately define the size of any atomic register protocol P by:

|P| =] [Qc] +] [Ql] +] [Tc] +] [Tl]

A graphical representation of a leaderless non-atomic protocol is depicted in Figure 7.1.

Remark 7.4. Notice we do not require our protocol to be complete. We say a protocol is
complete if for each state and each register value, there exists an operation defined for this
value, namely ∀q ∈ Qc

⋃
(q,f,q′)∈Tc dom (f) = D and ∀q ∈ Ql

⋃
(q,f,q′)∈Tl dom (f) = D.

7.1 Non-deterministic transition system

We now present the non-deterministic semantics of distributed systems associated with our
register protocols. We consider the asynchronous composition of the automaton of the leader,
with several copies of the contributor automaton, the number of copies is not fixed a priori
and can be seen as a parameter.

We immediately consider the following abstraction: for each contributor state q, we only
keep track of the number of processes in this particular state q. Namely, a configuration will
store a multiset of Qc, alongside the current state of the leader and the current memory data.
This abstraction will reveal to be conceptually sound, as the copies will be indistinguishable,
and will allow us to later consider easier comparison relations over configurations.

80

CHAPTER 7. PARAMETRIZED REGISTER PROTOCOLS

Definition 7.5 (Transition system associated with P). We define the transition system
(Γ,→) in the following way:

• Γ = Ql × NQc ×D is the set of configurations;

• (q, µ, d)→ (q′, µ′, d′) if there exists f ∈ Op (D) with d ∈ dom (f), d′ = f(d) and

– either (q, f, q′) ∈ Tl, µ = µ′;

– or q = q′ and there exist q1 ∈ µ and q2 ∈ µ′ such that (q1, f, q2) ∈ Tc and µ′⊕{q1} =
µ⊕ {q2}.

We write respectively (q, µ, d)
(q,f,q′)−→ (q′, µ′, d′) and (q, µ, d)

(q1,f,q2)−→ (q′, µ′, d′) in the first and
second cases. This allows us to characterize relation → as the set-union of all individual
transition relations:

[→] =
⋃

t∈Tc∪Tl

[
t→]

Notice that some configurations may not have any successor through transition relation→
since completeness is not required (Remark 7.4).

Furthermore, we introduce the following notations.

Definition 7.6. The size of a configuration (q, µ, d) = γ ∈ Γ, or number of processes, is
denoted |γ| = |µ| =

∑
q′ µ(q′). We write Γn for the set of configurations of size n, which

is finite. Data and multiset of configuration γ will be denoted respectively by ν (γ) = d
and st(γ) = µ. For q′ ∈ Qc, we write γ(q′) as a shorthand for st(γ)(q′). If µ′ ∈ NQc
is another multiset, we will write γ ⊕ µ′ as a shorthand for (q, µ ⊕ µ′, d). Moreover, we
identify q′ and the multiset composed of one copy of q′ allowing us to write configuration
γ ⊕ q′ = (q, µ⊕ q′, d) = (q, µ⊕ 1{q′}, d).

Remark 7.7. One first important remark is that the transition relation→ never introduces or
removes processes: the number of processes along a path is fixed from the beginning. Although
the transition system is infinite, the number of configurations of a given size is bounded.

Another natural abstraction of our system consists in losing track of the exact number of
processes in each state, and only keep information of the set of available states. By analogy
with distribution and multisets, this abstraction will be called the support of a configuration.

Definition 7.8. Let γ = (q, µ, d) ∈ Γ. We define the support of γ by γ = (q, {q′ | µ(q′) > 0} , d).
We write q′ ∈ γ when µ(q′) > 0.

One main question that arises from the transition system definition is the choice, at each
step, of the transition to be taken. Remark first, that because of our multiset construction,
our choice is already limited to picking an available state from the support instead of choosing
exactly which process will be involved. Once this state is chosen, it remains to determine
which transition involving this state has to be taken. We argue in this chapter that both
these decisions can be taken by a single scheduler, that we will assume first to be non-
deterministic, then stochastic. Intuitively, we are interested in the reachability or safety from
a given configuration. In the first case, this means checking whether one can manage to reach
a particular configuration when all processes cooperate together with full awareness of the

81

7.2. PARAMETRIZED REACHABILITY: A GLOBAL PICTURE

state of the system, that is with a cooperative scheduler. In the safety case, we are interested
in knowing whether the system is well designed to avoid a bad configuration, no matter the
local specification of each process and the concrete interleaving, which are both chosen by a
non-cooperative scheduler.

7.2 Parametrized reachability: a global picture

Let γ0, γf ∈ Γ respectively be an initial and a target configuration. We are interested in
checking whether γ0 →∗ γf holds. Note first that this implies |γ0| = |γf | as → relation
preserves configuration sizes. This problem has some drawbacks:

• It may be computationally hard. Intuitively, the problem can be encoded as a reach-
ability problem in a |γ0|-safe Petri Net. Conversely, reachability in 1-safe Petri Net
can be coded back to reachability problem in a particular network protocol with fixed
origin and target. Due to the constant number of processes, we can enforce atomicity
and presence of a leader can be enforced even in the non-atomic and leaderless case.
However, [CEP95] showed that reachability in 1-safe Petri Net is PSPACE-complete.

• On the other hand, solving reachability question for a particular initial configuration
does not solve reachability for other instances. Moreover, the number of processes can
be seen as an undetermined variable, and we may be interested in reachability no matter
the exact value of this parameter, except the possible assumption for this parameter to
be large.

We consider now a more general reachability problem. As our number of processes is not
fixed a priori, a reasonable goal is to analyze the behaviour of our system for an arbitrary
number of processes. This number will be left as a parameter and we are interested in
detecting changing behaviour of our system depending on this parameter.

First of all, we consider the whole set of initial configurations:

Definition 7.9. Let U0 = {(ql, n · qc, d0) | n ≥ 1} be the set of initial configurations.

As previously mentioned, the size of a configuration does not change over time so we have
to consider a set of target configurations Uf , and the problem is now whether there exists
γ0 ∈ U0, γf ∈ Uf such that γ0 →∗ γf .

7.3 Monotonicity

7.3.1 Upward closed reachability objectives

Elements of U0 share the following property: they are all composed of the same leader state,
register value, and set of contributor states (mainly {qc}). They can be expressed easily using
the following ordering relation:

Definition 7.10 (Ordering relation). We consider the ordering relation � over Γ defined by
γ � γ′ if

• γ = γ′,

• ∀q ∈ γ γ(q) ≤ γ′(q).

82

CHAPTER 7. PARAMETRIZED REGISTER PROTOCOLS

Definition 7.11. LetA ⊆ Γ, the upward closure ↑A is defined by ↑A = {γ | ∃γ′ ∈ A γ′ � γ}.
A is called upward closed when A = ↑A.

Given the previous definitions, the set of initial configurations is easily expressed as the
following upward closure.

U0 = ↑{(ql, qc, d0}
In the rest of the chapter, we will assume that Uf enjoy similar property, that is Uf is an

upward closed set, and we will now give several reasons to justify this decision.

Note first that this assumption allows various kinds of reachability objectives, such as the
following:

• Coverability of a given contributor state qf by some process: Uf = {γ | γ(qf) > 0}.

• Consensus to a given contributor state qf by all processes: Uf = {γ | γ(qf) = |γ|}.

Another important feature of these objectives is their finite unique representation, as an
upward closure of a finite set of incomparable elements. This will allow us to consider the
computational complexity of a reachability problem from U0 to Uf , as we will be able to
finitely describe any instance of our problem. This finite unique representation is due to
results from Chapter 2 and the following result on well quasi-orders.

Theorem 7.12 (Dickson’s lemma). (Γ,�) is a well quasi-order (wqo).

A natural quantity for complexity study would be the size of a representation of an
upward closed set U which will be likely a sum of the sizes of minimal elements

∑
γ∈minU |γ|.

However, this quantity reveals to be large for some simple objectives, as coverability. Indeed,
for coverability objective, min{γ | γ(qf) > 0} = 2][Qc]−1, so the naive representation of such
objectives is at least exponential. As this quantity is large, even for small minimal elements,
we may lose some information about the difficulty of the reachability problem. We introduce
below another notion of size, which will be more relevant for our later results, based on the
maximal size of minimal elements appearing in an upward closed set.

Definition 7.13. Let U ⊆ Γ an upward closed set. We define the size of U by

|U | = max
γ∈minU

|γ|

As announced before the definition, this new notion of size captures the simplicity of both
previous objectives consensus and coverability. Indeed, we check that in both cases, we have
|Uf | ≤] [Qc] ≤ |P|.

7.3.2 Non-atomicity

We have seen that reachability is in general a computationally hard problem. A way to tackle
this issue presented for example in [EGM13] is to consider non-atomic register protocols,
which enjoy monotonicity properties, as we expect the result of the parametrized reachability
analysis to provide additional regularity properties.

Definition 7.14 (Monotonous register protocol). We say that P is monotonous when for
any γ1, γ2 ∈ Γ with γ1 → γ2, the two following properties hold:

83

7.3. MONOTONICITY

• For any γ′1 � γ1, there exists γ′2 such that γ′1 →∗ γ′2 and γ2 � γ′2.

• For any γ′2 � γ2, there exists γ′1 such that γ′1 →∗ γ′2 and γ1 � γ′1.

Our definition of monotonicity is very close to the concept of well-structured transition
system (WSTS), defined in [FS01]. We can indeed remark that a protocol is monotonous
if, and only if, both (Γ,→,�) (first condition) and (Γ,→−1,�) (second condition) are WSTS.

Definition 7.15. We define, for any A ⊆ Γ:

Pre(A) = {γ ∈ Γ | ∃γ′ ∈ A γ → γ′} Post(A) = {γ′ ∈ Γ | ∃γ ∈ A γ → γ′}
WSTS are particularly well suited for backward reachability analysis, since predecessor

operator maps upward closed sets to upward closed sets. Here, both the initial system and
the reversed one are WSTS, so both predecessor and successor operators preserves upward
closed sets.

Lemma 7.16. Assume P is monotonous, then Pre, Post, Pre∗, Post∗ preserve upward closed
sets.

Our systems also enjoy an additional property: they preserve size of the configurations
over time, which gives us an equivalent simpler definition based on incrementation of states:

Lemma 7.17 (Monotonous register protocol). P is monotonous if, and only if, for any
γ1, γ2 ∈ Γ with γ1 → γ2, the two following properties hold:

• For q1 ∈ γ1, there exists q2 ∈ γ2 such that γ1 ⊕ q1 →∗ γ2 ⊕ q2.

• For q2 ∈ γ2, there exists q1 ∈ γ1 such that γ1 ⊕ q1 →∗ γ2 ⊕ q2.

Proof. We describe the proof of the first point, the second property is similar: Notice first
that we can assume γ1 →∗ γ2 instead of γ1 → γ2 in the hypothesis as the result extends
immediately to arbitrary paths by induction on their lengths.

⇒ Assume P is monotonous, and let q1 ∈ γ1, then γ1 � γ′1 = γ1⊕q1, so there exists γ′2 � γ2

such that γ′1 →∗ γ′2, hence |γ′2| = |γ′1| = |γ1| + 1 = |γ2| + 1 so there exists q2 ∈ γ′2 = γ2

such that γ′2 = γ2 ⊕ q2.

⇐ Conversely, assume that γ1 → γ2 and consider γ′1 such that γ1 � γ′1. We show by
induction on |γ′1| − |γ1| that there exists γ′2 such that γ′1 →∗ γ′2 and γ2 � γ′2.

– If |γ′1| = |γ1| and γ1 � γ′1, then γ1 = γ′1.

– If |γ′1| ≥ |γ1|+ 1 and γ1 � γ′1, then there exists q1 ∈ Qc and γ′′1 ∈ Γ, such that γ′1 =
γ′′1 ⊕ q1 and γ � γ′′1 . By induction hypothesis, there exists γ′′2 such that γ′′1 →∗ γ′′2
and γ2 � γ′′2 . By hypothesis, there also exists q2 such that γ′′1 ⊕ q1 → γ′′2 ⊕ q2 = γ′2.
Hence, γ′2 satisfies γ′1 →∗ γ′2 and γ2 � γ′2.

In the rest of the chapter, we will be mainly interested in monotonous protocols. In par-
ticular, any non-atomic operations f can be repeated (stuttered) an arbitrary amount of time.
This simple remark applies to any non-atomic protocol which therefore are monotonous. As
depicted in Figure 7.2, each process can be mimicked by another one (the copycat) performing
the same transitions immediately after each transition of the original process.

84

CHAPTER 7. PARAMETRIZED REGISTER PROTOCOLS

1 q1 q1 q1 1 q2 q2 q1

(q1,R (1) , q2)

1 q2 q1 q1

(q
1 ,R

(1
)
, q

2) (q
1
,R

(1
)
, q
2
)

1 q2 q2 q2

(q1,R (1) , q2)

2 q1 q1 q2

(q2,W (2) , q1)

2 q1 q2 q2

(q
2 ,W

(2
)
, q

1) (q
2
,W

(2
)
, q
1
)

Figure 7.2 – Copycat lemma applied to path (1, 2 ·q1)→3 (2, q1⊕q2) of register protocol from
Figure 7.1 by copying first process. Each of its transitions is copied (dashed) immediately
after the original one, thanks to non-atomicity.

q0 q1 ql0

R (1)

R (0) ·W (1)

R (1)

Figure 7.3 – Example of a simple atomic protocol which is not monotonous. Indeed,
(ql, q0, 0)→ (ql, q1, 1) but for any n ≥ 2, we cannot have (ql, n · q0, 0)→∗ (ql, n · q1, 1).

Lemma 7.18 (Copycat Lemma [DEGM15]). Non-atomic register protocols are monotonous.

Proof. Let γ1, γ2 ∈ Γ such that γ1 → γ2 and q1 ∈ γ1. There exists (q, f, q′) ∈ T , such that

γ1
(q,f,q′)→ γ2

• If q 6= q1, then q1 ∈ γ2 so q2 = q1 satisfies γ1 ⊕ q1 → γ2 ⊕ q2.

• If q = q1, then q2 = q′ satisfies γ1 ⊕ q1 →→ γ2 ⊕ q2.

Non-atomicity is a crucial property for monotonicity, as illustrated in Figure 7.3 with a
simple atomic protocol which is not monotonous.

7.4 Probabilistic transition system

As discussed earlier, we are interested in stochastic behaviours of our systems, which may
lead to breaking symmetries. We will now introduce probabilities over our transition system
and characterize the qualitative properties we will study. In order to do so, we will equip
our transition system with probability over transitions between configurations. This implies
replacing our non-deterministic scheduler by a stochastic scheduler. As opposed to reachabil-
ity and safety properties, our new stochastic scheduler will neither play with nor against our
protocols as transitions will be picked at random.

Definition 7.19 (Probabilistic transition system). Let p : (γ, γ′) ∈ [→] 7→ p(γ, γ′) ∈ R such
that for all γ ∈ Γ, p(γ,−) is a probability distribution with support Post({γ}). We say that
(Γ, p) is a probabilistic transition system of P.

85

7.4. PROBABILISTIC TRANSITION SYSTEM

Due to the lack of completeness (see Remark 7.4), there might exist configurations γ such
that Post({γ}) = ∅, which is not a possible probability distribution support. We address this
issue by defining p only over [→] seen a subset of Γ2.

Definition 7.20 (Induced P by p). We consider a probabilistic transition system (Γ, p). For
any sequence of configurations π ∈ Γ+, we define P(π) by induction on π:

• For any γ ∈ Γ, P(γ) = 1;

• For any π ∈ Γ∗, γ, γ′ ∈ Γ, P(π · γ · γ′) =

{
P(π · γ) · p(γ, γ′) if γ → γ′

0 otherwise
.

Intuitively, P(π) denotes the probability that any maximal run starting from π[1] has a
finite prefix π. Notice that because of possible deadlocks, a configuration γ may not have any
successor, which means Post({γ}) = ∅ and any run visiting γ is of finite length. Thanks to
Carathéodory’s criterion and in particular Theorem 2.1, we show that for any γ ∈ Γ, P(γ −)
is a probability measure over maximal runs of (Γ,→).

7.4.1 Qualitative analysis

From the definition of p and P, we conclude that P(π) > 0 if, and only if, π ∈ paths (→),
which means the exact probability values don’t matter for positive probability property. We
will continue the study of our network protocols by giving several properties that do not
depend on the exact probability values, i.e. qualitative properties.

Remember first of all we are interested in reachability properties, which we define now in
our stochastic context:

Definition 7.21. Let n ∈ N and Π ⊆ paths (→) a measurable set of paths. We define
Pn(Π) = P(Π ∩ U0 · Γ∗n) the probability of achieving a path from Π with n contributors.
Let us consider A ⊆ Γ, we denote by ♦A = (Γ\A)∗ · A the set of finite paths eventually
visiting A.

Notice that this definition is sound: ♦A = (Γ\A)∗ ·A is always measurable, as a countable
union of finite prefixes. For a given n ∈ N, the paths in U0 ·Γ∗n are in fact of the form {γn0 }·Γ∗n
with γn0 = (ql, n · qc, d0), which means Pn actually defines a probability measure.

We now remark that deciding eventual reachability with probability 0, positive, or 1 are all
three qualitative properties that can be expressed without mentioning the exact probabilistic
transition system.

Lemma 7.22. Let A ⊆ Γ. Both properties dPn(♦A)e = 1 and bPn(♦A)c = 1 do not depend
on the actual values of p. Moreover, we have the following characterizations.

dPn(♦A)e = 1⇔ Pn(♦A) > 0⇔ (Γn ∩ U0) ∩ Pre∗(A) 6= ∅

bPn(♦A)c = 1⇔ Pn(♦A) = 1⇔ Post∗A(Γn ∩ U0) ⊆ Pre∗(A)

where
PostA(X) = {γ | ∃γ′ ∈ X\A γ′ → γ} = Post(X\A)

Proof. We will describe here the proof for the second property bPn(♦A)c = 1, the other case is
similar. First of all, notice that bPn(♦A)c = 1⇔ Pn(♦A) = 1. We then prove the equivalence:

86

CHAPTER 7. PARAMETRIZED REGISTER PROTOCOLS

⇐ Assume Post∗A(Γn ∩ U0) ⊆ Pre∗(A), then (Post∗A(Γn ∩ U0) ∪ Pre∗(A), p) forms a finite
Markov chain with a set of transient states in Post∗A(Γn ∩ U0).

⇒ Let γ ∈ Post∗(Γn ∩ U0), which means there exists a path π : γn0 ∈ U0 →∗ γ, with
π ∈ (Γ\A)+. We initially have Pn(π[1] · Γ∗ ∩ ♦A) = 1 and we show by induction that
for any i, Pn((π[i] · Γ∗) ∩ ♦A) = 1. Indeed,

Pn((π[i] · Γ∗) ∩ ♦A) =
∑
γ′

Pn(π[i] · γ′) · Pn((γ′ · Γ∗) ∩ ♦A)

with
∑

γ′ Pn(π[i] · γ′) = 1. In particular, for γ′ = π[i+ 1], Pn(π[i] · γ′) > 0 so
Pn((π[i] · Γ∗) ∩ ♦A) = 1 implies Pn((π[i+ 1] · Γ∗) ∩ ♦A) = 1.

In particular, Pn((γ · Γ∗) ∩ ♦A) = 1, so γ ∈ Pre∗(A).

As opposed to Post operator, PostA and even Post∗A do not preserve upward closed sets,
even when A is upward closed. For example, assume Post({(q, q1, d)}) = {(q, q2, d)} and
A = ↑{(q, 2 · q1, d)} then PostA(↑{(q, q1, d)}) = Post({((q, q1, d)}) = {(q, q2, d)} and Post∗A(↑
{(q, q1, d)}) = ↑{(q, q1, d)} ∪ Post1

A(↑{(q, q1, d)}) ∪ Post2
A(↑{(q, q1, d)}) ∪ . . . = ↑{(q, q1, d)} ∪

{(q, q2, d)} which are not upward closed sets. However, when minimal elements of an upward
closed set A are minimal among elements of Γ, set subtraction by A preserves upward closed
sets.

Definition 7.23. A reachability set Uf is called simple whenever it is upward closed and

minUf ⊆ min Γ

We can check that simple reachability sets are generated by minimal elements of the form
γ with ∀q γ(q) ≤ 1. In particular, both reachability and consensus objectives are simple
reachability objectives.

When Uf is a simple set reachability objective, PostUf and Post∗Uf preserve upward closed
sets, thanks to the following lemma:

Lemma 7.24. For any upward closed set U and a simple set Uf , U\Uf is upward closed.

Proof. Let γ � γ′ with γ ∈ U\Uf . Assume γ′ ∈ Uf , then there exists γ′m ∈ minUf ⊆ min Γ
such that γ′m � γ′. This means that γ = γ′ = γ′m and we have the following multiset
inequalities: st(γ) ≤ st(γ′) and st(γ′m) ≤ st(γ′). This implies st(γ′m) ≤ st(γ) which is absurd
since γ /∈ Uf . Hence, γ′ ∈ U\Uf .

7.4.2 Cut-off property

We will study some limit behaviours of our systems according to the probabilistic reachability
defined before. We introduce a notion of cut-off, similar to [AJK16].

Definition 7.25. Let I be a sub-interval of [0, 1] and A a set of configurations. We say that
N ∈ N is a I-cut-off for reaching A, if either

• for all parameter n ≥ N , Pn(♦A) ∈ I,

87

7.4. PROBABILISTIC TRANSITION SYSTEM

• for all parameter n ≥ N , Pn(♦A) /∈ I.

The cut-off is said positive in the first case, and negative otherwise.

A cut-off is a parameter value that permits restricting the reachability analysis to a finite
number of parameters: beyond this parameter the answer to the reachability question has a
fixed answer either positive or negative.

n
3

1

7

2

7

3

3

4

7

15

7

16

7

17

negative cut-off values

n
3

1

7

2

7

3

3

4

3

22

3

23

positive cut-off values

Figure 7.4 – Cut-off illustration for a property depending on parameter n: a cut-off value
ensures that the property is always true or always false for bigger parameters.

Let us first remark that a cut-off needs not exist, however for a given interval I, existence
of positive and negative cut-off are mutually exclusive properties.

When the target set A will be omitted, we will consider a generic upward closed set Uf .
As the previous Lemma 7.22 concerning qualitative probabilistic properties applies, we will
distinguish the following particular cut-off properties:

• {0}-cut-off is a safety property;

• (0, 1]-cut-off is a reachability (with positive probability) property;

• {1}-cut-off is almost-sure reachability.

The following chapters will be mainly dedicated to the two following questions:

• Existence: does there exists a I-cut-off for reaching Uf ?

• Decision problem: is this I-cut-off positive or negative ?

88

Chapter 8

Probabilistic reachability and safety

Before diving into the almost-sure reachability problem, we will build some tool box from the
analysis of non-deterministic schedulers, thanks to the study of (positive) reachability and
safety cut-offs.

In this section, we revisit results from [EGM13], where analysis of runs is based on two
transition categories: useless write operations, that are immediately overridden, and first
write operation for a given value d ∈ D. The safety problem from coverable objective boils
down to the analysis for a small number,] [D], of contributors, where each contributor is in
charge of writing exactly one of the value d ∈ D for the first time. As a consequence, the
safety (resp. reachability) cut-off problem is shown in co-NP (resp. NP), then proven to be
co-NP-complete (resp. NP-complete) for non-atomic register protocols.

We adopt here a dual approach, where emphasis is put on the evolution of the set of
contributor states in the support, that can therefore make the leader progress. The developed
techniques, based on the symbolic graph, abstracting the system, will be refined later to
analyze almost-sure reachability.

8.1 Existence

One first important remark consists in showing that safety and reachability are dual notions,
which is not obvious from the definition, but is a direct consequence of the nature of our
systems, that can ignore additional processes: let us denote N ∈ N] {∞} as the minimal
value such that PN (♦Uf) > 0 (with N =∞ if it never holds). Then,

• If N =∞, 0 is a negative cut-off for reachability, and a positive cut-off for safety.

• If N < ∞, by copycat lemma, N is a positive cut-off for reachability and a negative
cut-off for safety, by minimality of N .

8.2 Symbolic graph

We introduce the main tool for the analysis of reachability under a non-deterministic sched-
uler, namely the abstraction of the number of states in a configuration.

Definition 8.1. The symbolic graph GP of P is a directed graph GP = (V,E) with

• V = {γ | γ ∈ Γ}.

89

8.2. SYMBOLIC GRAPH

• E =
{

(γ, γ′)
∣∣ γ, γ′ ∈ Γ : γ → γ′

}
.

Intuitively, the symbolic graph represents an abstraction through the support function,
nodes are of the form s = γ with γ ∈ Γ and there is an edge from s to s′ if a transition is
possible for some pair of concrete configurations, with respective support s and s′. From the
definition, we can obviously state than any path π ∈ paths (→) can be converted into a path
in the symbolic graph by abstracting each configuration in the path : π ∈ paths (E).

An example of (partial) symbolic graph is depicted in Figure 8.1.

{q0}, 0
{q1}, 1

{q1}, 0

{q1}, 2{q2}, 1

{q0, q1}, 0

{q0, q1}, 1

{q0, q1}, 2{q0, q2}, 1

{q0, q1, q2}, 1 {q0, q1, q2}, 2

{q1, q2}, 1 {q1, q2}, 2

Nodes whose
configurations

cover qf

Figure 8.1 – Solving coverability of qf for the protocol of Figure 7.1. Self-loops and target
nodes are omitted.

The symbolic graph does not keep track of the number of contributor processes in each
state: some process may have to be duplicated during transitions involving contributors.
Hence, a natural notion to measure the length of a run is the number of transitions involving
a contributor process.

Definition 8.2. Let π ∈ paths (E) be a path. We denote by |π|l the leader length of π,
defined as the quantity:

|π|l =]
[{
i
∣∣∣ 1 ≤ i < |π| ∧ ∃γ, γ′ ∈ Γ ∃t ∈ Tl γ t→ γ′ ∧ γ = π[i] ∧ γ′ = π[i+ 1]

}]
Then, we define the contributor length of π by :

|π|c = |π| − |π|l

A first important remark is that we can build again a concrete run from a symbolic run,
involving no more contributor processes than the contributor length of the path.

Lemma 8.3. Assume P is monotonous. If there exists a path from s to s′ of contributor
length n, then there exist a path from γ ∈ Γ to γ′ ∈ Γ with γ = s, γ′ = s′ and |γ| ≤ n+] [Qc].

Proof. We proceed by induction on the length of the path π ∈ paths (E) from s to s′.

• If |π| = 1, π is restricted to the single state s = (q,X, d) so we define γ = γ′ =
(q,
⊕

q′∈X q
′, d).

• If sE∗s′Es′′, we apply induction hypothesis on sE∗s′ with contributor length n, there
exist γ, γ′ ∈ Γ with γ = s, γ′ = s′, |γ| ≤ n+] [Qc] and γ →∗ γ′.
If there exists t = (q, f, q′) ∈ Tl such that (q,X, d) = s′ and (q′, X, f(d)) = s′′ then the

contributor length is still n and we let γ′′ = (q′, st(γ′), f(d)) hence γ′
t→ γ′′.

90

CHAPTER 8. PROBABILISTIC REACHABILITY AND SAFETY

(∗, X1, ∗) (∗, X2, ∗) (∗, X3, ∗) . . . (∗, Xk, ∗)

] [→] = k − 1 ≤ 2 ·] [Qc]

→? · (→+ · →)∗

] [→] ≤] [Ql] hence] [→] ≤] [Ql] + 1

Figure 8.2 – Proof scheme of Lemma 8.4, red arrows → correspond to contributor transitions
whereas blue arrows → correspond to leader transitions.

Otherwise, there exists t = (q, f, q′) ∈ Tc such that γ′(q) > 0, (q̃, X, d) = s′ and
(q̃, X ′, f(d)) = s′′ with X ∪{q′} = X ′∪{q}. We can again rebuild γ′′ by firing transition
t from γ′, except if we still have at the end q ∈ X ′ and γ′(q) = 1. In this last case, we
apply Lemma 7.17 to path γ →∗ γ′ (monotonicity with state incrementation) to assume,
without loss of generality, that γ′(q) = 2 (hence γ′′(q) = 1) and |γ| = |γ′| ≤ n+] [Qc] +1.

Note that a similar argument can be found in [DEGM15]. The authors are considering
coverability objectives. A path covering qf can be abstracted into a symbolic path, that can
be compressed into another symbolic path, which is non-decreasing on the contributors set
coordinate. By the previous lemma, this new symbolic path can still be realized, and still
covers qf . This property ensures that the number of portions is bounded by] [Qc], hence a
polynomial witness for coverability. Although this non-decreasing property is sufficient for the
study of coverability objectives, it cannot be used anymore for our arbitrary upward closed
objectives.

On the other hand, the particular structure of non-atomic protocols allows us to give
another bound on the symbolic path, which is still polynomial in the size of the network;
more formally, we are able to perform the following path compression:

Lemma 8.4 (Diameter of the symbolic graph). Assume P is non-atomic (hence monotonous).
If two nodes s and s′ are connected in GP , then there exists a path from s to s′ of contributor
length smaller than

(2 ·] [Qc] + 1) · (] [Ql] + 1) + 2 ·] [Qc]

An important remark on this bound is its independence with the number of involved data
values: the quantity neither depends on] [D] nor] [Tc] nor] [Tl]. Intuitively, density of the
graph (Γ,→) has no influence on its diameter. We depict the two steps of the path reduction
in Figure 8.2 and in the following proof:

Proof. Let π : s→∗ s′. Thanks to the monotonicity property, we transform π into π′ satisfying
the following properties:

1. first(π) = first(π′), last(π) = last(π′),

2. For each q ∈ Qc, there is at most one position i such that q /∈ π′[i] and q ∈ π′[i+ 1],

91

8.2. SYMBOLIC GRAPH

3. For each q ∈ Qc, there is at most one position i such that q ∈ π′[i] and q /∈ π′[i+ 1],

With the previous requirements, it is easy to check that π′ is composed of at most 2] [Qc]
transitions of the contributors that changes the set of contributors. As a consequence, there
are at most 2] [Qc] + 1 contiguous portions of π′ where the set of contributors is fixed. For
such a portion, we can assume, without loss of generality that the leader length is at most
equal to] [Ql], otherwise, the leader process would have visited the same state twice. Since
the set of possible operations performed by the contributor is fixed during a portion, there is
at most one operation performed before and between each leader transition, hence at most
] [Ql] + 1 transitions for the contributors.

We conclude this chapter with the following result:

Theorem 8.5. The two following problems are NP-complete:
ReachCoverCutOff

INPUT: A non-atomic register protocol P and a final state qf ∈ Qc.
QUESTION: Whether there exists a cut-off for positive probability reachability of

Uf = {γ | γ(qf) > 0}.

ReachConsensusCutOff

INPUT: A non-atomic register protocol P and a final state qf ∈ Qc.
QUESTION: Whether there exists a cut-off for positive probability reachability of

Uf = {γ | γ(qf) = |γ|}.

Moreover, cut-off value for reachability of any upward closed target Uf is always polynomial
in |P|+ |Uf |.

Proof. The proof structure is the same for any upward closed objective Uf . If a (concrete)
path manages to visit Uf , we can compress this path thanks to lemmas 8.4 and 8.3 to involve
only a polynomial number of processes. Moreover, thanks to monotonicity, this path is still
valid for bigger parameters. This allows us to state that previous symbolic run provides a
cut-off for reachability, and one can non-deterministically guess such a polynomial size run
to decide whether Uf is reached in the symbolic graph, which concludes membership of these
problems to NP.

NP-hardness follows from reduction from 3SAT, as described in [EGM13].

92

Chapter 9

Almost-sure reachability

We consider now the main problem introduced for probabilistic systems, namely the almost-
sure reachability cut-off properties. As we will see, this new property is not comparable with
reachability and safety properties as scheduler is neither bad nor good in helping reaching
a final configuration. This section will first give some intuitions about the difficulty of the
almost-sure reachability problem and why the previous tools are not suited anymore. Then,
we will prove that non-atomic protocols always have a cut-off for almost-sure reachability for
any simple objective. Since the proof relies on well quasi-orders, the cut-off value may have
an arbitrary size, so before diving into a decision procedure, we will study hardness results.
Lower bounds for minimal (tight) cut-off values will be given, then the decision will be proven
to be PSPACE-hard. Finally, we will provide a refinement of our symbolic graph that will
allows us to develop a EXPSPACE decision procedure.

Unless otherwise specified, we will mainly consider a non-atomic register protocol P with
a simple reachability objective Uf (see Definition 7.23). Our results will involve an arbitrary
leader, but hardness results will be given in the stronger case of a leaderless protocol.

9.1 First examples

9.1.1 Atomicity prevents cut-off existence

Let us first consider the example depicted in Figure 9.1, with coverability of qf as simple
target set Uf . We argue that due to the atomic operations involved, the protocol has no
cut-off. Intuitively, two processes from state q0 can cooperate to cancel each other by going
to sink state q2. If the number of initial processes is odd, there should always remain one
process which always have the ability to trigger the transition to qf . In the long run, such
event will happen with probability one.

q0

q1

q2

qf

0

R(0)
W(1)

R(1)
W(0)

R(1)
W(2)

R(2)
W(0)

R(0)

Figure 9.1 – Example of a register protocol with atomic read/write operations.

93

9.1. FIRST EXAMPLES

First of all, if n is even, we exhibit a run which sends all processes to state q2: (n · q0, 0)→
((n− 1) · q0 ⊕ q1, 1) → ((n− 2) · q0 ⊕ q1 ⊕ q2, 2) → ((n− 2) · q0 ⊕ 2 · q2, 0)→3n−2

2 (n · q2, 0).
In the other case, we can easily check that from any initial state in U0 = ↑ {(q0, 0)}, the
system can only reach configurations γ where γ(q1) = 1ν(γ) 6=0 (one q1 when register differs
from 0, none otherwise). We derive then:

• If ν (γ) = 2, then γ(q2) is odd;

• If ν (γ) 6= 2, then γ(q2) is even;

• If |γ| is odd, then for any successor γ′, γ′(q2) < |γ′|.

We conclude that for any odd parameter n, Pn(♦Uf) = 1.

This example gives us another reason to focus only on non-atomic registers protocols, for
which such atomicity of processes cannot occur.

9.1.2 Symbolic graph is powerless

We have seen in the previous section that reachability in the symbolic graph is equivalent to
reachability in (Γ,→).

A first intuition consists is checking almost-sure reachability in the symbolic graph to
infer almost-sure reachability cut-off in the concrete system. Indeed, we can remark that the
second property implies the existence of a positive cut-off.

Theorem 9.1. Assume that P is monotonous and has a positive cut-off for almost-sure
reachability of Uf . Then, any reachable node s in GP from U0 can reach Uf .

Proof. Assume P has a positive cut-off N . For any reachable node s in GP from U0, we can
find by Lemma 8.3 γ0 ∈ U0 and γ such that γ0 →∗ γ and γ = s. We apply monotonicity to
assume that |γ| ≥ N (otherwise replace γ by γ ⊕ (N − |γ|) · q with same support, for some
q ∈ γ). By qualitative almost-sure reachability, there exists γf ∈ Uf such that γ →∗ γf , thus
s = γE∗γf ∈ Uf .

However, we explain now that the converse property cannot be extended to the proba-
bilistic transition system for almost-sure reachability. As a matter of fact, we consider the
leaderless non-atomic protocol of Figure 7.1 and its symbolic graph depicted in Figure 8.1.

Nodes covering qf in the symbolic graph are reachable from any intermediate abstract
configuration in the symbolic graph. This means that equipped with any relevant probability
transitions, the symbolic graph satisfies almost-sure reachability for covering qf . However,
some transitions require the presence of at least two processes in particular given states.
This is in general not ensured by our abstraction. Consider for example, initial run with
parameter n:

(n · qc, 0)→ ((n− 1) · qc ⊕ q1, 0)→ ((n− 1) · qc ⊕ q1, 1)

We can check that such configuration cannot reach Uf = {γ | γ(qf) > 0} anymore, as the
only process in state q1 has to read register value 2 from q2, which can only be written
by itself, when going back to state q1. This transition exists in the symbolic graph, as
({q2}, 1)→ ({q1, q2}, 2) though it is not concretely feasible.

94

CHAPTER 9. ALMOST-SURE REACHABILITY

q2

q1

γ

η1

η2

(a) U ⊆ U ′ therefore U v U ′

q2

q1

γ
η1

η2

(b) U 6v U ′ as γ can be ar-
bitrarily increased on q2 coordi-
nate and stay outside U ′.

q2

q1

γ
η1

η2

(c) U v U ′ as eventually γ will be
replaced by configurations with
more q1 or q2 states enforcing in-
clusion in U ′.

Figure 9.2 – Simple cases of ultimate inclusions analysis with Qc = {q1, q2}, U = ↑{γ} and
U ′ = ↑{η1, η2}.

9.2 Existence

Due to the monotonicity property and the wqo structure of the transition system, both
Post∗Uf (U0) and Pre∗(Uf) are upward closed sets that are finitely generated. By analyz-
ing further how the reachable states evolve with bigger parameters, we now prove that any
monotonous register protocol has a cut-off for almost-sure reachability.

Thanks to Lemma 7.22, we know that for a given parameter n, Pn(♦Uf) = 1 if, and only if,
Post∗Uf (Γn ∩ U0) ⊆ Pre∗(Uf), that is if, from any reachable configuration, there exists a finite
suffix that can still reach Uf . A positive cut-off for almost-sure reachability corresponds to a
parameter N above which the preceding inclusion always holds. Moreover, since the number
of state is preserved over time, Post∗Uf (Γn ∩ U0) = Post∗Uf (U0) ∩ Γn, which means we can

start computing Post∗Uf (U0) as an upward closed set, and later compute, for any n, the set

PostUf
∗(Γn ∩ U0).

Definition 9.2. We let U,U ′ ⊆ Γ be two upward closed sets (for �). We say that U is
ultimately included in U ′, noted U v U ′, whenever there exists N ∈ N such that

∀k ≥ N. U ∩ Γk ⊆ U ′

From the previous remarks, Post∗Uf (U0) v Pre∗(Uf) is equivalent to the existence of a
positive almost-sure reachability cut-off for Uf . However, it is not obvious from the given
definition that ultimate inclusion is decidable. We give in the following lemma a more concrete
characterization, based on the structure of upward closed sets. Indeed, in order to check
inclusion of two upward closed sets U and U ′, we can reason on their minimal elements:
U ⊆ U ′ if, and only if, for all γ ∈ minU , there exists γ′ ∈ minU ′ such that γ′ � γ.
Graphically, several cases of ultimate inclusion can occur, as depicted in Figure 9.2. For
example, inclusion may not hold for small parameters, but can still hold after increasing the
parameter value. Let us denote Γ≥N = ∪n≥NΓn the upward closed set of configurations of
size larger than N . Then, for any N , U ∩ Γ≥N is upward closed and we can compute its
minimal elements recursively, starting from U = U ∩ Γ≥0: for any γ ∈ minU ∩ Γ≥N , γ has
size at least N , and

95

9.2. EXISTENCE

q2

q1

γ

η1

η2

Γk Γk′

γ′, with |γ′| = η1(q1) + η2(q2)

Figure 9.3 – Illustration of Lemma 9.3 on U v U ′ in the case where U = ↑ {γ} with
γ = {q1, q2} and γ has two uncomparable minimal elements in U ′, η1 and η2. When
k increases, the frontier of Γ≥k is the diagonal Γk. Eventually, this frontier will over-
pass γ (for example for k′). If ultimate inclusion occurs, it occurs at most at the
point of coordinate (η1(q1), η2(q2)) which corresponds to a configuration γ′ of size/diagonal
η1(q1) + η2(q2) ≤] [γ] ·max(|η1|, |η2|) ≤] [Qc] · |U ′| .

• If |γ| > N , then γ is still a minimal element of U ∩ Γ≥N+1,

• If |γ| = N , then γ cannot be a minimal element of U ∩ Γ≥N+1 as γ /∈ Γ≥N+1, however
any configuration γ ⊕ q for any q ∈ γ is still part of U ∩ Γ≥N+1. If there exists another
element γ′ in this set such that γ′ � γ ⊕ q, then we should have |γ′| = |γ ⊕ q| = N + 1
hence γ′ = γ ⊕ q is minimal of size N + 1.

As the parameter N increases, it catches up the size of all minimal elements which eventually
all fall down into the second category of minimal elements of size exactly N . These elements
are updated by duplicating at each step any appearing state. The question remains then to
determine whether these successive duplications of arbitrary appearing states can eventually
lead to inclusion, or not. The next lemma states that one can consider one single state of the
support to be duplicated. Moreover, we can bound the parameter to consider when looking
at ultimate inclusion U v U ′, by a polynomial in the size of U ′, as graphically shown in
Figure 9.3.

Lemma 9.3. U v U ′ if, and only if, for any γ ∈ minU and q ∈ γ, there exists k ∈ N such
that γ ⊕ k · q ∈ U ′. Moreover, when this is the case, we have ∀k ≥] [Qc] · |U ′| U ∩ Γk ⊆ U ′

Proof. • (⇒) parameter k = N from the definition is sufficient.

• (⇐) Let γ ∈ minU , for each q ∈ γ, we define k(γ, q) ∈ N such that γ ⊕ k(γ, q) · q ∈ U ′.
This means there exists η ∈ minU ′ such that η � γ⊕k(γ, q)·q. Without loss of generality
we can assume k(γ, q) minimal, that is to say k(γ, q) = η(q) − γ(q) ≤ |U ′| − γ(q). Let
us define k(γ) =

∑
q∈γ k(γ, q) ≤] [Qc] · |U ′| − |γ|.

Consider now γ ∈ U ∩Γk for k ≥] [Qc] · |U ′|. There exists γ′ ∈ minU such that γ′ � γ.

96

CHAPTER 9. ALMOST-SURE REACHABILITY

Hence, ∑
q∈γ′

(
γ(q)− γ′(q)

)
= |γ| − |γ′| ≥] [Qc] · |U ′| − |γ′| ≥

∑
q∈γ′

(
k(γ′, q)

)
so there necessarily exists q ∈ γ′ such that γ(q)− γ′(q) ≥ k(γ′, q). It follows
γ′ � γ′ ⊕ k(γ′, q) · q︸ ︷︷ ︸

∈U ′

� γ.

Corollary 9.4. If Post∗Uf (U0) v Pre∗(Uf), then] [Qc] · |Pre∗(Uf)| is a positive cut-off for

almost-sure reachability for Uf . Otherwise, |Post∗Uf (U0)| is a negative cut-off for almost-sure
reachability for Uf .

Proof. Using previous Lemma 9.3, we derive the correct bound in the positive case.

Otherwise, there exists γ ∈ min Post∗Uf (U0) and q ∈ γ such that for any k ∈ N, γ ⊕
k · q /∈ Pre∗(Uf). Hence, |γ| ≤ |Post∗Uf (U0)| is a negative cut-off since for all k ≥ |γ|,
γk = γ ⊕ (k − |γ|) · q ∈ Post∗Uf (U0) ∩ Γk\Pre∗(Uf).

9.3 Bound examples

The previous proof of almost-sure reachability cut-off existence is giving bounds on a possible
cut-off, which are polynomial in |Post∗Uf (U0)| and |Pre∗(Uf)|. Such values are interesting to
compute as they allow us to solve the decision problem: it is enough to check almost-sure
reachability for a fixed parameter equal to the cut-off. However, the given bounds can be
a priori large. For example, when Uf is a coverable target, one can apply Petri Net bounds
on coverability due to Rackoff [Rac78] and expect |Pre∗(Uf)| to be bounded by a double
exponential in |P|.

However, no general bound on an arbitrary upward closed set, especially for Post∗Uf (U0),
can be given directly.

Before diving into the decision problem, we can wonder what optimal bounds on the cut-
off we can expect. In order to do so, we will consider some instances and compute the minimal
parameter (lower bound) which is still a cut-off, namely a tight cut-off.

9.3.1 Linear cut-off

We start our study with a family of leaderless non-atomic register protocols (Fn)n>0, depicted
in Figure 9.4. For a fixed n, protocol Fn has n + 1 states and n different data; intuitively,
in order to move from si to si+1, two processes are needed: one writes i in the register and
goes back to s0, and the second process can proceed to si+1 by reading i. Since backward
transitions to s0 are always possible and since states can always exit s0 by writing a 0 and
reading it afterwards, no deadlock can ever occur so the main question remains to determine
if sn is reachable by one of the processes as we increase the number of initial processes.
As shown in Lemma 9.5, the answer is positive: Fn has a tight linear positive cut-off for
coverability of sn; it actually behaves like a “filter”, that can test if at least n processes are
running together. We exploit this property later in the next section.

97

9.3. BOUND EXAMPLES

Lemma 9.5. Fix n ∈ N. The “filter” protocol Fn, depicted in Figure 9.4, has a tight positive
cut-off for almost-sure reachability of Uf = {γ | γ(sn) > 0}, equal to n.

Proof. Let us consider the reachable configurations for m contributor processes in Fn. We
first prove that any reachable configuration γ ∈ Post∗Uf (U0) ∩ Γm satisfies:

∀j ≤ m.
j∑

k=0

γ(sk) ≥ j + 1ν(γ)=j+1

The proof is by induction: the invariant is satisfied by the initial configuration γ0 = (sm0 , 0).
Let us now consider the run γ0 →∗ γ → γ′, in which γ satisfies the invariant, and with last
transition (q, f, q′) ∈ Tc.

• If f = R (0), then q = s0 and q′ = s1. Along that transition, the right-hand-side term
is unchanged; so is the left-hand-side term as soon as j > 0, so that the inequality is
preserved for those cases. The case j = 0 is trivial.

• If f = R (i) with i > 0, then q = si and q′ = si+1. We have st(γ′) = st(γ) 	 si ⊕ si+1

and ν (γ′) = ν (γ) = i. Again, along this read-transition, the right-hand side term is
unchanged, while the left-hand-side term is unchanged for all j 6= i.

It remains to prove the inequality for j = i. We apply the induction hypothesis in γ
for j = i−1: since the transition (q,R (i) , q′) is available, it must hold that st(γ)(si) ≥ 1
and ν (γ) = i = j + 1. Hence

∑i−1
k=0 st(γ)(sk) ≥ i−1+1 = i, and

∑i
k=0 st(γ)(sk) ≥ i+ 1.

This implies
∑i

k=0 st(γ′)(sk) ≥ i.

• If f = W (i), then q = si and q′ = s0. Thus st(γ′) = st(γ) 	 si ⊕ s0. For j = i − 1,
the left-hand-side term of the inequality is increased by 1, while the right-hand-side one
is either unchanged or also increased by 1. The property is preserved in both cases.
For j 6= i − 1, the left-hand-side term cannot decrease, while the right-hand-side term
cannot increase. Hence the invariant is preserved.

As a consequence, if m < n, we have (for j = m)
∑m

k=0 st(γ)(sk) = m for any reachable
configuration γ, so that st(γ)(sn) = 0.

Conversely, if m ≥ n, from any configuration γ and for any 0 ≤ i < n, it is possible to
reach γi = (i · s0 ⊕ (m− i) · si+1, i):

• for i = 0: all processes can go to s0, then write 0 in the register, and all move to s1:

γ →∗ (m · s0, d)
W(0)−−−→ (m · s0, 0)

R(0)−−−→m(m · s1, 0);

s0

0

s1 s2 . . . sn−1 sn

W(0)

R(0)

W(1)

R(1)

W(2)

R(2) R(n−2) R(n−1)

W(n−1)

Figure 9.4 – A “filter” protocol Fn for n > 0.

98

CHAPTER 9. ALMOST-SURE REACHABILITY

s0

0

s1 s2 . . . sn−1 snqf

W(0)

R(0)

R(0)

W(1)

R(1)

W(2)

R(2) R(n−2) R(n−1)

W(n−1)

W(i) i∈[0,n−1]

Figure 9.5 – The “reversed filter” protocol Fn for n > 0, with negative cut-off for almost-sure
reachability n.

• for 1 < i < n− 1, assuming (i · s0⊕ (m− i) · si+1, i) can be reached, one of the processes
in si+1 can write i+ 1 (going back to s0), and the remaining m− i− 1 processes in si+1

can go to si+2:

(i · s0 ⊕ (m− i) · si+1, i)
W(i+1)−−−−−→ ((i+ 1) · s0 ⊕ (m− i− 1) · si+1, i+ 1)

R(i+1)−−−−→ m−i−1 ((i+ 1) · s0 ⊕ (m− i− 1) · si+2, i+ 1)

Thus from any γ ∈ Γ, configuration γn−1 = ((n− 1) · s0⊕ (m−n+ 1) · sn, n− 1) is reachable.
Furthermore, γn−1 contains the final state sn since m ≥ n.

Hence, we deduce that there is a unique bottom strongly-connected component in Γm,
and that γn−1 belongs to it: this configuration is reached with probability 1 from (m · s0, 0).
It follows that Pm(♦Uf) = 1.

9.3.2 Counter machine

We are now interested in finding non-trivial tight negative cut-offs. One way to build one
such corresponding register protocol is to encode a mechanism able to count processes, and
proceed to deadlock the system, avoiding reaching a target state qf , if enough processes are
present. For example, the previous filter protocol can count in unary up to n with n + 1
states. We now modify the protocol as depicted in Figure 9.5: the previous target state sn
for coverability is modified in order to allow the other processes to join in sn. The target
state for coverability, denoted qf is only reachable from s0. Thus, as soon as one process has
reached sn, there is positive probability that all processes join sn, and stay “trapped” in this
location. This results in a linear negative cut-off (n+ 2 states for cut-off value n).

A natural idea we develop below is to count in binary, namely encoding a binary counter
by several processes, each of them (en)coding one bit of the current value. One main problem
that arises with such encoding is the coherence of our counter, as we need to avoid several
states to encode the same bit with different values at the same time. Intuitively, such property
cannot be enforced a priori, as stated by the following lemma, related to the monotonicity
property.

Lemma 9.6. Assume P is leaderless non-atomic. If π1 : (q, µ1, d) →∗ (q, µ′1, d1) and π2 :
(q, µ2, d)→∗ (q, µ′2, d2) then ∀d′ ∈ {d1, d2}, (q, µ1 ⊕ µ2, d)→∗ (q, µ′1 ⊕ µ′2, d′).

Proof. We prove the result by induction on |π1|+ |π2|.

• If π1 = ε, the result is immediate. From now on, we assume |π1| ≥ 1 and (by symmetry)
|π2| ≥ 1.

99

9.3. BOUND EXAMPLES

• If π1 or π2 starts with a read operation, we can apply this first transition and apply
induction hypothesis on the resulting configuration directly (shared register value hasn’t
changed).

• If both π1 and π2 start with a write operation, then by monotonicity, (q, µ1⊕µ2, d)→∗
(q, µ1 ⊕ µ′2, d2) and (q, µ1 ⊕ µ′2, d) →∗ (q, µ′1⊕′2, d1). This last path starts with a write
operation, so value register d can be replaced by d2 hence the result.

One way to tackle this issue consists in detecting, after the binary count, that effectively
no more that one process encoded each counter bit, thanks to our previous filter protocol for
positive cut-off. A general pattern for encoding a counting mechanism can be described by
three phases, also depicted in Figure 9.6.

• Initialization: the initial state allows processes to choose randomly which bit position
they want to encode, or if they want to be part of the counted processes (tokens). After
the first write, the initial register value is erased and transitions from this phase cannot
occur anymore. Denote with ki (resp. k) the number of processes encoding the i-th bit
(resp. the tokens).

• Simulation: Processes of the binary counter exchange the addition remainder thanks
to the shared register. In order to enable the counting mechanism, one of the processes
(tokens) to be counted perform a write transition, writing initial remainder 1, allowing
the counter to progress. During the whole simulation phase, each state has positive
probability to take an extra transition to the final target state.

• Check : Instead of writing a remainder for bit n+ 1, the process encoding bit n writes a
final value halt, meaning the counter managed to count, with possible errors, at least
2n tokens, allowing counter processes to reach the filter module of parameter n + 1.
This last filter has no more probabilistic transition to the target state so the only way
to reach it is to play according to the filter gadget rules. When each bit of the counter
is encoded by one single process (∀i ki = 1), the total amount of processes encoding
bits is n so the final state cannot be reached and the counting is correct so k ≥ 2n.

Notice that the whole pattern is meant to build a negative cut-off, as any possible error in the
pattern will lead to reaching the target state: not enough encoding processes (∃i ki = 0), not
enough tokens (k < 2n) or too many encoding processes (

∑
i ki ≥ n + 1) ensure reaching qf

almost-surely; the only run that avoids qf is the one that respects the three described phases.

Theorem 9.7. There exists a family of leaderless non-atomic register protocols, which admit
negative tight cut-offs for almost-sure reachability with coverability objective whose value is
exponential in the size of the protocol.

Proof. We first focus on the first part of the protocol of Figure 9.6, containing nodes named ai,
bi, ci, di and si. This part can be divided into three phases: the initialization phase lasts as
long as the register contains #; the counting phase starts when the register contains halt for
the first time; the simulation phase is the intermediate phase.

100

CHAPTER 9. ALMOST-SURE REACHABILITY

in# tok

sent

sink

W(1)

R(halt)

a1

b1

c1

d1

R(1)

W(0)

R(1)

W(2)

a2

b2

c2

d2

R(2)

W(0)

R(2)

W(3)

an

bn

cn

dn

R(n)

W(0)

R(n)

R(#)

s0 s1 s2 sn qfW(f0)

R(f0)

W(f1)

R(f1)

W(f2)

R(f2) R(fn−1) R(fn)

R(m),m 6=halt

R(i)
i 6=1

R(#)

R(i)
i 6=2

R(i)
i 6=n

R(i)
i 6=1

R(i)
i 6=2

R(i)
i 6=n

R(halt)
R(fi),i∈[0,n]

W(halt)

initialization

simulation

checking

Figure 9.6 – Simulating an exponential counter: grey boxes contain the nodes used to encode
the bits of the counter; yellow nodes at the bottom correspond to the filter module from
Figure 9.4; purple nodes tok, sentand sinkcorrespond to the second part of the protocol,
and are used to produce tokens. Missing read edges are assumed to be self-loops.

During the initialization phase, processes move to locations ai and tok, until some process
in tokwrites 1 in the register (or until some process reaches qf , using a transition from ai
to qf while reading #). Write γ0 for the configuration reached when entering the simulation
phase (i.e., when 1 is written in the register for the first time). We assume that st(γ0)(ai) > 0
for some i, as otherwise all the processes are in tok, and they all will eventually reach qf .
Now, we notice that if st(γ0)(ai) = 0 for some i, then location dn cannot be reached, so
that no process can reach the counting phase. In that case, some process (and actually all
of them) will eventually reach qf . We now consider the case where st(γ0)(ai) ≥ 1 for all i.
One can prove (inductively) that di is reachable when st(γ0)(tok) ≥ 2i. Hence dn, and thus
also s0, can be reached when st(γ0)(tok) ≥ 2n. Assuming qf is not reached, the counting
phase must never contain more than n processes, hence we actually have that st(γ0)(ai) = 1.
With this new condition, s0 is reached if, and only if, st(γ0)(tok) ≥ 2n. When the latter
condition is not true, qf will be reached almost-surely, which proves the second part of our
claim: the final location is reached almost-surely in systems with strictly less than n + 2n

copies of the protocol.

We now consider the case of systems with at least n + 2n processes. We exhibit a finite
execution of those systems from which no continuation can reach qf , thus proving that qf is
reached with probability strictly less than 1 in those systems. The execution is as follows:
during initialization, for each i, one process enters ai; all other processes move to tok, and
one of them write 1 in the register. The n processes in the simulation phase then simulate
the consecutive incrementations of the counter, consuming one token at each step, until
reaching dn. At that time, all the processes in tok move to sent, and the process in dn
writes halt in the register and enters s0. The processes in the simulation phase can then
enter s0, and those in sent can move to sink. We now have n processes in s0, and the other

101

9.3. BOUND EXAMPLES

ones in sink. According to Lemma 9.5, location qf cannot be reached from this configuration,
which concludes our proof.

Remark 9.8. The question whether there exists protocols with exponential positive cut-offs
remains open. The family of filter protocols described previously is (only) an example of
protocols with a linear tight positive cut-off.

9.3.3 PSPACE-hardness

The previous idea of checking afterwards whether a simulation was correct can also be ex-
ploited to encode a linear-bounded Turing machine [Sip97] instead of a simple binary counter.
This technique is developed below to establish PSPACE-hardness for the cut-off problem.

We build a register protocol for which there is a negative cut-off for almost-sure cover-
ability, if, and only if, the machine reaches its final state qhalt with the tape head reading the
last cell of the tape.

Write n for the size of the tape of the Turing machine. We assume (without loss of
generality) that the machine is deterministic, and that it accepts only if it ends in its halting
state qhalt while reading the last cell of the tape. Our reduction works as follows (see Fig. 9.7):
some processes of our network will first be assigned an index i in [1;n] indicating the cell of
the tape they shall encode during the simulation. The other processes are stuck in the initial
location, and will play no role. The state q and position j of the head of the Turing machine
are stored in the register. During the simulation phase, when a process is scheduled to play,
it checks in the register whether the tape head is on the cell it encodes, and in that case it
performs the transition of the Turing machine. If the tape head is not on the cell it encodes,
the process moves to the target location (which we consider as the target for the almost-sure
reachability problem). Finally, upon seeing (qhalt, n) in the register, all processes move to
a (n + 1)-filter protocol Fn+1 (similar to that of Fig. 9.4) whose last location sn+1 is the
aforementioned target location.

If the Turing machine halts, then the corresponding run can be mimicked with exactly one
process per cell, thus giving rise to a finite run of the distributed system where n processes
end up in the (n + 1)-filter (and the other processes are stuck in the initial location); from
there sn+1 cannot be reached. If the Turing machine does not halt, then assume that there is
an infinite run of the distributed system never reaching the target location. This run cannot
get stuck in the simulation phase forever, because it would end up in a strongly connected
component from which the target location is reachable. Thus this run eventually reaches
the (n + 1)-filter, which requires that at least n + 1 processes participate in the simulation
(because with n processes it would simulate the exact run of the machine, and would not
reach qhalt, while with fewer processes the tape head could not go over cells that are not
handled by a process). Thus at least n+ 1 processes would end up in the (n+ 1)-filter, and
with probability 1 the target location should be reached.

We now formalize this construction, by describing the states and transitions of the protocol
within these three phases. We fix a linear-bounded Turing machine M = (Q, q0, qhalt,Σ, δ),
where Q is the set of states, q0, qhalt ∈ Q are the initial and halting states, Σ is the alphabet,
and δ ⊆ Q × Σ × Q × Σ × {−1,+1} is the set of transitions. We define the data alphabet
D = {#}]Q×Σ] {fi | 0 ≤ i ≤ n}, and the set of locations P = {pinit, p′init, psink}]

(
[1;n]×

Σ × (Q ∪ {ε})
)
] {si | 0 ≤ i ≤ n + 1}. The set of locations corresponds to three phases

(see Fig. 9.7):

102

CHAPTER 9. ALMOST-SURE REACHABILITY

pinit

#

p′init

1, c1 2, c2 3, c3 ... n, cn

psink
R(#) R(D\{#})

R(#) R(#) R(#)W(q0,1)

1, σ

1, σ, q

1, σ′

n, σ′

n, σ′, q′′

n, σ′′

R(q,1)

W(q′,2)

R(q′′,n)

W(q,n−1)

s0 s1 s2 sn sn+1W(f0)

R(f0)

W(f1)

R(f1)

W(f2)

R(f2) R(fn−1) R(fn)

R(qhalt,n)
R(fi),i∈[0;n] R(·,j),j 6=n

R(#)

(to sn+1)

(to sn+1)

(to s0)

(to s0)

initialization

simulation
for transitions
(q, σ)→ (q′, σ′,+1)
and
(q′′, σ′)→ (q, σ′′,−1)

checking

Figure 9.7 – Distributed protocol PM encoding the linear-bounded Turing machine M.

• The initialization phase contains pinit, p
′
init and psink. From the initial state pinit, upon

reading # (the initial content of the register), the protocol has transitions to each
state (i, σi) for all 2 ≤ i ≤ n, where σi is the i-th letter of the initial content of the
tape. If reading anything different from #, the protocol moves to the sink state psink.
Finally, there are transitions (pinit,R (#) , p′init) and (p′init,W (q0, 1) , (1, c1)), where q0 is
the initial state of the Turing machine: this pair of transitions is used to initialize the
computation, by setting the content of the first cell and modifying the register, so that
the initialization phase is over (there are no transitions writing # in the register).

• The second phase, called simulation phase, uses register alphabet Q× [1, n], in order to
encode the state and position of the head of the Turing machine. The state space for
the simulation phase is [1;n]×Σ× (Q∪{ε}): state (i, σ, ε) (written (i, σ) in the sequel)
encodes the fact that the content of the i-th cell is σ; the states of the form (i, σ, q) are
intermediary states used during the simulation of one transition: when in state (i, σ)
and reading (q, i) in the register, the protocol moves to (i, σ, q), from which it moves
to (i, σ′) and writes (q′, j) in the register, provided that the machine has a transition
(q, σ) → (q′, σ′, j − i). If the active process does not encode the position that the tape
head is reading (i.e., the process is in state (i, σ) and reads (q, j) with j 6= i) then it
moves to the final state sn+1 of the third phase.

• The role of the counting phase is to count the number of processes participating in the
simulation. When seeing the halting state in the register, each protocol moves to a
module whose role is to check whether at least n+ 1 protocols are still “running”. This
uses data {fi | 0 ≤ i ≤ n} and states {si | i ∈ [0, n+ 1]}, with transitions from any state
of the simulation phase to s0 if the register contains (qhalt, n) or any of {fi | 0 ≤ i ≤ n}.

We now prove that our construction is correct:

103

9.3. BOUND EXAMPLES

Lemma 9.9. The register protocol PM, with coverability objective sn+1, has a negative cut-off
if, and only if, the Turing machine M reaches qhalt in the last cell of the tape.

Proof. First assume that there is a negative cut-off: there exists N0 such that for any N ≥ N0,
starting from the initial configuration (pNinit,#) of the system (ΓN ,→) made of N copies of PM,
the probability that at least one process reaches sn+1 is strictly less than 1. Since (ΓN ,→, p)
is a finite Markov chain, this implies that there is a cone of executions never visiting sn+1,
i.e., a finite execution ρ whose continuations never visit sn+1. Since the register initially
contains #, this finite execution (or a finite continuation of it) must contain at least one
configuration where some process has entered the simulation part.

Now, in the simulation phase, we notice that, right after taking a transition ((i, σ, q),
W (q′, i± 1) , (i, σ′)), the transition ((i, σ′),R (·, j) , sn+1) is always enabled. It follows that
at the end of the finite run ρ, no simulation transition should be enabled; hence all processes
that had entered the simulation part should have left it. Hence some process must have
visited s0 along ρ (because we assume that ρ does not involve sn+1). Moreover, by Lemma 9.5,
for sn+1 not to be reachable along any continuation of ρ, no more than n processes must be
able to reach s0 along any continuation of ρ, hence at most n processes may have entered
the simulation phase. On the other hand, for s0 to be visited, some process has to first write
(qhalt, n) in the register; since the register initially contains (q0, 1), and no process can write
(·, i+ 1) without first reading (·, i), then for each i ∈ [1, n] there must be at least one process
visiting some state (i, σi), for some σi; It follows that at least n processes must have entered
the simulation phase.

In the end, along ρ, exactly one process visits (i, ci), for each i ∈ [1, n], and encode the
content of the i-th cell. As a consequence, along ρ, each cell of the tape of the Turing machine
is encoded by exactly one process, and the execution mimics the exact computation of the
Turing machine. Since the configuration (qhalt, n) is eventually reached, the Turing machine
halts with the tape head on the last cell of the tape.

Conversely, assume the Turing machine halts, and consider the execution of N ≥ n pro-
cesses where exactly one process goes in each of the (i, ci) and mimics the run of the Turing
machine (the other processes going to psink). We get a finite execution ending up in a config-
uration where all processes are either in pinit or in psink, except for n processes that are in the
counting phase. No continuation of this prefix ever reaches sn+1, so that the probability that
some process reaches sn+1 is strictly less than 1.

We conclude by stating the following complexity results:

Theorem 9.10. The following problems are PSPACE-hard.

ASCoverCutOff

INPUT: A non-atomic register protocol P and a final state qf ∈ Qc.
QUESTION: Whether there exists a cut-off for almost-sure reachability of

Uf = {γ | γ(qf) > 0}.

ASConsensusCutOff

INPUT: A non-atomic register protocol P and a final state qf ∈ Qc.
QUESTION: Whether there exists a cut-off for almost-sure reachability of

Uf = {γ | γ(qf) = |γ|}.

104

CHAPTER 9. ALMOST-SURE REACHABILITY

9.4 Decision procedure

As previous Section 9.2 proved that the existence of a cut-off is ensured, the question of the
nature of cut-off (positive or negative) arises. Answering this question boils down to deciding
the asymptotic behaviour of our system, when the parameter is large enough.

One naive approach to this problem consists in computing a cut-off value as given by
Corollary. 9.4, then simulating the system to decide whether almost-sure reachability holds for
this particular parameter. However the corresponding value is polynomial in both the size of
the Pre∗(Uf) and Post∗Uf (U0) minimal elements, for which we have no bound a priori. Notice
however that the theory of well-quasi-orders ensures that these elements can be computed
in finite time. For example, Post∗Uf (U0) can be computed by saturation, by considering the

sequence (Xn)n, with X0 = U0 and ∀n Xn+1 = Xn∪PostUf (Xn). For each n, Xn is an upward
closed set, and its minimal elements can be computed iteratively. Moreover, this sequence
is non-decreasing for inclusion, and is eventually stationary; otherwise, we could extract an
infinite sequence of minimal elements which are incomparable, which would be contradictory
with the wqo structure.

On the other hand, our previous analysis gives us some hints about the complexity of a
decision procedure. First of all, Theorem 9.10 tells us the problem is PSPACE-hard. Then,
our different constructions show examples of tight linear and exponential cut-off, so we can
expect the minimal elements to be at least of the same size (up to a polynomial).

The following sections show how to deal with coverability objectives, which allow the usage
of already known bounds; then we proceed to develop general techniques for any objectives.
In particular, we will be able to derive upper bounds on tight cut-off values.

9.4.1 Refined symbolic graph

As the symbolic graph revealed to be insufficient to analyze almost-sure reachability, we
consider now a refinement where it can keep track of up to a fixed portion of configurations.

In order to do so, we first introduce a new protocol that encodes part of contributors’
configuration inside the leader structure. We will then derive results from the analysis of its
resulting symbolic graph.

Definition 9.11 (Fixed protocol). Let P = (Ql, Qc, D, d0, ql, qc, Tl, Tc), a register protocol,
and k ∈ N, we define P̃k by P̃k = (Q′l, Qc, D, d0, q

′
l, qc, T

′
l , Tc), where

• Q′l = Ql × NQck ,

• q′l = (ql, q
k
c) ∈ Ql

• T ′l =
{

((q, µ), f, (q′, µ)) | (q, f, q′) ∈ Tl, µ ∈ NQck
}
∪{

((q, µ), f, (q, µ′)) | ∃qt ∈ µ, q′t ∈ µ′ (qt, f, q
′
t) ∈ Tc ∧ µ′ ⊕ qt = µ⊕ q′t

}
Intuitively, fixed protocols of index k encodes an initial protocol with at least k processes,

that are taken apart and considered as part of the leader process. This isolation technique will
reveal to be convenient to develop decision procedures and bounding techniques that couldn’t
be achieved directly by the symbolic graph, which cannot keep track of any quantitative
number of processes. As one may notice, non-atomic, monotonous, atomic properties on
register protocols are preserved, but not the leaderless property. We can also easily check the
following translation lemma:

105

9.4. DECISION PROCEDURE

Lemma 9.12 (Translation). Let q, q′ ∈ Ql, µ1, µ
′
1 ∈ NQck and µ2, µ

′
2 ∈ NQcn . Then,

((q, µ1), µ2, d)→ ((q′, µ′1), µ′2, d
′) in P̃k

if, and only if,
(q, µ1 ⊕ µ2, d)→ (q′, µ′1 ⊕ µ′2, d′) in P

Definition 9.13 (Fixed subset). Let A ⊆ Γ, we define

Ãk =
{

((q, µ1), µ2, d)
∣∣∣ µ1 ∈ NQck ∧ (q, µ1 ⊕ µ2, d) ∈ A

}
As we can expect, for any upward closed set of configurations U of P, Ũk is still upward

closed, although the number of minimal elements undergo an exponential blow up. Note
however that minimal elements have similar sizes: |U | = |Ũk|. Thanks to Lemma 9.12, we

also infer that ˜Pre∗(U)
k

= Pre∗(Ũk).

9.4.2 Symbolic based algorithm

The main result of this section consists in showing that for a parameter large enough, the
almost-sure reachability cut-off is preserved in the symbolic graph of the fixed protocol. More
precisely, the parameter value K =] [Qc] · |Pre∗(Uf)| will preserve almost-sure reachability.
Notice that this quantity is polynomial in the size of the network and in the size of the
predecessor set. Surprisingly, this quantity is independant of the sucessor set itself.

Lemma 9.14. Assume P is monotonous. There is a negative cut-off for almost-sure reacha-
bility of Uf in P, if, and only if, there is a node in the symbolic graph GP̃K that is reachable

from ((ql,K · qc), {qc}, d0) but from which Ũf
K

is not reachable.

Proof. ⇐ We apply Theorem 9.1 to show that P̃K has no positive cut-off. Thanks to
Corollary. 9.4, a negative cut-off should then exist for P̃K . We infer by translation
Lemma 9.12 that P has also a negative cut-off.

⇒ Let N be a negative cut-off for almost-sure reachability of Uf in P. We can as-
sume without loss of generality that N ≥ K, and consider γ = (q, µ, d) ∈ ΓN ∩(

Post∗Uf (U0)\Pre∗(Uf)
)

= Post∗Uf (ΓN ∩ U0)\Pre∗(Uf), which is non-empty thanks to

Lemma 7.22.
Write {ηi | 1 ≤ i ≤ m} = {η ∈ min Pre∗(Uf) | η = γ}, for the finite subset of min-
imal elements of Pre∗(Uf) that have the same support as γ. Since γ 6∈ Pre∗(Uf), for
each 1 ≤ i ≤ m, ηi 6� γ and because of support equality, there exists qi ∈ γ such
that µ(qi) = γ(qi) < ηi(q

i) ≤ |Pre∗(Uf)|. We conclude we can write µ = µ1 ⊕ µ′2 with

µ1 = {qi | 1 ≤ i ≤ m} and µ′2 = µ\µ1. As |µ1| <] [Qc]·|Pre∗(Uf)| = K ≤ N = |µ1|+|µ′2|,
we can write µ′2 = µ2⊕µ3 with |µ2| = K−|µ1| and µ3 contains the remaining N−K ≥ 1
states neither taken in µ1 nor in µ2. Consider the configuration ((q, µ1 ⊕ µ2), µ3, d)

in P̃K , which is reachable from Ũ0
K

by translation Lemma 9.12, then its support
s = ((q, µ1 ⊕ µ2), µ3, d) is reachable in GP̃K from ((ql,K · qc), {qc}, d0). Assume that

sE∗Ũf
K

in the symbolic graph to expose a contradiction. Then, there exists µ′3 such that

µ′3 = µ3 and ((q, µ1⊕µ2), µ′3, d)→∗ γf ∈ Ũf
K

by symbolic correspondance (Lemma 8.3).

106

CHAPTER 9. ALMOST-SURE REACHABILITY

Then, γ′ = (q, µ1⊕µ2⊕µ′3, d)→∗ γ′f ∈ Uf , however, for each 1 ≤ i ≤ m, qi /∈ µ2 ⊕ µ′3 so

γ′(qi) = µ1(qi) = γ(qi) < ηi(q
i) hence ηi 6� γ′ which is contradictory to γ′ ∈ Pre∗(Uf).

Hence, the hypothesis sE∗Ũf
K

was flawed.

This lemma gives a general approach to decide almost-sure reachability cut-off for any
monotonous protocol, based on the exploration of a finite graph. The remaining challenge
consists in analyzing the resulting complexity, which will depend on the exact system and
objective considered.

9.4.3 Complexity bounds on covering

We consider first the complexity of the algorithm that can be deduced from Lemma 9.14,
in the case of almost-sure reachability of a coverability target Uf = {γ | γ(qf) > 0}. Using
results by Rackoff on the coverability problem in Vector Addition Systems [Rac78], we can
bound |Pre∗(Uf)| (then K =] [Qc] · |Pre∗(Uf)|) by a double-exponential in the size of the
protocol.

Due to the symmetry abstraction that leads us to consider only multiset of states as
configurations, the resulting symbolic graph of index K does not have another exponential
blow up, as stated by Lemma 9.15. Therefore, it suffices to solve a reachability problem
in NLOGSPACE [Sip97] on this doubly-exponential graph, that can be constructed on the
fly: this boils down to NEXPSPACE complexity with regard to the protocol’s size, hence
EXPSPACE complexity, by Savitch’s theorem [Sip97].

Lemma 9.15. Let Q be a finite set. Then

∣∣NQn ∣∣ =

(|Q|+ n− 1

n

)
≤ (2n)|Q|−1

Proof. Note Q = {q1 . . . qk}, then the following function is a bijection
NQk →

{
(i1, . . . ik−1) ∈ Nk−1

∣∣∣ 1 ≤ i1 < i2 < . . . < ik−1 ≤ n+ k − 1
}

γ 7→

j +
∑
j′≤j

γ(qj′)

1≤j<k

Hence, |NQn | =
(
k+n−1
k−1

)
= 1

(k−1)!

∏k−1
i=1 (n+ i) =

∏k−1
i=1

n+i
i =

∏k−1
i=1

(
1 + n

i

)
≤ (2n)k−1

Theorem 9.16. The following problem is in EXPSPACE:
ASCoverCutOff

INPUT: A non-atomic register protocol P and a final state qf ∈ Qc.
QUESTION: Whether there exists a cut-off for almost-sure reachability of

Uf = {γ | γ(qf) > 0}.

Proof. Pre∗(Uf) is exactly the set of configurations that can cover qf , i.e., configurations γ
from which there exists a path γ →∗ γ′ with γ′(qf) > 0. Recall also that it can be written
as an upward closure of minimal elements: Pre∗(Uf) = ↑ {η1, . . . , ηm}. Now, consider the

107

9.4. DECISION PROCEDURE

value K in Lemma 9.15: it is defined as K =] [Qc] · |Pre∗(Uf)|, with |Pre∗(Uf)| = maxi |ηi|
the maximal size of minimal configurations. The value of K can be bounded using classical
results on the coverability problem in Vector Addition Systems (VAS) [Rac78].

Intuitively, a b-dimensional VAS is a system composed of an initial b-dimensional vector v0

of naturals (the axiom), and a finite set of b-dimensional integer vectors (the rules). An exe-
cution is built as follows: it starts from the axiom and, at each step, the next vector is derived
from the current one by adding a rule, provided that this derivation is admissible, i.e., that
the resulting vector only contains non-negative integers. An execution ends if no derivation
is admissible. The coverability problem asks if a given target vector v = (v1, . . . , vb) can be
covered, i.e., does there exists a (possibly extendable) execution v0 v1 . . . vn = v′

such that, for all 1 ≤ i ≤ b, it holds that vi ≤ v′i.
Our distributed system P can be seen as a] [Qc]-dimensional VAS where each transition of

the contributor is modeled by a rule vector modifying the multiset of the current configuration.
Formally, one has to take into account that available rules depend on the data stored in the
shared register and that leader process can also perform transitions atomically. This can be
achieved by either considering the expressively equivalent model of VAS with states (VASS,
see e.g., [RY86]) or by adding O(] [D]) dimensions to enforce this restriction. Over such a
VAS(S), we are interested in the coverability of the vector corresponding to the multiset qf
(i.e., containing only one copy of qf and no other state). In particular, we want to bound
the size of vectors needed to cover qf , as it will lead to a bound on minimal elements ηi of
Pre∗(Uf), hence a bound on the value K.

Results by Rackoff (hereby as reformulated by Demri et al. [DJLL13, lemma 3]) state that
if a covering execution exists from an initial vector v0, then there is one whose length may be
doubly-exponential in the size of the input: singly-exponential in the size of the rule set and the
target vector, and doubly-exponential in the dimension of the VAS. Hence, for our distributed
system P, seen as a VAS, this implies that if qf can be covered from a configuration γ, there is a

covering execution whose length is bounded by some L in 2O(][Qc]·][D])O(][Qc]+][D])

. This bound
on the length of the execution obviously also implies a bound on the number of processes
actively involved in the execution (because at each transition, only one process is active).
Hence, we can deduce that if a configuration γ = (q, µ, d) can cover qf (i.e., there exists a
path γ →∗ γ′ with γ′(qf) > 0), then it is also the case of configuration γ′′ = (q, µ′′, d), which
we build as follows: ∀ q′ ∈ Q, µ′′(q′) = min{µ(q′), L}. That is, it also holds that there exists
a path γ′′ →∗ γ′′′ with γ′′′(qf) > 0.

By Lemma 9.14, for our algorithm to be correct, it suffices to consider the symbolic graph
of fixed protocol of index] [Qc] · L and to solve sequentially two reachability problems over
this graph. Let us study the size of this graph. Its state space is V = Qc×NQcL·][Qc]×2Qc ×D.

Hence, we have that:] [V] ≤] [Qc]·(2 · L ·] [Qc])
][Qc] ·2][Qc] ·] [D], which is doubly-exponential

in both the state space of the protocol and the size of the data alphabet (because L is). Since
reachability over directed graphs lies in NLOGSPACE [Sip97] with regard to the size of
the graph, we obtain NEXPSPACE-membership for reachability queries with regard to the
size of the protocol. Finally, by Savitch’s theorem [Sip97], we know that NEXPSPACE =
EXPSPACE, which allows us to define the following non-deterministic EXPSPACE algorithm:

1. For all nodes s1 ∈ Ũ0
K

and s2.

2. Guess a node s3 ∈ Ũf
K

.

108

CHAPTER 9. ALMOST-SURE REACHABILITY

3. Check that s2 is reachable from s1.

4. Check that s3 is reachable from s2.

9.4.4 General bounding scheme

Our previous EXPSPACE algorithm solves the almost-sure reachability cut-off problem for
a coverability objectives thanks to a result from Rackoff on coverability in vector addition
systems. We will now develop a general bounding technique, adapted to our systems, to give
general complexity for several classes of protocols and objectives.

The first natural idea to bound the size of Pre∗(Uf) consists in considering the abstraction
of any run γ →∗ Uf in the symbolic graph, applying symbolic path reduction from Lemma 8.4,
then constructing again a new path thanks to Lemma 8.3. We get this way a new run of
the form γ′ →∗ Uf with γ = γ′ and γ′ now of polynomial size. Assuming γ was minimal in
Pre∗(Uf) we can deduce some information on its size, since |γ′| is polynomial. First of all,

if]
[
st(γ)

]
= 1, then necessarily γ � γ′ and we conclude |γ| is also polynomial. Otherwise,

we cannot conclude since st(γ) and st(γ′) may be component-wise incomparable. In this last
case, we can at least derive that there exists q ∈ γ such that γ(q) < γ′(q) which is polynomial.
The other components remains though unbounded but we can iterate this reasoning, by fixing
already the size of the previously bounded component on q. We show in the next lemma that
the fixed protocol defined in previous Section 9.4.1 is well suited for this purpose.

Lemma 9.17 (Bounding base). Assume P is non-atomic, U0 and Uf are simple sets. Let
γ ∈ min Post∗Uf (U0) ∪min Post∗(U0) ∪min Pre∗(Uf), then

|γ| ≤ (1/2) · (18 ·] [Qc] ·] [Ql])
][Qc]

][γ]

In particular,

|γ| ∈ O (] [Ql])
O(][Qc])O(][Qc]) ⊂ 2O(|P|)O(|P|)

Before diving into the technical proof of this lemma, let us give some remarks about this
result:

• For short, this lemma proves that not only the minimal predecessor configurations for
a coverability objective (Rackoff bound), but any predecessor or successor minimal
element, for any simple objective, have at most doubly exponential size.

• As for Lemma 8.4, the actual bound does not depend on the number of involved values in
D, as opposed to the proof of previous Theorem 9.16 for the special case of coverability
objectives.

• The contributors and the leader have different roles: for a fixed set of contributor control
states, the bound is polynomial in the number of leader control states.

Proof. We first introduce an auxiliary function B, that will be useful to bound our configu-
ration sizes. For all l ≥ 1, we define

B(0, l) = 0

∀n ≥ 0 B(n+ 1, l) = P (l) +B
(
n, l(2P (l))][Qc]−1

)
with P (l) = (2 ·] [Qc] + 1)(l + 1) + 3 ·] [Qc]

109

9.4. DECISION PROCEDURE

Notice that P (l) only depends on Qc and not on Ql. Moreover, it is monotone. B is also
monotone:

• Monotone in l: we prove by induction on n ≥ 0, that for any l ≤ l′, B(n, l) ≤ B(n, l′).
Result is true for n = 0, for n = n′+1, we let k = l(2P (l))][Qc]−1 ≤ l′(2P (l′))][Qc]−1 = k′.
We apply induction hypothesis on n′ with k ≤ k′ to obtain B(n′, k) ≤ B(n′, k′) then
B(n, l) ≤ B(n, l′) since we also have P (l) ≤ P (l′).

• Monotone in n: for any n ≥ 0, and any l ≥ 0,

B(n+ 1, l) = P (l)︸︷︷︸
≥0

+B
(
n, l(2P (l))][Qc]−1︸ ︷︷ ︸

≥l

)
≥ B(n, l)

We prove now a stronger result by induction on] [γ],

|γ| ≤ B(] [γ] ,] [Ql])

• If] [γ] = 0, we have |γ| = 0, hence the result for the base case.

• Let us now consider γ ∈ min Pre∗(Uf) with] [γ] ≥ 1 (reasoning on Post∗(U0) or
Post∗Uf (U0) is similar), which means there exists a path of the form γ →∗ γf ∈ Uf .

We abstract this path into the symbolic graph, then reduce it (Lemma 8.4), and finally
reconstruct it again (Lemma 8.3). Contributor length is at most equal to
(2 ·] [Qc] + 1)(] [Ql] + 1) + 2] [Qc] then reconstruction can add up to] [Qc] processes.

The new resulting path is of the form γ′ →∗ γ′f with |γ| ≤ (2 ·] [Qc] + 1)(] [Ql] + 1) +

3] [Qc] = P (] [Ql]), γ = γ′ and γf = γ′f . This last property implies that γ′ ∈ Pre∗(Uf),
since Uf is a simple reachability objective.

There exists at least one q ∈ γ such that 0 < γ(q) ≤ P (] [Ql]) (otherwise γ′ would have
been smaller than γ which is minimal). Write k = γ(q), we have γ = (ql, µ ⊕ k · q, d)
and γq = ((ql, k · q), µ, d) as a configuration of P̃k. Thanks to Lemma 9.12, we notice

that γq ∈ min Pre∗(Ũf
k
) in P̃k, and we can apply the induction hypothesis since] [γq] =

] [γ]− 1. Note that induction hypothesis is applied on another protocol, with the same
control states for contributors, but with a refined set of control states for the leader,

which is now Q′l = Ql × NQck . This set is of cardinality] [Ql] ·]
[
NQck

]
, hence

|γ| = k + |γq| ≤ k +B(] [γq] ,]
[
Q′l
]
) = k +B(] [γ]− 1,] [Ql] ·]

[
NQck

]
) ≤ B(] [γ] ,] [Ql])

since k ≤ P (l),]
[
NQck

]
≤ (2k)][Qc]−1 and B is monotone.

We now proceed to bound B(n, l) in order to get the announced result. First, remark that
for l ≥ 1, P (l) ≤ 9 ·] [Qc] · l. Then l(2P (l))][Qc]−1 ≤ (18 ·] [Qc] · l)][Qc]. We show by induction
on n that:

∀n, l B(n, l) ≤
(
n−1∑
i=0

(1/2)i+2

)
︸ ︷︷ ︸

≤1/2

(18 ·] [Qc] · l)][Qc]
n

110

CHAPTER 9. ALMOST-SURE REACHABILITY

• For n = 0, this sums up to B(0, l) ≤ 0.

• For n ≥ 0,

B(n+ 1, l) ≤ 9 ·] [Qc] · l +B(n, l(18 ·] [Qc] · l)][Qc]−1)

≤ 9 ·] [Qc] · l +

(
n−1∑
i=0

(1/2)i+2

)(
18 ·] [Qc] · l(18 ·] [Qc] · l)][Qc]−1

)][Qc]n

≤ 9 ·] [Qc] · l +

(
n−1∑
i=0

(1/2)i+2

)
(18 ·] [Qc] · l)][Qc]

n+1

We conclude the proof by noticing that 22n+1
/2n+2 ≥ 1 so for] [Qc] ≥ 2,

9 ·] [Qc] · l ≤ (9 ·] [Qc] · l)][Qc]
n+1 ≤ (1/2)n+2(18 ·] [Qc] · l)][Qc]

n+1

.

A first immediate consequence of this doubly exponential bounding, consists in giving an
explicit bound on tight cut-off values, for any simple objective, thanks to Corollary. 9.4 on
the cut-off existence.

Corollary 9.18. Assume P is a non-atomic protocol. Then P has a tight cut-off for almost-
sure reachability of any simple objective, of at most doubly exponential size.

Simulating the system for this particular value, or applying again the same technique as
for coverability objective, lead us to a general EXPSPACE procedure:

Theorem 9.19. The following problem is in EXPSPACE:
ASConsensusCutOff

INPUT: A non-atomic register protocol P and a final state qf ∈ Qc.
QUESTION: Whether there exists a cut-off for almost-sure reachability of

Uf = {γ | γ(qf) = |γ|}.

111

9.4. DECISION PROCEDURE

112

Chapter 10

Extensions and discussions

As an illustration to the previous chapters, we describe several extensions of our framework
for which previously developed techniques can be applied. We conclude our study in the last
section, by a summary of complexity results, in the extended cases.

10.1 Model checking

In [DEGM15], techniques based on the symbolic graph are developed to address the question
of the liveness property in a non-atomic protocol under a non-deterministic scheduler, with
coverability objective, and an extra Büchi automaton, encoding an LTL formula. This allows
the authors to consider the model checking of network protocols, in various settings, where
leader and contributor can be represented by finite state machines or pushdown systems.
Intuitively, given an LTL formula ϕ and a network protocol P with transition system (Γ,→),
we want to check whether there exists an infinite run π ∈ Γω satisfying ϕ. Existence of such
a run is then proved to be equivalent to the existence of a particular lasso run π = π1 · πω2
with π1 and π2 both being finite paths of P. Analyzing the existence of the symbolic graph
in this context is sufficient, as we can consider enough processes in each state to keep the
system unblocked, as the extra processes can be considered as “extra noise” and used over
time to unlock the run periodically. Additionally, we can state that the existence of such an
infinite run implies a cut-off property, as we can always add new processes, which will mimic
(copycat) an existing process in the infinite run.

However we may argue that such infinite run, that visits infinitely often some target state,
does not provide a cut-off for positive probability. As a matter of fact, we check only the
existence of one single infinite run. As opposed to a finite prefix that can witness a positive
probability reachability, a single infinite run may have probability 0 to occur. From a non-
probabilistic perspective, processes and scheduler have to cooperate in the long run, which
may seem unlikely to happen.

Therefore, it may be interesting to consider almost-sure repeated reachability and repeated
reachability with positive probability. In the first case, the analysis is similar to the almost-
sure reachability:

• First of all, let us denote by �♦A the set of infinite paths that visit the set of configura-
tions A infinitely often. Basically, ♦A represents the set of infinite runs that eventually
reach A, ♦A = Γ∗ ·A · (Γ∗] Γω), and �♦A = (Γ∗ ·A)ω.

113

10.2. R-REGISTER PROTOCOL

• As in Lemma 7.22, we consider (Γ, p) a probabilistic transition system of P, and show
that as for Pn(♦A), qualitative values of Pn(�♦A) do not depend on p. Indeed, such
property depends only on the support of p which is determined by the specification of P.
In particular, we can characterize almost-sure repeated reachability by bPn(�♦A)c = 1
which is equivalent to the following property on Pre and Post:

Post∗(U0 ∩ Γn) ⊆ Pre∗(A)

Intuitively, we replaced operator X 7→ Post(X\A) by the more simple mapping Post(·),
which means reachability should still hold after reaching A. Since Γn is finite, there
exists a positive probability to reach A again from any reachable configure γ. Indeed,
this value is bounded from below by min{P({γ}Γ∗ ∩ ♦A)︸ ︷︷ ︸

>0

| γ ∈ Post∗(A)︸ ︷︷ ︸
][·]<∞

} > 0

• Let A = Uf be a simple objective. Then, Pre∗(Uf) is upward-closed. We adapt the proof
of Corollary. 9.4 to show that either] [Qc] · |Pre∗(Uf)| is a positive cut-off, or |Post∗(Uf)|
is a negative cut-off for almost-sure repeated reachability. Thanks to Lemma 9.17, we
can also see that any tight cut-off is at most doubly exponential, and obtain an equivalent
EXPSPACE decision procedure.

The second question, about the existence of a cut-off for positive probability of repeated
reachability is surprisingly harder, and remains currently open: a positive probability indeed
corresponds to finding a finite path from U0 to some configuration γ from which repeated
reachability holds almost-surely. If we denote by B the set of such configurations, we can
remark that B is not upward closed: consider for example filter protocol Fn example of
Figure 9.4 with repeated reachability objective Uf = {γ | γ(sn) = 0}. Because of this lack
of regularity, we cannot directly answer this last question, which could be possibly solved by
additional work based on ideals, or through the use of the refined symbolic graph to keep
some coordinates low.

10.2 r-register protocol

We have mainly developed tools for the analysis of non-atomic protocols, where processes
communicate through a single shared variable. On the other side, the analysis of atomic
protocols seems to be much harder, as one can expect that atomicity allows us to encode
arbitrary Petri Nets. One may argue that there still remains a big gap between theoretical
results on the cut-off existence, that are stated in the monotonous case, and algorithms and
bounds that are only valid for non-atomic protocols. One may ask, if some monotonous sys-
tems, but not necessarily non-atomic still enjoy good combinatorial properties and if previous
algorithms can be lifted to more complex frameworks. This section explores one possible way
of improving our model by the use of several registers.

10.2.1 Tools enhancement

First of all, let us remark that our previous copycat Lemma 7.18 can be more generally stated
this way:

Lemma 10.1 (Copycat lemma improved). Assume P involves only stuttering operations for
contributor, namely, for all (q, f, q′) ∈ Tc, (f · f) = f. Then P is monotonous.

114

CHAPTER 10. EXTENSIONS AND DISCUSSIONS

The proof is the same as for the original lemma, as the copycat can mimic an already
existing process thanks to this stuttering property.

On the other hand, bounds and algorithms were later given thanks to a path reduction
in the symbolic graph, by Lemma 8.4. Recall the proof of this lemma, the crucial property
is the ability for a fixed set of contributor states (in the support) to produce in one step the
desired value on the shared register, in order to make the leader or the support progress. We
relax this notion now, to allow a fixed number of steps.

Definition 10.2. Let k ∈ N>0 and X ⊆ Op (D). X is k-valued if for all d ∈ D, all Y ⊆ X
and f ∈ Y +, there exists f′ ∈ ∪i≤kY i such that

f(d) = f′(d)

P is k-valued if Tc ⊆ Qc ×X ×Qc for some k-valued set of operations X.

Intuitively, for any current value d and sequence of operations applied on d, we can extract
a (possibly re-ordered) sequence of operations of length at most k, that has the same effect
on d. As expected the set of non-atomic operations OpR,W (D) is 1-valued: proof is done by
picking the last write operation, if any, or any read operation otherwise.

10.2.2 Operations over r registers

Before explaining how previous results can be generalized to k-valued monotonous protocols,
we give below an example of concrete k-valued set of operations, that is still stuttering.

Definition 10.3 (Operations over a r registers). Let D a set and r ≥ 1. For i, j ∈ [1, r] and
d ∈ D, we define the following operations over Dr.

Wi (d) :

{
dom (Wi (d)) = Dr

d′ 7→ d′[i/d] = d′[1] · · · d′[i− 1] · d · d′[i+ 1] · · · d′[r]

Ri (d) :

{
dom (Ri (d)) = Di−1 × {d} ×Dr−1−i

d′ 7→ d′

Mi→j :

{
dom (Mi→j) = Dr

d′ 7→ d′[j/d′[i]] = d′[1] · · · d′[j − 1] · d[i] · d′[j + 1] · · · d′[r]

We denote by OpR,W,M (Dr) the set of such register operations.

Our initial shared register is now split into r coordinates, each of them being called
(abusively) a register. Non-atomic read and write operations are now done on one coordinate
at a time, leaving the other registers unchanged.

As one can expect, when restricting to read and write operations, which are in some sense
still non-atomic, we achieve r-valued monotonicity. This next result generalizes the case r = 1
studied in the previous chapters.

Lemma 10.4. For any r, and P such that Tc ⊆ Qc × OpR,W (Dr) × Qc, P is an r-valued
monotonous protocol.

115

10.2. R-REGISTER PROTOCOL

Proof. First of all, P is monotonous, as OpR,W (Dr) is stuttering. Let us consider f ∈ Y ∗

with Y ⊆ OpR,W (Dr) and d ∈ Dr. For each i ∈ [1, r], if d[i] = (f(d))[i]) we define fi = Id.
Otherwise, there exists fi = Wi (d[i]) ∈ Y .

Hence, f = f1 · · · fr ∈ Y k with k =] [{i | d[i] 6= (f(d))[i]}] ≤ r.

The previous proof handles the read and write case. However, the newly introduced move
(or copy) operation can also be stuttered, so monotonicity is preserved. We prove in the next
lemma that this new operation also keeps our protocol k-valued, where k is a polynomial in
r.

Lemma 10.5. For any r, and P such that Tc ⊆ Qc ×OpR,W,M (Dr)×Qc, P is an r3-valued
monotonous protocol.

Proof. First of all, P is monotonous, as OpR,W,M (Dr) is stuttering. We consider f = f1 · · · fn
with for all i, fi ∈ Y ⊆ OpR,W,M (Dr). We will construct another sequence of f′i1 , . . . f

′
ik

with
k ≤ r2, such that f(d) = (f′i1 · · · f′ik)(d).

Without loss of generality, we make the two following assumptions:

• There are no read operations in f, otherwise, we can remove them, since they have no
side effect.

• The number l of write operations is smaller than the number r of registers, by pigeon-
hole principle (otherwise, some written value was useless). The remaining write oper-
ations can be seen as extra registers indexed from r + 1 to r + l with a unique move
operation. For example, the i-th (1 ≤ i ≤ l) write operation Wji (d′i) is replaced by
move operation Mr+i→ji , assuming the initial value d satisfies d[r+ i] = d′i. We denote
by r′ = r + l ≤ 2r the total amount of registers.

Thus, the rest of the analysis can be done with move operations only, whose sequence performs

a mapping m from [1, r] to [1, r′]. Let us denote with Z ⊆ OpR,W,M

(
Dr′
)

the set of available

move operations. Z can be seen as a graph, with node set [1, r′] and edges (i, j) ∈ [1, r′]× [1, r]
for any Mi→j ∈ Z.

We consider the strongly connected components of Z. Inside such a strongly connected
component C, whenever an internal edge is used, it is erasing an internal value. Moreover,
] [C] − 1 values can be preserved inside C by moving them sequentially along a cycle of C.
One sequential move (shift) of all values requires] [C] − 1 operations, hence] [C] (] [C] − 1)
to perform a complete cycle of the values.

For each i ∈ [1, r], the final value f(d)[i] = d[m(i)] is obtained by a finite path in Z. We
can assume this path is cycle-free, and whenever, the path uses internal nodes of a strongly
connected component C, it preserves all values except 1, which can be achieved with at most
] [C] (] [C] − 1) operations. With additional move operations between two components, we
can assign register i its final value in at most r2, hence a total number of r3 for the whole
mapping m.

As shown on examples of Figure 10.1, there exists a sequence of write and move operations,
that cannot be expressed with less than a cubic number of operations. We conclude that up
to a multiplicative constant, the r3 bound given in the previous lemma is optimal.

116

CHAPTER 10. EXTENSIONS AND DISCUSSIONS

(2)
1

(3)
2

(4)
3

(n)
n

(n)
n− 1

(n− 1)
n− 2

(a) r = n registers, Z = {(i, (i mod n) + 1)}, and desired mapping m : i 7→ min(n, i+ 1). Only value
1 can be erased. We have to shift all values to the right n− 1 times. Each shift requires n− 1 move
operations, hence the whole mapping requires (n− 1)2 move operations.

1 2 3
(n− 2)
n

(n− 2)
n− 1n− 2

2n+ 1 2n+ 2 2n+ 3 3n− 2 3n− 1 3n

n+ 1
(2n+ 1)

n+ 2
(2n+ 2)

n+ 3
(2n+ 3)

2n− 2
(3n− 2)

2n− 1
(3n− 1)

2n
(3n)

n write operations

[1, n]→ [1, n− 2]

i 7→ min(i, n− 2)

[n+ 1, 2n]→ [2n+ 1, 3n]

i 7→ i+ n

(b) r = 2n and n additional write operations (pseudo registers 2n + 1 to 3n). Because of the middle
component cycle, that has to keep n − 2 of its initial values, each assignment i ∈ [n + 1, 2n] 7→ i + n
will require a first write inside the cycle, then n− 1 shifts (with n− 1 operation each), hence a global
cost of at least n(n− 1)2 ∼ r3/8 ∈ Ω(r3) operations.

Figure 10.1 – Examples of directed graphs associated with Z, as a set of move operations
Y = {Mi→j | (i, j) ∈ Z}, with a possible mapping m : [1, r] → [1, r]. For a node i ∈ [1, r],
we label the node with the desired value for the mapping by (m(i)). We omit the label when
m(i) = i.

117

10.2. R-REGISTER PROTOCOL

10.2.3 Discussion on the r-register extension

We revisit below previous results when considering k-valued monotonous protocols, instead
of non-atomic ones.

Lemma 10.6 (Diameter of the symbolic graph). Assume P is k-valued monotonous. If two
nodes s and s′ are connected in GP , then there exists a path from s to s′ of contributor length
smaller than

k · (2 ·] [Qc] + 1) · (] [Tl] + 1) + 2 ·] [Qc]

The proof is similar to original Lemma 8.4 but between two transitions of the leader, we
may need up to k contributor transitions, to achieve the next data value required by the
leader. Since contributors may not be able to produce the same register values between two
leader steps (even with the same support), we can now only bound the number of leader steps
by] [Tl] instead of simply] [Ql]. Note that in the leaderless case, this quantity remains small,
otherwise, it can be of the same magnitude as] [D]k.

Lemma 10.7 (Bounding base). Assume P is k-valued and monotonous, U0 and Uf simple
sets. Let γ ∈ min Post∗Uf (U0) ∪min Post∗(U0) ∪min Pre∗(Uf), then

|γ| ∈ 2O(k·|P|)O(k·|P|)

In the leaderless case, since] [Tl] = 0, we can even give a bound that is polynomial in k:

|γ| ≤ (1/2) · (6 · (2k + 1) ·] [Qc] ·] [Ql])
][Qc]

][γ]

As a consequence, tight cut-off upper bounds and EXPSPACE procedure can be lifted to
k-valued monotonous protocols, and even to protocols over r registers with read, write and
move operations:

Corollary 10.8. The following problem is in EXPSPACE:

ASCoverCutOff

INPUT: An integer r ∈ N, a register protocol P with operation set OpR,W,M (Dr) and
a final state qf ∈ Qc.

QUESTION: Whether there exists a cut-off for almost-sure reachability of
Uf = {γ | γ(qf) > 0}.

Moreover, such a tight cut-off is doubly exponential.

Proof. Even if r is provided in binary form, one can first ensure that any of the r registers is
used so that1 r ≤ 2 max(] [Tl] ,] [Tc]) ≤ 2|P| (otherwise, we can rewrite P in polynomial time
to make use of r′ < r registers). Moreover, P is r3-valued, so

max(|U0|, |Uf |) ∈ 2O(8·|P|4)O(8·|P|4)

gives a doubly exponential bound for tight cut-off, hence an EXPSPACE decision procedure.

1Remember that a move operation may involve two different registers, hence a factor 2.

118

CHAPTER 10. EXTENSIONS AND DISCUSSIONS

10.2.4 Comparison with non-atomic protocols

One may notice that multiple registers can be emulated through the use of the leader in the
following way. We encode the current value d ∈ Dr in the state of the leader, and allow him to
write messages on the shared register, of the form ”d[i] equals v” for any i ∈ [1, r] and v = d[i].
When reading such message, the leader can also move to a state encoding the updated value.
From the point of view of contributors, any operation Ri (d′) (resp Wi (d′)) can be converted
into reading (resp writing) the message ”d[i] equals d′”. Any path in the r-register protocol
can be converted in a path in the described 1-register protocol and conversely, therefore,
positive probability and almost-sure reachability properties are preserved.

However, this method has several drawbacks:

• First of all, this encoding can only deal with read and write operations.

• From a combinatorial point of view, the new state space of the leader Q′l is now of car-
dinality] [Ql]×] [D]r which can be huge. In the general case, the previous bound is also
exponential in r, but leaderless case or other fragments may feature lower complexity.

• Last but not least, this encoding does not work for leaderless protocols, where we can
extract a polynomial bound in r, and independent of] [D].

In the leaderless case, such reduction seems impossible, and we conjecture that r-register
protocols are indeed more expressive than non-atomic (or 1-register) protocols.

10.3 Process identifiers

As noticed before, non-atomic protocols allow us to bound the diameter of the symbolic graph
by a quantity that only depends on the state space of the protocol, and not on the domain
size] [D], nor the number of transitions] [Tc] +] [Tl]. First of all, this means we can encode
in only one transition a read operation that only checks that the current register value is
different from a given value d, by adding several transitions (q1, R(d′), q2) for any d′ ∈ D\{d}.
This also means that D can virtually encode an infinite number of values, without any impact
on the complexity results.

We argue that our techniques can be adapted to encode processes with unique identifiers
(pid). We can indeed equip our protocols with a new write operation, writing the identifier
of the current process to the shared register. If we add another operation checking that the
process id corresponds to the one written in the shared register, monotonicity will be broken.
However, we can still allow each process to execute an operation only if the shared register
value differs from the process identifier.

Intuitively, such systems will allow the election of a leader process, but this single process
will not be able to check that it is indeed the leader. We do not study further this model as
it requires to redefine our whole transition system to incorporate unique process identifiers,
then to redefine the well quasi order to compare configurations.

10.4 Conclusions

As a partial conclusion to the four last chapters, we present in Table 10.1 a summary of the
bounds stated for positive reachability and almost-sure reachability of simple objectives in
r-register protocols with read, write and move operations.

119

10.4. CONCLUSIONS

Positive probability Almost-sure

Characterization (Γn ∩ U0) ∩ Pre∗(Uf) 6= ∅ Post∗Uf (U0 ∩ Γn) ⊆ Pre∗(Uf)

Tight positive worst case Polynomial
at least linear
(even when L1)

at most
2EXP

Tight negative worst case Constant 1
at least EXP
(even when L1)

Decision problem
PTIME
(for L1-cover [EGM13]),
NP-complete

PSPACE-hard (even when
L1),
EXPSPACE

Table 10.1 – Summary of the presented results for reachability cut-offs for arbitrary r-register
protocols. Hardness results are still valid in the fragment (L1) of non-atomic leaderless pro-
tocols with 1 register.

As discussed in Section 10.1, these results can easily be transposed to the almost-sure
repeated reachability case in order to explore protocol model checking. As discussed in Sec-
tion 10.3, similar results can be obtained when adding the ability to manipulate process
identifiers inside registers, though the concrete study of this model is left as further work.
We can also notice a complexity gap between our EXPSPACE procedure and the PSPACE-
hardness of the decision problem. In terms of tight cut-offs, this corresponds to a gap between
the worst known case of an exponential (negative) cut-off and the general doubly exponential
bounds on cut-off extracted from the general bounding scheme from Lemma 9.17.

As testified by our several constructions and experiments, we haven’t managed to build a
cut-off, or minimal elements (in the Pre∗(Uf)) bigger than a simple exponential. A reasonable
conjecture of a simple exponential bound on |Pre∗(Uf)| would close this complexity gap. As
a matter of fact, we saw in Theorem 9.16 that our procedure is based on the refined symbolic
graph of index] [Qc] × |Pre∗(Uf)| whose exploration can be done in NLOGSPACE in its
size. With such a conjecture, this graph would be of exponential size (instead of doubly
exponential), thus giving a PSPACE procedure.

Another related further work is the study of protocols composed of pushdown systems,
as considered in [EGM13]. In their work, the authors show that in the non-deterministic
scheduler setting (positive reachability probability), the reachability problem is NP-complete
if either the leader or the contributor is a pushdown machine, and becomes PSPACE-complete
if both leader and contributor are pushdown machine.

120

Chapter 11

Toward Strategy Synthesis

In this chapter, we try to address the local strategy synthesis problem. More precisely, we
are interested in the (partial) determinization of under-specified protocols, in order to satisfy
a given objective. Strategy synthesis is often considered from a global point of view, where
power is given to the scheduler which can observe the whole system and choose the next
transition accordingly.

Here, the scheduler is considered as a source of uncertainty, that cannot be controlled.
We adopt a more distributed approach, where strategies are given to all processes (or agents)
with their restricted observation power. Since processes are running the same automaton, it
is reasonable to consider that the same local strategy is distributed among all agents. Once
a strategy is defined over an under-specified network, we can consider the resulting system,
which would be another protocol on which we can apply previously seen techniques.

We introduce concepts similar to the first part of the thesis, namely actions, then allowed
actions, and finally strategy classes. Since we are looking at qualitative reachability ques-
tions, the exact probability distributions involved in a mixed strategy are not relevant, so our
randomization only consists in picking a support of actions. In a non-stochastic context, this
model would correspond to non-determinism, that is solved by the scheduler. Here, the sched-
uler has a stochastic behaviour, and will be pick an available transition at random. Several
strategy classes will be considered which can require more or less memory and randomization.

The chapter is divided into three sections: we first introduce the local strategy semantics
in the framework of non-atomic protocols, and justify why our analysis can be done without
taking exact probability values into account. Then, we address the characterization of local
strategies ensuring a positive cut-off, in the two simple cases of reachability and safety in a
leaderless protocol with a coverability objective.

11.1 Definitions

11.1.1 Allowed actions and randomization

In the rest of the chapter, P = (Ql, Qc, D, d0, ql, qc, Tl, Tc) is a given shared register protocol.
We denote for simplicity Q = Ql]Qc and T = Tl] Tc.

As in Definition 3.1, we define a set of allowed actions, and build strategies over these
allowed actions. Here actions are subsets of transitions of P. When an agent chooses an
action, the scheduler will be in charge of picking the exact transition to be played, non-

121

11.1. DEFINITIONS

deterministically or randomly. We additionally require that the subset of transitions are
defined on the same domain as the initial transitions, thus no agent can block a run (to a
finite prefix) that was initially live (infinite run).

Definition 11.1 (Actions and allowed transitions). Let q ∈ Q be a state of P. A subset
A ⊆ T is called an action from q if the two following conditions hold:

• All transitions start from q: A ⊆ {(q, f, q′) ∈ T | f ∈ Op (D) , q′ ∈ Q};

• Register operations of A are globally defined on the same domain:⋃
(f, q′)/

(q, f, q′) ∈ A

dom (f) =
⋃

(f, q′)/

(q, f, q′) ∈ T

dom (f)

We denote by Act(q) the set of actions from q.
A set of allowed actions for protocol P, from state q, is defined as

Allow(q) ∈ 2Act(q)\{∅}

We have seen in the previous chapters that having more than one transition from a given
state with the same register operation corresponds to some non-deterministic move that is
resolved by the scheduler. In a probabilistic setting, this means that if action A contains two
transitions that both accept the same register value d, the transition with value d will be
randomized.

Graphically, when more than one action is allowed from a state, each action A is repre-
sented by an outgoing edge to an intermediary node, with several outgoing edges for each
transition t ∈ A. This representation is similar to the stochastic nodes of our stochastic
games, as the choice of the exact transition to be taken is left to the environment, or sched-
uler. For the sake of simplicity, when] [Allow(q)] = 1, that is to say when only one action
A is allowed, we omit the representation of action A and its intermediary node, and directly
represent outgoing transitions from q. However, we have to keep in mind that the choice of
the exact transition taken from A is left to the scheduler, which will choose at random.

For example, let us consider the simple protocol of Figure 11.1. When current regis-
ter value is 0 and action A1 is played, two transitions are available: (q0,R (0) , q0) and
(q0,R (0) , q1). In this case, the scheduler will choose (at random) which transition effec-
tively takes place.

11.1.2 Local strategies

We proceed now to define local strategies. Here, the word local means that strategies can
only see a history for a given player, that is to say a word h ∈ Q+.

Intuitively, a strategy assigns to each history a decision, which is a distribution over the
allowed actions. Since we are considering qualitative questions, from a state q only the support
δ ⊆ Allow(q) ⊆ Act of the distribution is relevant. The exact transition to be taken is resolved
in the following way:

• A process is chosen, which provides (thanks to its local strategy) a distribution sup-
port δ.

122

CHAPTER 11. TOWARD STRATEGY SYNTHESIS

q0

0

A1 A2q1

q⊥

qf

R (1)

R (0)

R (0)

R (0)

R (1)
W (1)

Figure 11.1 – Example of a leaderless non-atomic protocol, with two allowed ac-
tions from state q0: A1 = {(q0,R (0) , q0), (q0,R (0) , q1), (q0,R (1) , q0)} and A2 =
{(q0,R (0) , q⊥), (q0,R (1) , qf)}

• An action A ∈ δ is chosen.

• A transition t ∈ A is chosen among valid transitions1.

Each of these three choices is made by the scheduler, at random. Again, we argue that
exact probability values are irrelevant and that we can focus directly on the set of transitions
{t ∈ A | A ∈ δ} a strategy can provide to the scheduler:

Definition 11.2 (Local strategies for a protocol). A mapping σ : Q+ → 2T is a local strategy
for P and Allow if for all h ∈ Q+, σ(h) =

⋃
A∈δ A for some non-empty set δ ⊆ Allow(last(q)).

We denote by S the set of local strategies for P and Allow, or strategies for short when P and
Allow are clear from the context.

We can then define sub-classes of strategies as in Definition 3.3.

Definition 11.3. σ is pure, when for all h ∈ Q+, σ(h) ∈ Allow(last(q)). We define the
following classes:

• S ⊆ S the class of pure strategies;

• M(k) for any k ∈ N the class of strategies requiring a memory of size k;

• M = M(0) the class of memoryless strategies;

• F = ∪k′≥0M(k);

• We also define their pure counterpart: M(k) = M(k) ∩ S, M = M ∩ S and F = F ∩ S.

Remark 11.4. For any q ∈ Q, Act(q) is stable by union, so Act(q) also contains all ran-
domized actions. However, they may not be allowed, depending on the actual choice of Allow
function and the strategy class we are considering. When for all state q ∈ Q, Allow(q) is
stable by union, pure and randomized classes coincide. Indeed, in the qualitative context, a
randomized strategy only picks the support of action distributions.

Remark 11.5. As for our stochastic games, agents do not see played actions inside the
history, nonetheless the protocol P can be modified to encode this information inside the
history. Moreover, agents do not see the register value before playing, as it would break
monotonicity of the resulting protocol.

1 Remember that for a transition t = (q, f, q′) ∈ A to be valid, the current register value d must be in
dom (f).

123

11.1. DEFINITIONS

Agents neither see past register values, though this information can be encoded in the cur-
rent state, as the past transitions. Indeed, we can transform each transition t = (q,R (d) , q′)
(resp. t = (q,W (d) , q′)) in several transitions t′ = ((q, d′),R (d) , (q′, d)) (resp. t′ =
((q, d′),W (d) , (q′, d))) for all possible d′ ∈ D.

11.1.3 Semantics

Once we are given a local strategy σ, we are able to build runs of our protocol that satisfy
the local strategy. Notice that agents have partial observation, since they are given only
the history about their own visited states along the run. A formal definition of such runs is
developed below.

Definition 11.6. Let σ a strategy, and π ∈ paths (→), we say that π agrees with σ if there
exists ρ ∈ (NQ+

)|π|, a sequence of multisets of histories, such that

• first(ρ) = st(first(π))

• For all i ∈ [1, |π|], there exists t = (q, f, q′) ∈ T , h ∈ Q∗ such that

– t ∈ σ(h · q),
– π[i]

t−→ π[i+ 1]

– ρ[i]⊕ (h · q · q′) = ρ[i+ 1]⊕ (h · q).

We will denote with agree (σ) the set of paths that agree with σ, and ρ will be called the
corresponding sequence of π and σ.

Intuitively, we attach to the finite run π a sequence ρ of the same length that stores at any
time, the growing histories for each process. Note that these histories have various lengths,
depending on how much a single process has already moved. At a given time i ∈ [1, |π|],
transition t = (q, f, q′) is taken if one of the processes in state q has an history h · q for which
strategy σ allows t. If this condition holds, the transition is triggered, so ρ[i + 1] is defined
from ρ[i] by replacing one occurrence of h · q by the new history h · q · q′.

In particular, we can check that, at any time, when removing historical information from
ρ, we get back the multi-set of states of processes:

∀i ∈ [1, |π|]. ∀q ∈ Q. π[i](q) =
∑
h∈Q∗

ρ[i](h · q)

Under the prefix relation v, we can consider the set of maximal runs

max
v

agree (σ) =
{
π ∈ agree (σ)

∣∣ ∀π′ ∈ Q∗]Qω π v π′ ⇒ π = π′
}

As a denumerable intersection of measurable sets, max agree (σ) is proven to be measurable
for P. This allows us to define a probability measure over this strategy:

Definition 11.7. Let n ∈ N, Π ⊆ paths (→) a measurable set of paths, and σ a local strategy.
If Pn(max agree (σ)) > 0, we define

Pσn(Π) = Pn
(

Π

∣∣∣∣ max
v

agree (σ)

)
=

Pn (Π ∩ max agree (σ))

Pn (max agree (σ))

Otherwise, we let Pσn(Π) = 0.

124

CHAPTER 11. TOWARD STRATEGY SYNTHESIS

Remark 11.8. Another possible way of defining Pσn would consist in defining a new protocol
P 〈σ〉 from P, with a new state space Q′c = Q+

c , and T ′c = {(h · q, f, h · q · q′) | (q, f, q′) ∈
Tc ∩ σ(h) ∧ h ∈ Q∗} and a similar definition for Q′l and T ′l . Intuitively, we would store, for
each process its whole history h as the current state, then allow only transitions from σ(h).
We can easily check that each valid path of this new protocol, can be projected by taking last
state for each history in each configuration, to a path in P that agrees with σ. However, all
our study is based on a formal model where protocols have a finite state space. In particular,
technical difficulties may occur when trying to consider a well quasi order on configurations in
infinite dimensions, or when trying to prove that qualitative properties do not depend on the
exact transition probabilities (Lemma 7.22). In fact, these technical difficulties are avoided
by directly considering the conditional probability. In particular, visiting the same state twice
but with different memory states may infer different transition probabilities.

However, we keep in mind the intuition that for a finite memory local strategy σ, we could
build a protocol P 〈σ〉 with a finite number of states, having the same qualitative properties as
for Pσn(·).

The previous definition makes implicit the choice of a probabilistic transition system (Γ, p)
for P in order to define Pσn. However, as in Lemma 7.22, we characterize qualitative properties
without having to consider the exact probability values of p:

Lemma 11.9. Let A ⊆ Γ and σ ∈ S. The property dPσn(♦A)e = 1 does not depend on the
actual values of p. Moreover, we have the following characterization:

dPσn(♦A)e = 1⇔ Pσn(♦A) > 0⇔ (U0 · Γ∗n) ∩ (Γ∗n ·A) ∩ agree (σ) 6= ∅

Proof. The proof is immediate by applying the previous definition to state that

Pσn(♦A) > 0⇔ Pσn(♦A ∩max agree (σ)) > 0 ∧ Pσn(max agree (σ)) > 0

11.1.4 Cut-off property

Our main goal is the synthesis of strategies that will ensure a positive cut-off. This leads to
the following definition.

Definition 11.10. Let σ be a local strategy, I a sub-interval of [0, 1] and A a set of configu-
rations. We say that σ is a cut-off strategy for probability interval I and objective A, if there
exists N ∈ N such that for all parameter n ≥ N , Pσn(♦A) ∈ I.

As before, we define three qualitative cut-off properties, namely {0}, (0, 1] and {1} cut-
offs for a simple reachability objective Uf , respectively for safety, positive reachability and
almost-sure reachability.

The sections 11.2 and 11.3 respectively focus on the first two problems, in the restricted
non-atomic, leaderless case, with coverability objective Uf .

As opposed to the cut-off decision problem, these two problems are not dual in the local
strategy synthesis framework.

125

11.2. REACHABILITY

11.2 Reachability

We study first the local synthesis problem for positive reachability, that is to say, whether
there exists a cut-off strategy σ for positive reachability. In this setting, the scheduler is
cooperative and we are interested in the existence of a single path that agrees with σ.

11.2.1 Mixed strategies

As the local strategy will cooperate with the scheduler, a reasonable strategy is to play as
many actions as possible, to enable as many paths as possible. This intuition is summarized
below.

Lemma 11.11. Let σ, σ′ ∈ S two strategies such that

∀h ∈ Q+ σ(h) ⊆ σ′(h)

Then agree (σ) ⊆ agree (σ′).

Proof. Immediate: for any π ∈ agree (σ), we consider a corresponding sequence of multiset of
histories ρ ∈ (NQ+

)|π| from Definition 11.6 and check that is valid for path π′.

Let us denote by Reach ⊆ S the set of cut-off strategies for positive probability of covering
qf . Then, the following theorem states that a memoryless randomized strategy suffices.

Theorem 11.12. Let σ be the memoryless strategy playing all allowed actions at random,
and assume that Reach 6= ∅. Then σ ∈ Reach. In particular, Reach ∩M 6= ∅.

Proof. Let σ′ ∈ Reach, then there exist π ∈ paths (→)∩ agree (σ′), γ0 ∈ U0 and γf ∈ Uf such
that π : γ0 →∗ γf .

For all h ∈ Q+, σ′(h) ⊆ σ(h), so and π ∈ agree (σ) by Lemma 11.11, thus σ ∈ Reach.

The previous theorem basically states that the existence of a mixed cut-off strategy for
positive probability can be reduced to the decision problem of a positive cut-off in the un-
derlying protocol alone, which belongs to P for the particular case of non-atomic leaderless
coverability.

11.2.2 Pure strategies

Another approach, studied in [BFS15], considers pure strategies only. In their context, they
show that polynomial memory suffices for a pure strategy to cover qf , if such strategy ever
exists.

Theorem 11.13. Assume Reach∩S 6= ∅. Then Reach∩M(P (|P|,] [Allow])) 6= ∅, where P
is a polynomial.

The proof is very similar to the one of [BFS15, proposition 2], yet using another model,
which only allows certain forms of actions2 and where players can see the local actions.

We argue that these differences are not relevant for the announced result, and give a
sketch of the proof.

2In the context of lossy broadcast messaging, each local strategy chooses which message to send, and which
transition to take when receiving a message. This corresponds to actions of the form {(q,W (d) , q′)} and
{(q,R (d1) , q1) . . . (q,R (dn) , qn)} with di all different.

126

CHAPTER 11. TOWARD STRATEGY SYNTHESIS

h1

q0

h2

q0

h2

∀h h1 6v h⇒ σ′(h) = σ(h)

σ′(h1−) = σ(h2−)

Figure 11.2 – Illustration of the proof of Theorem 11.13, when h1 v h2, first(h1) = first(h2)
and subtrees rooted in h1 and h2 contain the same set of important nodes (in red). Since, h1

and h2 have the same final state, we can replace strategy from subtree rooted in h1 by the
one rooted in h2 (same allowed actions). This is possible since all the important nodes are in
the subtree rooted in h2 or outside the subtree rooted in h1, therefore all removed nodes and
transitions can be generated from somewhere else.

Proof. Let σ ∈ Reach∩S. We consider π ∈ agree (σ)∩U0 ·Γ∗Uf and the sequence of multiset
of histories ρ as given from Definition 11.6. At step i, we denote by ρ̂[i] ∈ Q+ the history that
is picked to evolve, that is the unique history (the same as in Definition 11.6) word h = ρ̂[i]
such that ρ[i+ 1](h) = ρ[i](h)− 1.

We define T ′ ⊆ T as the set of transitions that can be seen:

T ′ =
⋃

1≤i≤|ρ|

σ(ρ̂[i])

In particular, there exists a transition tf = (q, f, qf) ∈ T ′.
We define the set H of seen histories as

H = {ρ̂[i] | 1 ≤ i ≤ |ρ|}

H is closed by prefix, and can be seen as a tree, with root q0 (the initial state of P). For
h ∈ H, the subtree rooted in h can be expressed as H ∩ (hQ∗).

We define I ⊆ H, the set of important nodes, as the histories that trigger a transition for
the first time in the run, namely:

I = {ρ̂[i] | 1 ≤ i ≤ |ρ| ∧ ∀j ∈ [1, i− 1] σ(ρ̂[i]) 6⊆ σ(ρ̂[j])}

We argue that we can convert σ, π and ρ simultaneously, such that T ′ is kept unchanged,
q0 ∈ H, and additionally, for any h1, h2 ∈ H, if last(h1) = last(h2) and I∩(h1Q

∗) = I∩(h2Q
∗),

then h1 = h2.
Intuitively, this last property states that there are no two subtrees H ∩ (h1Q

∗) and
H ∩ (h2Q

∗), with roots ending in the same state, containing the same important nodes.
Assume, that the property is not satisfied for some h1 and h2:

127

11.2. REACHABILITY

q0 q1 q2 . . . qn

0
R (0) R (1) R (2) R (n− 1)

p
Ai

W (i)

for all i ∈ [1, n− 1]

R
(0)

Figure 11.3 – Example of a protocol with allowed actions requiring linear memory for a pure
strategy to be a cut-off strategy for positive coverability of qn.

• If h1 and h2 are roots of disjoint subtrees, then I ∩ (h1Q
∗) = I ∩ (h2Q

∗) = ∅. We can
“remove” h1, h2 and its successors from H.

• Otherwise, assume, without loss of generality, that h1 is a parent of h2 (h1 v h2). Then,
all important nodes lie in the subtreeH∩(h2Q

∗), that is to sayH∩(h1Q
∗\h2Q

∗) contains
no important nodes. Thus, this last set can be “removed” and replaced by the subtree
H ∩ (h2Q

∗) now rooted from history h1. This operation is depicted on Figure 11.2.

Such procedure removes at each step at least one node, so we are guaranteed to terminate.
Each node h that is “removed” may have enabled some transition t, however, since h /∈ I, we
ensure that some other node h′ ∈ I is produced and can enable the same transition t. Thanks
to the copycat lemma, we can produce as many processes with history h′ as required, and
before they are needed.

Once the announced property is achieved, we can bound the size] [H] of the tree by
] [Q] · (] [Allow] + 1) which is a polynomial in |P| and] [Allow]. In particular, the resulting
strategy σ requires only polynomial memory.

As illustration of Theorem 11.13, we provide in Figure 11.3 an example of protocol and
allowed actions, which require linear memory when considering pure actions only.

11.2.3 Summary

It is not always possible to “trade randomness for memory”. Consider for example the protocol
and allowed actions depicted in Figure 11.4: there exists a mixed cut-off strategy for positive
coverability, however no pure strategy is a cut-off strategy.

We conclude our study of positive probability coverability by the following theorem:

Theorem 11.14. The following problem can be solved in polynomial time:
ReachCoverStrat

INPUT: A leaderless non-atomic protocol P, a set of allowed actions Allow and a final
state qf ∈ Q.

QUESTION: Whether there exists a cut-off strategy σ for positive probability reachability of
Uf = {γ | γ(qf) > 0}.

The following problem is NP-complete:
pReachCoverStrat

INPUT: A leaderless non-atomic protocol P, a set of allowed actions Allow and a final
state qf ∈ Q.

128

CHAPTER 11. TOWARD STRATEGY SYNTHESIS

q0

0
q1

qf

A1

A2

W (1)

R (0)

R (1)

Figure 11.4 – Example of a protocol with allowed actions requiring randomization for a local
strategy to be a cut-off strategy for positive coverability of qf . In order to cover qf , a local
strategy has to play A1 for one of the process, in order to write value 1, then play A2 for
another process. However, each process only sees its own history, which is always q0.

QUESTION: Whether there exists a cut-off strategy σ, which is pure, for positive probability
reachability of Uf = {γ | γ(qf) > 0}.

Proof. • As stated by Theorem 11.12, we can check that Uf is reached with positive
probability in the original protocol P, which can be done in polynomial time.

• NP-completeness of pReachCoverStrat is similar to the proof of [BFS15, theorem 2].

11.3 Safety

We address now the existence problem of a cut-off strategy for safety from a coverability
objective. The main contribution of the section is the proof that pure memoryless strategies
suffice. Intuitively, both pure and memoryless classes are restrictions of the strategies, that
can only reduce the set of accessible configurations.

We define by Safe ⊆ S the set of cut-off strategies for safety. While a cut-off strategy for
reachability requires only a finite run to prove reachability, a cut-off strategy for safety has
to avoid Uf for any arbitrary run. Thus, under-approximation of the strategy by a finite tree
is not a suitable technique anymore, as runs may explore arbitrary long histories. Our proof
consists in transforming a cut-off strategy for safety σ into another strategy that is still safe,
and memoryless “for small histories”, then applying a limit/diagonal argument.

As for Lemma 9.6, we can sum two paths together in the leaderless case:

Lemma 11.15. Assume P is leaderless non-atomic. Let σ be a strategy, π1 : (q, µ1, d) →∗
(q, µ′1, d1) and π2 : (q, µ2, d) →∗ (q, µ′2, d2), that both agree with σ. Then (q, µ1 ⊕ µ2, d) →∗
(q, µ′1 ⊕ µ′2, d′) with d′ = d1 or d′ = d2, and there exists such a path that agrees with σ.

The proof is omitted, as it is similar to Lemma 9.6. In fact, this result can be derived
from this previous lemma applied to the “meta protocol” P(σ) informally defined before.

For h ∈ Q+, we say that h is enabled by σ if there exists a run π ∈ agree (σ)∩U0 ·Γ∗ with
associated histories ρ from Definition 11.6 such that h appears in ρ, that is to say ∃i h ∈ ρ[i],
where ρ[i] corresponds to the support of multiset of histories ρ[i]. We denote by en(σ) the set
of enabled histories in σ.

Lemma 11.16. Let σ ∈ S, h1, h2 ∈ Q+ such that

129

11.3. SAFETY

• last(h1) = last(h2);

• h2 ∈ en(σ).

We define σ′ by

σ′ :

{
h1 · h ∈ h1 ·Q∗ 7→ σ(h2 · h)

h /∈ h1 ·Q∗ 7→ σ(h)

Then, en(σ′) ⊆ en(σ).

Proof. Consider hf ∈ en(σ′), so there exists π ∈ agree (σ′) ∩ U0Γ∗, with ρ the corresponding

sequence of histories, such that hf ∈ last(ρ). We will convert ρ in order to agree with σ.

h2 is enabled by σ so there exists a run π′ ∈ agree (σ), with sequence of histories ρ′ such
that h2 ∈ last(ρ′). For any i such that ρ̂[i] = h1, we add a copy of π′ into π thanks to
Lemma 11.15. Any further execution of process with history h1 is replaced by one of the
process with history h2 added in π′.

At the end of the transformation, ρ is a run that agrees with σ and contains history hf ,
hence hf ∈ en(σ).

Notice that en(σ) contains an history ending in Uf if, and only if, σ /∈ Safe. We conclude,
that the property carried by the lemma is stronger than just keeping safety property. This
extra property is relevant to converge when iteratively constructing a memoryless strategy.

The following theorem concludes that pure memoryless strategies suffice for safety cut-off.

Theorem 11.17. Assume Safe 6= ∅, then Safe ∩M 6= ∅.

Proof. Let σ ∈ Safe and let � be a total ordering over Q+ compatible with the length function
(∀h, h′ h � h′ ⇒ |h| ≤ |h′|). We define

P = {(h1, h2) | h1, h2 ∈ Q+, last(h1) = last(h2), h2 � h1, h1 6= h2}

and consider f : N → P that enumerates P in the lexicographic order: this is possible since
� is well-founded.

For any n ∈ N, we construct σn ∈ Safe by induction:

• σ0 = σ

• σn+1 is defined by applying Lemma 11.16 to σn and the pair of histories (h1, h2) = f(n)
whenever h2 ∈ en(σn), otherwise σn+1 = σn. In both cases, we have en(σn+1) ⊆ en(σn).

Let k ∈ N, we define N(k) such that:

∀n ≥ N(k) f(n) = (h1, h2)⇒ |h1| > k

Indeed, there is a finite number of pair of words of length smaller than k.

For a fixed history h and n ≥ N(|h|), if f(n) = (h1, h2), then |h1| > |h| and h /∈ h1 ·Q∗,
so whether Lemma 11.16 was applied or not, we have σn(h) = σn+1(h). We conclude that

∀h ∈ Q+ ∀n ≥ N(|h|) σn(h) = σN(|h|)(h)

130

CHAPTER 11. TOWARD STRATEGY SYNTHESIS

qc

0

qv(p)

W ((p, 0))

Ap,0

W ((p, 1))

Ap,1

R (0)

C1 C2

qfR ((p
1 , 1− i1))

R ((p2, 1− i2))
R

((p
3
, 1
− i3

))
. . .

. . .

For each p ∈ AP
For each clause C, containing literal pj
if ij = 1, or ¬pj if ij = 0 (1 ≤ j ≤ 3)

Figure 11.5 – Reduction of 3SAT to the existence of a cut-off strategy for safety.

This allows us to define the limit strategy, σ∞ on E∞ = ∩n≥0en(σn):

σ∞ : h ∈ E∞ 7→ σN(|h|)(h)

We complete the definition of σ∞ over Q+ in the following way: for each q ∈ Q, let aq = σ(hq)
for some fixed hq ∈ E∞ (or any allowed action otherwise). Then for any h′q /∈ E∞, we let
σ∞(h′q) = aq.

We note that any history enabled by σ∞ is in3 E∞: for any run that agrees with σ∞,
consider its finite set of histories H. Then, for n = maxh∈H N(|h|) we have ∀h ∈ H σn(h) =
σ∞(h) so the same run also agrees with σn. This means that en(σ∞) ⊆ en(σn) ⊆ E∞. In
particular, σ∞ ∈ Safe.

We also check that σ∞ is in fact memoryless, by showing by induction on h1 ∈ Q+ (with
respect to �), that

∀(h1, h2) ∈ P ∩ (Q+ × E∞) ∀n ≥ N(|h1|) σn(h1) = σn(h2)

If no such pair exists, the result is immediate. Otherwise, after N(|h1|), we have enumerated
all pairs starting with h1 as first coordinate. In particular, there exists some maximal h′1 for
which Lemma 11.16 was applied for the last time, on (h1, h

′
1), hence, h2 � h′1 by maximality

(remember h2 is always enabled). We conclude by induction hypothesis applied on pair
(h′1, h2): for all n ≥ N(|h1|) ≥ N(|h′1|), σn(h1) = σn(h′1) = σn(h2).

Finally, we extract, for each state q, an action σ′(q) ∈ Allow(q)∩ 2σ
∞(q) in order to define

σ′ ∈M , with σ′ ⊆ σ∞. By Lemma 11.11, we conclude that σ′ ∈ Safe ∩M .

We conclude our study of safety coverability by the following theorem:

Theorem 11.18. The two following problems are NP-complete:
SafeCoverStrat

INPUT: A leaderless non-atomic protocol P, a set of allowed actions Allow and a final
state qf ∈ Q.

QUESTION: Whether there exists a cut-off strategy σ for safety from Uf = {γ | γ(qf) > 0}.

pSafeCoverStrat defined as SafeCoverStrat for pure strategies only.

3Note the inclusion may be strict, as we may have en(σ∞) 6= E∞.

131

11.4. CONCLUSIONS

Proof. • Membership in NP is due to the existence of memoryless strategies stated in
Theorem 11.17. Such a strategy σ is of linear size in the original protocol, and we
can check that the resulting composed protocol P 〈σ〉 cannot reach qf . Because we
are considering coverability objective of qf without leader, this check can be done in
polynomial time (see [EGM13] or consider an increasing support path in the symbolic
graph).

• NP-hardness is proven by a reduction of 3SAT ([Coo71]). Given an instance of this
problem, with atomic proposition set AP and set of clauses X, we build the protocol
depicted in Figure 11.5, where only non-trivial actions are allowed from states qv(p),
for each p ∈ AP. Intuitively, the strategy chooses a valuation for p in qv(p), while the
scheduler challenges the whole assignment by picking a clause C and checking that each
literal of C has the wrong truth value, which leads to unsafe state qf .

More formally, if there exists a cut-off strategy for safety from qf , we can assume by
Theorem 11.17 that such strategy is memoryless and pure, and consider the correspond-
ing valuation ν. Since, qf cannot be reached by the scheduler, we check that ν satisfies
all the clauses in X. Conversely, if ν satisfies X, we consider the memoryless strategy
that plays Ap,ν(p) from qv(p) for each p ∈ AP and check that such strategy is safe.

Surprisingly, the safety problem in non-atomic protocols with a leader, but without strate-
gies, is proven by [EGM13] to be coNP-complete. Hardness is achieved thanks to the leader
process which encodes the valuations of atomic propositions (in the dual reachability objective
setting). This has to be compared with our proof of Theorem 11.18 which exploits strategies
in order to encode valuations. On the other side, membership in NP is proved thanks to the
lack of a leader (polynomial time check).

11.4 Conclusions

We have studied several techniques for the existence of cut-off strategies for positive reacha-
bility and safety objectives. Both problems are not dual anymore when shifting to synthesis
of local strategies. On the one hand, allowing randomization or memory is crucial for positive
reachability objectives:

• If we allow randomization, we have all incentive to consider the most randomized strat-
egy.

• If we restrict to pure strategies, polynomial memory is required, and suffice.

We argue that randomizing all actions may be expensive in a practical setting, so even when
randomization helps, we may be interested in synthesizing strategies that still record some
information in order to minimize the amount of required entropy. Moreover, mixed strategies
may drastically increase expected time to objective. Such quantitative questions were eluded
on purpose and left as future work.

On the other hand, safety requires no memory. However, note that our techniques heavily
rely on three assumptions: non-atomicity, lack of a leader and coverability objective. First
property seems legitimate as the cut-off decision problem for atomic networks is already an
open problem. However, Chapter 8 studied more general cases with a leader process and a

132

CHAPTER 11. TOWARD STRATEGY SYNTHESIS

general simple objective. We conjecture that such generalizations will require memory, even
in the safety case, but the existence of sufficient polynomial memory strategies is an open
problem.

Finally, little is known about the existence of almost-sure reachability cut-off strategies.
First of all, results from Chapter 9 states that the problem is at least PSPACE-hard, even
without leader. Moreover, technical difficulties occur when defining a discrete characteri-
zation, in the flavour of lemmas 7.22 and 11.9. Indeed, a Pre/Post characterization would
require carrying the intermediate memories of each process. Nonetheless, the low complex-
ity classes of strategies for positive reachability and safety objectives raises hopes for the
almost-sure reachability question, which somehow combines the previous properties.

133

11.4. CONCLUSIONS

134

Bibliography

[ABG15] C. Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic approach
to the verification of distributed algorithms. In Luca Aceto and David de Frutos-
Escrig, editors, Proceedings of the 26th International Conference on Concurrency
Theory (CONCUR’15), volume 42 of Leibniz International Proceedings in Infor-
matics, pages 340–353. Leibniz-Zentrum für Informatik, September 2015.

[AGC05] Bernard Aboba, Erik Guttman, and Stuart Cheshire. Dynamic configuration of
IPv4 link-local addresses. 2005.

[AHK07] Luca de Alfaro, Thomas Henzinger, and Orna Kupferman. Concurrent reachabil-
ity games. Theoretical Computer Science, 386(3):188–217, 2007.

[AJK16] Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for guarded
protocols with fairness. In Barbara Jobstmann and K. Rustan M. Leino, editors,
Proceedings of the 17th International Workshop on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI’16), volume 9583 of Lecture Notes in
Computer Science, pages 476–494. Springer-Verlag, January 2016.

[AJKR14] Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Parametrized
model checking of token-passing systems. In Kenneth L. McMillan and Xavier
Rival, editors, Proceedings of the 15th International Workshop on Verification,
Model Checking, and Abstract Interpretation (VMCAI’14), volume 8318 of Lecture
Notes in Computer Science, pages 262–281. Springer-Verlag, January 2014.

[ALW89] Mart́ın Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unrealizable
specifications of reactive systems. In Proceedings of the 16th International Collo-
quium on Automata, Languages and Programming, ICALP ’89, pages 1–17, Lon-
don, UK, UK, 1989. Springer-Verlag.

[AM04] Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular
games. Journal of Computer and System Sciences, 68(2):374 – 397, 2004.

[ARZ15] Benjamin Aminof, Sasha Rubin, and Florian Zuleger. On the expressive power
of communication primitives in parameterised systems. In Martin Davis, Ans-
gar Fehnker, Annabelle K. McIver, and Andrei Voronkov, editors, Proceedings of
the 20th International Conference Logic Programming and Automated Reasoning
(LPAR’15), volume 9450 of Lecture Notes in Computer Science, pages 313–328.
Springer-Verlag, November 2015.

135

BIBLIOGRAPHY

[BBG08] Christel Baier, Nathalie Bertrand, and Marcus Größer. On decision problems
for probabilistic Büchi automata. In Roberto Amadio, editor, Foundations of
Software Science and Computational Structures: 11th International Conference,
FOSSACS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008.
Proceedings, pages 287–301, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[BBMU11] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Nash
equilibria in concurrent games with Büchi objectives. In Proceedings of the 30th
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’11), volume 13 of LIPIcs, pages 375–386. Leibniz-Zentrum für
Informatik, 2011.

[BFS14] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with proba-
bilities in reconfigurable broadcast networks. In Proc. of FOSSACS, LNCS 8412,
pages 134–148. Springer, 2014.

[BFS15] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed Local
Strategies in Broadcast Networks. In Luca Aceto and David de Frutos Escrig,
editors, 26th International Conference on Concurrency Theory (CONCUR 2015),
volume 42 of Leibniz International Proceedings in Informatics (LIPIcs), pages 44–
57, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BL69] Julius Richard Büchi and Lawrence H. Landweber. Solving sequential condi-
tions by finite-state strategies. Transactions of American Mathematical Society,
138:295–311, 1969.

[BMR+16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel
Stan. Reachability in networks of register protocols under stochastic schedulers. In
Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, editors, Proceedings of the 43rd International Colloquium on Automata,
Languages and Programming (ICALP’16) – Part II, volume 55 of Leibniz Inter-
national Proceedings in Informatics, pages 106:1–106:14, Rome, Italy, July 2016.
Leibniz-Zentrum für Informatik.

[BMS14] Patricia Bouyer, Nicolas Markey, and Daniel Stan. Mixed Nash equilibria in con-
current games. In Proceedings of the 34th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’14), volume 29 of Leib-
niz International Proceedings in Informatics, pages 351–363. Leibniz-Zentrum für
Informatik, December 2014.

[BMS16] Patricia Bouyer, Nicolas Markey, and Daniel Stan. Stochastic equilibria under
imprecise deviations in terminal-reward concurrent games. In Domenico Cantone
and Giorgio Delzanno, editors, Proceedings of the 7th International Symposium on
Games, Automata, Logics, and Formal Verification (GandALF’16), volume 226
of Electronic Proceedings in Theoretical Computer Science, pages 61–75, Catania,
Italy, September 2016.

[Bre12] Romain Brenguier. Nash Equilibria in Concurrent Games – Application to Timed
Games. PhD thesis, ENS Cachan, France, 2012.

136

BIBLIOGRAPHY

[BSHV03] Henrik C. Bohnenkamp, Peter van der Stok, Holger Hermanns, and Frits W. Vaan-
drager. Cost-optimization of the IPv4 zeroconf protocol. In 2003 International
Conference on Dependable Systems and Networks (DSN 2003), 22-25 June 2003,
San Francisco, CA, USA, Proceedings, pages 531–540. IEEE Computer Society,
2003.

[CD14] Krishnendu Chatterjee and Laurent Doyen. Partial-observation stochastic games:
How to win when belief fails. ACM Transactions on Computational Logic,
15(2:16), April 2014.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of com-
puting two-player nash equilibria. Journal of the ACM (JACM), 56(3):14, 2009.

[CEP95] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe
nets. Theoretical Computer Science, 147(1):117 – 136, 1995.

[CFGR16] Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François
Raskin. The complexity of rational synthesis. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

[CH12] Krishnendu Chatterjee and Thomas A Henzinger. A survey of stochastic ω-regular
games. Journal of Computer and System Sciences, 78(2):394–413, 2012.

[Cha05] Krishnendu Chatterjee. Two-player nonzero-sum ω-regular games. In Proc. 16th
International Conference on Concurrency Theory (CONCUR’05), volume 3653
of Lecture Notes in Computer Science, pages 413–427. Springer, 2005.

[CJM04] Krishnendu Chatterjee, Marcin Jurdziński, and Rupak Majumdar. On Nash equi-
libria in stochastic games. In Proc. 18th International Workshop on Computer
Science Logic (CSL’04), volume 3210 of Lecture Notes in Computer Science, pages
26–40. Springer, 2004.

[Con92] Anne Condon. The complexity of stochastic games. Information and Computa-
tion, 96(2):203 – 224, 1992.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[CSM00] Part 3: Carrier sense multiple access with collision detect on (csma/cd) access
method and physical layer specifications. IEEE Std 802.3, 2000 Edition, pages
i–1515, 2000.

[CTTV04] Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith. Ver-
ification by network decomposition. In Philippa Gardner and Nobuko Yoshida,
editors, Proceedings of the 15th International Conference on Concurrency The-
ory (CONCUR’04), volume 3170 of Lecture Notes in Computer Science, pages
276–291. Springer-Verlag, August-September 2004.

137

BIBLIOGRAPHY

[CW03] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic complexity
attacks. In Proceedings of the 12th Conference on USENIX Security Symposium -
Volume 12, SSYM’03, pages 3–3, Berkeley, CA, USA, 2003. USENIX Association.

[DEGM15] Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, and Rupak Majumdar.
Model checking parameterized asynchronous shared-memory systems. In Daniel
Kroening and Corina S. Pasareanu, editors, Proceedings of the 27th International
Conference on Computer Aided Verification (CAV’15), volume 9206 of Lecture
Notes in Computer Science, pages 67–84. Springer-Verlag, July 2015.

[DJLL13] Stéphane Demri, Marcin Jurdziński, Oded Lachish, and Ranko Lazić. The cover-
ing and boundedness problems for branching vector addition systems. Journal of
Computer and System Sciences, 79(1):23–38, February 2013.

[DKM+15] Ankush Das, ShankaraNarayanan Krishna, Lakshmi Manasa, Ashutosh Trivedi,
and Dominik Wojtczak. On pure nash equilibria in stochastic games. In Theory
and Applications of Models of Computation, volume 9076 of Lecture Notes in
Computer Science, pages 359–371. Springer International Publishing, 2015.

[DKN+12] Marie Duflot, Marta Kwiatkowska, Gethin Norman, David Parker, Sylvain Pey-
ronnet, Claudine Picaronny, and Jeremy Sproston. Practical applications of prob-
abilistic model checking to communication protocols. In S. Gnesi and T. Margaria,
editors, Formal Methods for Industrial Critical Systems: A Survey of Applications,
pages 133–150. Wiley, 2012.

[DSTZ12] Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro.
On the complexity of parameterized reachability in reconfigurable broadcast net-
works. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan,
editors, Proceedings of the 32nd Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS’12), volume 18 of Leibniz
International Proceedings in Informatics, pages 289–300. Leibniz-Zentrum für In-
formatik, December 2012.

[DSZ10] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized ver-
ification of ad hoc networks. In Paul Gastin and François Laroussinie, editors,
Proceedings of the 21st International Conference on Concurrency Theory (CON-
CUR’10), volume 6269 of Lecture Notes in Computer Science, pages 313–327.
Springer-Verlag, September 2010.

[EFM99] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast
protocols. In Proceedings of the 14th Annual Symposium on Logic in Computer
Science (LICS’99), pages 352–359. IEEE Comp. Soc. Press, July 1999.

[EGLM15] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verifica-
tion of Population Protocols. In Luca Aceto and David de Frutos Escrig, ed-
itors, 26th International Conference on Concurrency Theory (CONCUR 2015),
volume 42 of Leibniz International Proceedings in Informatics (LIPIcs), pages
470–482, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik.

138

BIBLIOGRAPHY

[EGM13] Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verifica-
tion of asynchronous shared-memory systems. In Natasha Sharygina and Helmut
Veith, editors, Proceedings of the 25th International Conference on Computer
Aided Verification (CAV’13), volume 8044 of Lecture Notes in Computer Science,
pages 124–140. Springer-Verlag, July 2013.

[ES96] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal
Methods in System Design, 9(1-2):105–131, 12 1996.

[Esp14] Javier Esparza. Keeping a crowd safe: On the complexity of parameterized
verification (invited talk). In Ernst W. Mayr and Natacha Portier, editors,
Proceedings of the 31st Symposium on Theoretical Aspects of Computer Science
(STACS’14), volume 25 of Leibniz International Proceedings in Informatics, pages
1–10. Leibniz-Zentrum für Informatik, March 2014.

[Fin64] A. M. Fink. Equilibrium in a stochastic n-person game. J. Sci. Hiroshima Univ.
Ser. A-I Math., 28(1):89–93, 1964.

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems ev-
erywhere! Theoretical Computer Science, 256(1-2):63–92, April 2001.

[FV96] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer-
Verlag New York, Inc., New York, NY, USA, 1996.

[GS53] D. Gale and F. Stewart. Infinite games with perfect information, volume 28, chap-
ter Contributions to the theory of games, pages 245–266. Princeton University
Press, 1953.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM, 39(3):675–735, July 1992.

[Hag11] Matthew Hague. Parameterised pushdown systems with non-atomic writes. In
Supratik Chakraborty and Amit Kumar, editors, Proceedings of the 31st Confer-
ence on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’11), volume 13 of Leibniz International Proceedings in Informatics,
pages 457–468. Leibniz-Zentrum für Informatik, December 2011.

[Jur98] Marcin Jurdzinski. Deciding the winner in parity games is in UP ∩ co-UP. Inf.
Process. Lett., 68(3):119–124, 1998.

[Kak41] Shizuo Kakutani. A generalization of Brouwer’s fixed point theorem. Duke Math.
J., 8(3):457–459, 09 1941.

[KPV15] Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with Rational
Environments, pages 219–235. Springer International Publishing, Cham, 2015.

[KS81] P. R. Kumar and T. H. Shiau. Existence of value and randomized strategies in
zero-sum discrete-time stochastic dynamic games. SIAM Journal on Control and
Optimization, 19(5):617–634, 1981.

139

BIBLIOGRAPHY

[Lip76] Richard J. Lipton. The reachability problem requires exponential space. Research
report (Yale University. Department of Computer Science). Department of Com-
puter Science, Yale University, 1976.

[LL69] Thomas M. Liggett and Steven A. Lippman. Short notes: Stochastic games with
perfect information and time average payoff. SIAM Review, 11(4):604–607, 1969.

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.

[Mar98] Donald A. Martin. The determinacy of Blackwell games. The Journal of Symbolic
Logic, 63(4):1565–1581, 1998.

[Min67] Marvin Minsky. Computation: Finite and Infinite Machines. Prentice Hall Inter-
national, 1967.

[Nas50] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36(1):48–49, 1950.

[Neu28] John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100:295–320, 1928.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[Rac78] Charles Rackoff. The covering and boundedness problems for vector addition
systems. Theoretical Computer Science, 6:223–231, 1978.

[RF10] Halsey L. Royden and Patrick M. Fitzpatrick. Real Analysis. Prentice Hall, 2010.

[RY86] Louis E. Rosier and Hsu-Chun Yen. A multiparameter analysis of the boundedness
problem for vector addition systems. Journal of Computer and System Sciences,
32(1):105–135, February 1986.

[Sec97] Piercesare Secchi. Stationary strategies for recursive games. Math. Oper. Res.,
22(2):494–512, May 1997.

[Sel65] Reinhard Selten. Spieltheoretische Behandlung eines Oligopolmodells mit Nach-
frageträgheit. Zeitschrift für die gesamte Staatswissenschaft, 121:301–324 and
667–689, 1965.

[Sel75] Reinhard Selten. A reexamination of the perfectness concept for equilibrium
points in extensive games. International Journal of Game Theory, 4:25–55, 1975.

[Sha53] Lloyd S. Shapley. A value for n-person games. Contributions to the theory of
games, 2:307–317, 1953.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS Publishing Com-
pany, 1997.

[SS01] Piercesare Secchi and William D. Sudderth. Stay-in-a-set games. International
Journal of Game Theory, 30:479–490, 2001.

140

BIBLIOGRAPHY

[Umm08] Michael Ummels. The complexity of Nash equilibria in infinite multiplayer games.
In Proc. 11th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’08), volume 4962 of Lecture Notes in Com-
puter Science, pages 20–34. Springer, 2008.

[Umm10] Michael Ummels. Stochastic Multiplayer Games: Theory and Algorithms. Ph.D.
Thesis, Department of Computer Science, RWTH Aachen, Germany, January
2010.

[UW09] Michael Ummels and Dominik Wojtczak. Decision problems for Nash equilibria
in stochastic games. In Proc. 23rd International Workshop on Computer Science
Logic (CSL’09), volume 5771 of Lecture Notes in Computer Science, pages 515–
530. Springer, 2009.

[UW11a] Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in
limit-average games. In Proc. 22nd International Conference on Concurrency
Theory (CONCUR’11), volume 6901 of Lecture Notes in Computer Science, pages
482–496. Springer, 2011.

[UW11b] Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in
limit-average games. Technical Report abs/1109.6220, CoRR, 2011.

[UW11c] Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in
stochastic multiplayer games. Logical Methods in Computer Science, 7(3), 2011.

[VNM47] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1947.

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1–2):343–359, 1996.

141

BIBLIOGRAPHY

142

List of Figures

1.1 Simple games that require randomization . 1

1.2 Hide-or-run game . 3

3.1 Graphical representation of a 3 + 1/2-player arena 16

3.2 Shifted hide-or-run game . 29

4.1 Representations of a one-shot game . 33

4.2 Matching-pennies game . 33

4.3 Embedded game example . 36

4.4 Counter example of Theorem 4.8 without action-visibility 39

4.5 Computation of an additional equilibrium payoff in game C′. 39

4.6 Rescale module Rk . 41

4.7 Testing module T . 44

4.8 Counting modules Ck and Dk . 44

4.9 Game GM for a given 2-counter machine M 47

4.10 Reduction of 1-maximal Nash equilibrium . 51

4.11 Encoding of terminal rewards with qualitative objectives 52

5.1 Game where first player to quit loses . 58

5.2 Example of an arena with some exiting actions 61

5.3 Encoding of imprecise deviations . 66

5.4 Encoding of imprecise deviations: graphical representation 66

5.5 Comparison between ε-Nash equilibria and equilibria under imprecise deviations 68

6.1 Communication of wireless sensors as a threaded program 76

6.2 Communication of wireless sensors as a register protocol 77

7.1 Simple leaderless non-atomic protocol . 80

7.2 Copycat lemma . 85

7.3 Non-monotonous atomic protocol . 85

7.4 Graphical representation of cut-off situations 88

8.1 Symbolic graph example . 90

8.2 Path reduction in the symbolic graph . 91

9.1 Example of a register protocol with atomic read/write operations. 93

9.2 Ultimate inclusion analysis . 95

9.3 Polynomial bound for ultimate inclusion . 96

143

LIST OF FIGURES

9.4 Filter protocol Fn . 98
9.5 Reversed filter protocol Fn . 99
9.6 Example of exponential negative cut-off . 101
9.7 Distributed protocol PM for a linear-bounded Turing Machine M 103

10.1 Example of mapping operations over multiple register 117

11.1 Leaderless non-atomic protocol with allowed actions 123
11.2 Strategy reduction in Theorem 11.13 . 127
11.3 Protocol with pure allowed actions requiring linear memory 128
11.4 Protocol with allowed actions requiring randomization 129
11.5 Reduction of 3SAT to the existence of a cut-off strategy for safety. 131

144

List of Tables

4.1 Analysis of Rk from sk with one fixed strategy 42
4.2 Analysis of Rk from r0 with one fixed strategy 43
4.3 Decidability status of Nash Equilibria with qualitative objectives 55

10.1 Complexity results for cut-off decision problems 120

145

LIST OF TABLES

Le contenu du manuscrit étant rédigé en langue anglaise, notamment afin de pouvoir être
évalué par un jury de thèse international, le présent chapitre expose un résumé substantiel en
français.

Introduction

Les comportements stochastiques fournissent une modélisation d’évènements incertains qui
permettent toutefois de fournir des mécanismes de désynchronisation voire pour sortir d’une
situations symétriques. Imaginons par exemple que deux amis se retrouvent chaque jour pour
jouer au jeu � Pierre-Papier-Ciseaux �. Les deux joueurs choisissent un symbole parmi ,

et , et la partie continue tant qu’un vainqueur n’est pas désigné.

Comme ces deux amis jouent fréquemment l’un contre l’autre, il leur est possible de retenir
la stratégie de leur adversaire. Chaque jour, chaque joueur peut décider de changer d’avis et
jouer une autre séquence de symboles pour contrer les actions supposées de son adversaire,
ce qui conduit à un changement quotidien de sa stratégie, ou continuer de jouer de la même
façon. D’autre part, il leur est nécessaire de se rappeler des coups joués précédemment, en
nombre potentiellement élevé. Un jour, un des joueurs décide d’arrêter de tenter de prévoir
les coups de son adversaire et lui annonce qu’à chaque tour, il jouera au hasard en lançant
un dé : si sa valeur est 1 ou 2, son coup sera , si le dé tombe sur 3 ou 4, et sinon.
Conscient de cette stratégie, son adversaire n’a cependant aucune méthode pour s’assurer une
victoire avec probabilité supérieure à 1

2 . Jouer au hasard contraint d’une part les deux joueurs
à gagner de façon équiprobable, mais assure également que la partie s’achève rapidement en
moyenne : on peut calculer un nombre moyen de tours avant victoire égal à 3

2 .

Dans cette thèse, nous étudions la vérification formelle et la synthèse de systèmes aux
comportements stochastiques. En effet, l’aléa en informatique est un élément clé dans la
désynchronisation de processus, pour éviter les situations d’interblocage ou les collisions
dans les protocoles de communications. Le concept fondamental dans ce domaine se rap-
proche ainsi de notre exemple de jeu � Pierre-Papier-Ciseaux �, présenté en figure 1.1b. De
nombreux protocoles s’appuient ainsi sur la randomisation, c’est le cas notamment de CS-
MA/CD [CSM00], pour lequel chaque participant choisit aléatoirement le délai avant une
réémission pour cause de collision. Ainsi, l’aspect stochastique de ce dernier protocole est
fondamental pour son étude [DKN+12]. Une autre mise en application de la randomisation
à des fins de désynchronisation apparâıt par exemple dans le protocole distribué Zeroconf,
permettant le choix d’adresses sur un lien local [BSHV03, AGC05].

La randomisation permet également de se prémunir efficacement face à certaines formes
d’attaques informatiques : du fait de spécifications ouvertes, de l’engouement pour l’open
source, voire des progrès du désassemblage de programmes, il est plus que raisonnable de
supposer que le fonctionnement interne de tout programme est publiquement connu, et que sa
robustesse doit être assurée sous cette hypothèse. Cependant, certains algorithmes manipulant
des structures de données ne possèdent une complexité raisonnable que lorsque les données
en entrée suivent une distribution uniforme, et non dans le pire cas. Une absence d’aléa en
entrée d’un système de traitement de données peut ainsi avoir des conséquences néfastes si un
attaquant est en mesure de déclencher à dessein une exécution dans le pire cas. Pour illustrer
ce propos, nous pouvons citer une attaque informatique consistant à exploiter le déterminisme
des fonctions de hachage employées dans les langages de programmations modernes : avec peu
de puissance de calcul et peu de bande passante, un attaquant a ainsi pu réaliser une attaque

146

LIST OF TABLES

par déni de service de serveurs web, en provoquant de nombreuses collisions [CW03].

Informatique et théorie des jeux

La théorie des jeux et le raisonnement stratégique constituent une discipline aux résultats
prolifiques. Introduits par Von Neumann [Neu28] grâce à son théorème du min-max, puis
davantage formalisé [VNM47], la modélisation systématique sous forme de jeux s’est révélée
fructueuse dans de nombreux domaines, notamment l’économie grâce aux travaux de Nash
ou Selten [Nas50, Sel65], car elle assure une bonne représentation des interactions et com-
portements entre personnes ou entités, appelés des joueurs ou agents. Ceux-ci prennent des
décisions, c’est-à-dire des actions que l’on modélise par des stratégies, prenant en compte
leurs observations de l’état du jeu et de l’environnement. Chaque joueur possède un objectif,
généralement une fonction d’utilité voire une relation de préférence. L’utilité ou récompense
fournie à chaque joueur est déterminée en fonction de la partie effectivement jouée, c’est-à-dire
de la façon dont les actions des différents joueurs ont été jouées.

Lorsque l’utilité est fournie en tant que nombre, les jeux sont représentés par des ma-
trices, représentant pour chaque joueur le gain final après le déroulement d’une partie en
un coup. Le jeu est donc supposé ponctuel dans le temps. En informatique et comme nous
l’avons vu dans les exemples précédents, une composante séquentielle apparâıt, que nous
modélisons en général grâce aux formalismes issus de la théorie des automates. Par exemple,
le problème de Church s’intéresse à la réalisation d’une relation binaire définie par une formule
logique sur les séquences infinies de mots. Plus précisément, ce problème soulève la question
de l’implémentation d’une telle formule, sous la forme d’un circuit, prenant en entrée un mot
infini, et fournissant en sortie un second mot infini en relation avec le premier. La réponse à
cette question peut être obtenue par l’analyse d’un jeu à deux joueurs joués sur un graphe,
où le premier joueur propose une sortie, en choisissant certaines transitions, tandis que le
premier joueur essaye de l’en empêcher, en choisissant des transitions pour le mot d’entrée,
mettant en défaut la relation binaire. Implémenter un tel circuit revient dans ce contexte à
exhiber une stratégie gagnante pour le premier joueur [BL69], ce qui signifie habituellement
résoudre le jeu.

Cette méthodologie est particulièrement adaptée à l’étude des systèmes réactifs, pour
lesquels nous nous intéressons à la synthèse d’un contrôleur qui devra satisfaire des pro-
priétés logiques tout en restant robuste face à un environnement, dont le comportement est
imprévisible [ALW89].

Dans ces exemples, le premier joueur est dit existentiel, car nous nous intéressons à l’exis-
tence d’une seule stratégie gagnante, contre n’importe quelle stratégie du second joueur, que
nous qualifions d’universel.

Non-déterminisme, aléa et problèmes quantitatifs

Lorsque l’on caractérise la victoire d’un joueur contre toutes les stratégies de son adver-
saire, nous adoptons une approche dans le pire cas puisque toutes les actions possibles sont
considérées. Nous pouvons cependant remarquer que cette forme d’incertitude est très forte
car elle considère des scenarios peu crédibles, qui ne se produisent pas forcément en pratique.
À titre d’exemple, le modèle de transmission de données précédemment décrit peut vraisem-
blablement incorporer une composante d’équité entre les différents protagonistes, c’est-à-dire

147

LIST OF TABLES

supposer qu’il existe forcément un instant lors duquel il est possible d’émettre sans interférence
par aucune autre partie.

Une notion intermédiaire d’incertitude est ainsi obtenue en considérant les comportements
stochastiques, que l’on peut représenter comme les actions d’un joueur tierce, l’environnement,
qui ne prend pas de décision à proprement parler, mais reste source d’aléa. Contrairement à un
joueur universel, l’environnement n’a pas d’objectif propre, et ses actions peuvent contribuer
ou s’opposer aux objectifs du joueur existentiel dont nous cherchons une stratégie. Introduire
des probabilités dans ce modèle a deux conséquences majeures : premièrement, certaines
exécutions envisagées dans le pire cas sont mises de côté. Par exemple, la succession infinie
de matchs nuls dans la boucle du jeu de � Pierre-Feuille-Ciseaux � est impossible, dès lors
qu’un des joueurs joue aléatoirement. Cette propriété se rapproche en ce sens de la notion
d’équité. D’autre part, les phénomènes stochastiques fournissent un nouvel aspect quantitatif
aux problèmes traités. Il devient par exemple possible de se demander si un joueur peut
gagner avec une valeur de probabilité supérieure à un certain seuil.

Optimisation de stratégies

Il existe plusieurs concepts d’optimalité pour une stratégie, qui dépendent des conditions de
gain considérées. Premièrement, une stratégie optimale conceptualise une situation où un
joueur donné doit maximiser son gain, contre toutes les actions possibles de son adversaire.
La meilleure valeur atteignable, contre la pire riposte est alors appelée valeur du jeu [Sha53].
Dans ce contexte, le jeu est supposé joué par deux joueurs aux objectifs antagonistes, c’est-à-
dire à somme nulle. Bien que les valeurs du jeu pour le premier et deuxième joueurs ne soient
pas nécessairement égales, de nombreux résultats de déterminisation établissent cette égalité
pour de larges classes de jeux, notamment les jeux à tour déterministes, avec des objectifs
réguliers [Mar75].

Lorsque des actions concurrentes et randomisées sont autorisées, des stratégies optimales
peuvent ne pas exister bien que le jeu puisse toujours être déterminisé, au sens où la valeur
n’est atteignable qu’asymptotiquement [Mar98]. Nous pouvons illustrer ce phénomène grâce
au jeu à deux joueurs à somme nulle H (hide-or-run � courir ou fuir �) représenté par la
figure 1.2. Le joueur 1 peut soit se cacher (~) ou courir à l’abri (r) tandis que le second joueur
peut choisir de jeter une boule de neige (s) ou attendre (w). Il a été démontré par [KS81]
que ce jeu n’admet pas de stratégies optimales, bien que le premier joueur peut s’assurer une
victoire avec probabilité arbitrairement proche de 1.

Lorsque le jeu implique plus de deux joueurs, ou qu’une partie des gains sont communs
à plusieurs joueurs, nous remarquons que les notions de stratégies optimales et valeurs ne
sont plus adaptées : les agents ne jouent plus nécessairement les uns contre les autres mais
peuvent coopérer. Partant de cette observation, John Nash introduisit une nouvelle notion,
dite d’équilibre, pour traiter les jeux à somme non nulle. Dans un tel équilibre, nous nous
donnons une stratégie pour chaque joueur, que nous souhaitons optimale par rapport aux
stratégies fixées des autres joueurs. Sur une structure de graphe, un équilibre décrit des
coopérations entre les joueurs, pouvant s’accorder pour visiter certains états profitables.
Lorsqu’un joueur ne respecte pas sa stratégie initialement prévue par l’équilibre, les autres
joueurs peuvent réagir de plusieurs façon, en fonction de la notion d’équilibre choisie : ceux-ci
peuvent riposter et abandonner leurs propres objectifs, ou décider de continuer à optimiser
leurs propres objectifs malgré la déviation. Dans le premier cas, nous parlerons d’équilibres

148

LIST OF TABLES

de Nash, tandis que la seconde notion, plus restrictive, se nomme un équilibre parfait en
sous-jeux [Sel65]. Cette dernière impose en effet en particulier l’existence d’un équilibre de
Nash depuis tout état du jeu.

Lorsqu’un joueur choisit une stratégie dans un équilibre, il le fait en fonction du choix des
autres joueurs qui cherchent à optimiser leurs propres objectifs, ce que l’on qualifie de choix
rationnels. Cette hypothèse est particulièrement pertinentes dans le domaine de l’informatique
où les joueurs représentent des programmes, des systèmes autonomes ou des périphériques, qui
interagissent ensemble. Ainsi, une stratégie pour un joueur donné correspond à un programme
ou un micrologiciel, que l’on recherche, suivant le contexte, à synthétiser ou que l’on suppose
préexistant [KPV15].

Problématique

Dans cette thèse, nous nous concentrons sur la contribution des aspects stochastiques aux
jeux sur graphes, munis d’objectifs simples d’accessibilité et sûreté.

Nous nous concentrons sur la décidabilité et calculabilité de problèmes sur les jeux sto-
chastiques en fonction des paramètres suivants : (a) le nombre de joueurs, (b) leur mode
d’interaction, (c) la mémoire utilisée par leurs stratégies, (d) l’aléa que peut produire une
stratégie, (e) l’incertitude induite par l’environnement (stochastique et/ou non déterministe),
(f) le relâchement possible des concepts étudiés.

Premièrement, nous nous intéressons à l’étude des jeux concurrents jouées sur un graphe
par un nombre fixé d’agents, disposant de comportements stochastiques. Plus précisément,
nous étudions le gain d’expressivité apporté par les actions concurrentes stochastiques dans
un équilibre de Nash. Ainsi, nous montrerons qu’il est impossible de décider l’existence d’un
équilibre de Nash dès lors que trois joueurs sont présents, ce qui justifiera l’étude d’une notion
relâchée d’équilibre.

Malgré leur spécification très générale, les jeux concurrents ont une structure très rigide,
qui n’est pas nécessairement adaptée à la modélisation informatique : une problématique im-
portante que nous considérons ici est l’étude d’un modèle suffisamment flexible pour capturer
les interactions stochastiques entre un nombre arbitraire de joueurs tout en conservant des
propriétés de décidabilité et calculabilité.

Ainsi, nous introduisons un modèle où le nombre d’agents est un paramètre que l’on
suppose de grande taille. Puisque le paramètre n’est a priori pas fixé, le graphe du jeu ne
peut pas être explicitement décrit, et un modèle d’interaction doit être fourni à la place.

Travaux connexes

Les travaux fondateurs de Nash [Nas50] montrant l’existence d’un équilibre dans un jeu à un
tour constituent le point de départ de notre étude. L’introduction de stratégies mixtes, c’est-
à-dire randomisées, constitue l’argument clé permettant d’appliquer un théorème de point
fixe sur une fonction bien choisie, que l’on peut montrer être continue. Cet argument peut
être adapté aux jeux sur des graphes, par exemple dans le cas d’un horizon fini, c’est-à-dire
quand la durée de la partie est bornée.

Le cas d’un horizon infini reste plus complexe à étudier bien que l’on puisse citer le cas
des fonctions d’utilité décroissant exponentiellement au cours du temps. Les joueurs sont
ainsi vivement encouragés à terminer la partie le plus vite possible et à engranger les gains en

149

LIST OF TABLES

début de partie. Cela a également pour effet d’assurer des propriétés de régularité (continuité)
des fonctions précédemment évoquées et encore une fois assure l’existence d’un équilibre de
Nash [Fin64].

Le cas d’un horizon infini sans facteur d’atténuation est en général plus complexe à
résoudre, même dans le cas d’un seul joueur interagissant avec son environnement au compor-
tement stochastique. Dans ce dernier cas, le jeu peut être vu comme un processus de décision
markovien, pour lequel une famille de strategies asymptotiquement optimale existe [Put94].
Ce modèle est également étudié dans le cas général de plusieurs joueurs sous le nom de
processus de décision markovien compétitifs [FV96].

Les fonctions d’utilité considérées dans cette thèse sont de simples objectifs d’accessibilité
et de sureté de certains états, ce qui constitue un cas très particulier d’horizon infini. Ainsi,
l’existence d’un équilibre est assurée pour les jeux munis d’objectifs de sûreté pour tous
les joueurs, c’est-à-dire que chaque joueur a pour objectif de confiner le jeu à un certain
sous-ensemble d’états marqués comme sûrs [SS01]. Dans le cas de l’accessibilité, l’existence
d’un équilibre de Nash reste un problème ouvert, bien qu’une notion relâchée d’équilibre, où
chaque joueur peut encore dévier en n’améliorant toutefois son gain que d’une petite valeur
ε > 0, reste assurée [CJM04]. Des extensions considérant des classes de gains définies par des
langages ω-réguliers sont étudiées, notamment dans le cas de deux joueurs [Cha05], tandis
que le cas général reste ouvert. Pour une étude plus précise des résultats connus sur les jeux
stochastiques et particulièrement les équilibres de Nash, nous pourrons nous référer à [CH12].

Lorsque nous retirons la composant stochastique, les objectifs ω-réguliers peuvent être
étudiés plus simplement, notamment par l’encodage d’un équilibre de Nash comme une
stratégie gagnante dans un nouveau jeu à deux joueurs [Bre12]. En ne retirant l’aspect concur-
rent, c’est-à-dire en considérant des jeux à tours, le problème de l’existence d’un équilibre dans
le cas stochastique est déjà indécidable [Umm10]. Plus précisément, l’auteur montre qu’il est
impossible de décider si un jeu impliquant 11 joueurs ou plus, avec des objectifs d’accessibilité
terminaux, admet un équilibre où un joueur désigné gagne avec probabilité 1. Toutefois, si
l’on se restreint à des stratégies sans mémoire, le problème peut être résolu en espace poly-
nomial, même en imposant des conditions plus fortes sur les gains finaux des joueurs. Ceci
fournit donc une méthode de calcul de la valeur moyenne d’un équilibre, pour chaque joueur.
Nous pouvons aussi comparer ce résultat au problème du calcul d’un équilibre de Nash dans
le cas d’un jeu à un tour, c’est-à-dire décrit par une matrice, qui est PPAD-complet même
en présence de deux joueurs [CDT09]. Notons cependant que ces études de restrictions sans
stochasticité ou sans actions concurrentes se concentrent sur des problèmes de décisions et
de calcul, car l’existence d’un équilibre n’est pas assurée. On rappelle en effet que ces deux
ingrédients sont cruciaux pour la preuve d’existence.

Nous avons vu que la complexité de l’étude d’un système dépend du nombre considéré
de joueurs, ou agents, que l’on peut voir comme un paramètre variable. La vérification de
systèmes paramétrés constitue ainsi un autre axe d’étude, introduit notamment par German
et Sistla [GS92]. En général, les interactions entre agents peuvent être modélisées par des
systèmes d’addition de vecteurs ou, de façon équivalente, par des réseaux de Petri, où chaque
agent est représenté par un jeton. Accéder à un état de contrôle particulier par un agent signi-
fie qu’un jeton a atteint une place particulière du réseau, ce qui correspond à une propriété de
couverture. Le problème de décision correspondant à la couverture a été intensivement étudié
par [Rac78, Lip76] qui l’établissent EXPSPACE-complet. Nous nous rendons ainsi compte
que le problème de la vérification de systèmes paramétrés est un problème déjà difficile dans
le cas non-stochastique. Cependant, des travaux sur des restrictions tels que les protocoles

150

LIST OF TABLES

de population [EGLM15], incluant des notions d’équité, nous montrent que l’ajout d’aspects
stochastiques peut simplifier certains problèmes de décision. D’autre part, les réseaux de Petri
et les protocoles de population restent des modèles très généraux, que l’on peut restreindre,
en fonction des primitives de communications que l’on s’autorise. Une discussion sur le choix
de ces primitives est présentées par [Esp14], et nous prenons ici un des modèles les plus
faibles, consistant en la communication au travers d’un registre partagé entre les agents, via
des écritures non-atomiques. Ce modèle, précédemment étudiés par [EGM13, DEGM15] dans
le cas non-stochastique, se rapproche fortement des réseaux de diffusion avec reconfigura-
tion [BFS14] pour lesquels des raisonnements stratégiques peuvent même être appliqués avec
succès [BFS15].

Publications scientifiques

Les résultats présentés dans ce manuscrit complètent des publications auxquelles l’auteur de
cette thèse a pris part : Le chapitre 4 décrit le problème d’indécidabilité de l’existence d’un
équilibre, publié dans [BMS14], et discute le choix crucial d’un modèle de jeu où les joueurs
n’observent pas les actions jouées. Le chapitre suivant 5 présente l’existence et le calcul d’une
notion relâchée d’équilibre, tels que présentés dans [BMS16]. Enfin, la seconde partie de la
thèse étend [BMR+16], dont le théorème principal est repris en chapitre 9. Les principales
extensions concernent l’étude d’objectifs plus généraux, mais aussi la présence de plusieurs
registres en chapitre 10.

Partie 1 : Jeux stochastiques

La première partie du manuscrit s’intéresse à l’étude des jeux stochastiques concurrents dans
lesquels les joueurs sont en nombre fixé et possèdent des objectifs d’accessibilité terminale ou
de sûreté.

Cadre théorique

Le chapitre 3 fournit une définition formelle des jeux considérés : un jeu concurrent G fait
intervenir un ensemble fini Agt de joueurs, ou agents. L’ensemble d’états du jeu est noté
States, est supposé fini, et possède un élément distingué s0 à partir duquel toute partie est
initiée. La partie continue lorsqu’à chaque tour, les joueurs choisissent chacun une action
parmi un ensemble fini Act, ce qui induit une transition vers un nouvel état. Chaque joueur
agit conformément à une stratégie, notée σi pour le joueur i ∈ Agt, correspondant à une
fonction associant à tout mot h ∈ States+ une décision. Ainsi, h représente un historique,
c’est-à-dire la séquence finie d’états visités depuis le début de la partie, en s0, jusqu’à l’état
courant depuis lequel une décision est prise par chaque joueur. Ici, les décisions des joueurs
sont des distributions de probabilité sur l’ensemble des actions possibles, ce qui signifie que le
prochain état est choisi de manière probabiliste. Lorsque σi est donné pour tout agent i ∈ Agt,
on note σ le un profil de stratégies, qui nous permet alors de définir une loi de probabilité notée
Pσ sur l’ensemble des parties possibles. Le choix d’une stratégie σi par un joueur i se fait dans
l’optique de l’optimisation de sa fonction de gain, qui lui est propre. Dans cette thèse, nous
considérons principalement des fonctions de gain, ou objectifs, dits d’accessibilité terminale,
c’est-à-dire que le gain de chaque joueur est un nombre réel déterminé par l’état final dans

151

LIST OF TABLES

lequel la partie s’est achevée. Lorsque la partie continue indéfiniment, le gain associé est
toujours nul. De manière symétrique, on parle d’objectif de sûreté lorsque le joueur considéré
a pour objectif de maintenir la partie dans un sous-ensemble d’état donné.

Formellement, une fonction de gain φ associe à tout mot fini ou infini dans States+]Statesω
un nombre réel. Dans le cas des deux types de fonctions (accessibilité terminale et sûreté), on
démontre aisément qu’une telle fonction est mesurable, ce qui permet de définir son espérance
Eσ(φ) pour toute loi de probabilité Pσ où σ est une stratégie.

Un jeu possède un profil d’objectifs Φ, c’est-à-dire une fonction d’objectif Φi pour chaque
joueur i. Celui-ci cherche à maximiser cette fonction, c’est-à-dire la quantité Eσ(Φi) malgré
les interactions avec les autres joueurs.

Deux cas de figures se dégagent :

• Lorsque seuls deux joueurs interviennent et que la somme Φ1 + Φ2 = 0 est nulle, tout
gain acquis par un joueur constitue une perte pour l’autre joueur. Sous des hypothèses
satisfaites ici, on démontre (voir [KS81]) que le jeu est déterminé, c’est-à-dire :

ν1(s) = inf
σ2∈S2

sup
σ1∈S1

E(σ1,σ2)(Φ1 | s) = ν1(s) = sup
σ1∈S1

inf
σ2∈S2

E(σ1,σ2)(Φ1 | s)

De plus, ces valeurs sont atteintes asymptotiquement par des stratégies ne dépendant
que de l’état courant, c’est-à-dire stationnaires. Elles ne sont pas nécessairement at-
teintes de manière exacte, comme le montre l’exemple de la figure 1.2.

• Lorsque plus de deux joueurs interviennent, ou que la somme de leur gain n’est plus
constante, de nouveaux concepts d’optimalité ont été proposés notamment par Nash.
Un profil de stratégie σ forme ainsi un équilibre de Nash (cf [Nas50]) lorsque :

∀i ∈ Agt ∀σ′i Eσ[i/σ′i](Φi | s) ≤ Eσ(Φi | s)

où σ[i/σ′i] désigne un nouveau profil de stratégie où le joueur i joue désormais la
stratégie σ′i.

Il est important de mentionner que la plupart des résultats établis dans la littérature
considèrent des jeux où les actions sont observables, c’est-à-dire que la stratégie est une
fonction définie sur des historiques de la forme (s0, A0, s1, A1, . . . sk) où chaque Ai corres-
pond au profil d’actions choisi conjointement par les joueurs depuis l’état si menant à l’état
si+1. Dans cette thèse, les actions ne sont pas supposées observables (seule la séquence
(s0, s1 . . . sk) ∈ States+ est fournie à la stratégie), ce qui nous mène à montrer dans un
premier temps que les théorèmes de déterminisation précédents peuvent être étendus à ce
nouveau cadre.

Indécidabilité de l’existence d’un équilibre de Nash

L’existence d’équilibre est assurée dans le cas de jeux se terminant en un tour, dès lors que
l’on autorise des stratégies randomisées, grâce au théorème de Nash. Dans le cas de jeux sur
des graphes, l’existence de stratégies optimales n’est pas assurée dans les jeux à somme nulle,
ce qui implique a fortiori qu’un équilibre de Nash n’existe pas nécessairement.

Le problème de décision consiste ainsi à déterminer si, étant donné un jeu stochastique
fourni en entrée, il existe une profil de stratégie formant un équilibre de Nash. Le chapitre 4
répond à cette question de manière négative : le problème est montré indécidable dès lors que

152

LIST OF TABLES

le jeu fait intervenir trois joueurs. La preuve s’appuie sur la réduction du problème de l’arrêt
d’une machine à deux compteurs [Min67], de façon similaire à une précédente preuve à 14
joueurs [Umm08].

La preuve présentée ici s’appuie sur des caractéristiques supplémentaires, ce qui permet
d’abaisser le nombre de joueurs nécessaires requis pour l’indécidabilité :

• Les jeux sont supposés concurrents, ce qui signifie que plusieurs joueurs choisissent
simultanément la prochaine action, par opposition aux jeux à tour où au plus un joueur
peut réaliser un choix non trivial depuis chaque état.

• Les actions sont inobservables, ce qui permet de réaliser des encodages plus complexes
de la machine à deux compteurs.

De manière équivalente, la réduction nous permet de considérer le cas qualitatif, où les
fonctions de gain ne prennent que des valeurs égales à 0 ou 1. Dans le cas de l’accessibilité
terminale, cela revient à dire qu’un joueur gagne uniquement s’il arrive à atteindre un certain
ensemble d’états finaux. Dans le cas d’un objectif de sûreté, le joueur ne gagne que s’il parvient
à rester dans un ensemble d’états donné.

Nous établissons ainsi que l’existence d’un équilibre est indécidable dès lors que le jeu
implique au moins trois joueurs aux objectifs qualitatifs, dont l’un au moins est un objectif
d’accessibilité terminale et un autre un objectif de sûreté. Ceci est à mettre en regard d’autres
configurations pour lesquelles l’existence d’un équilibre est assuré :

• Lorsqu’un seul joueur est présent, le jeu se résume à un processus de décision Markovien,
pour lequel l’existence d’une stratégie optimale est connue.

• Lorsque tous les joueurs possèdent des objectifs de sûreté qualitatifs, [SS01] établit
l’existence d’un équilibre de Nash.

Deux cas restent ainsi ouverts : l’existence d’un équilibre en présence de deux joueurs,
ainsi que le cas où tous les objectifs considérés sont de sûreté.

Équilibres aux déviations imprécises

Le chapitre 5 conclut la première partie en introduisant une notion relâchée d’équilibres. Une
première notion présentée par [CJM04] établit l’existence d’ε-équilibres de Nash, pour tout
ε > 0. Formellement, un tel équilibre est caractérisé par un profil σ tel que :

∀i ∈ Agt ∀σ′i Eσ[i/σ′i](Φi | s) ≤ Eσ(Φi | s) + ε

Nous établissons ici l’existence d’une notion duale, que nous montrons incomparable à la
notion précédente : un profil σ est un équilibre sous déviation ε-imprécise lorsque :

∀i ∈ Agt ∀σ′i ∃σ′′i d(σ′i, σ
′′
i) ≤ ε ∧ Eσ[i/σ′′i](Φi | s) ≤ Eσ(Φi | s)

où d(σ′i, σ
′′
i) désigne la distance entre les stratégies σ′i et σ′′i vue comme le supremum des

distances entre distributions depuis tous les historiques possibles.
Ainsi, lorsqu’une déviation σ′i est proposée par le joueur i, toute déviation à distance

inférieure à ε doit également améliorer le gain du joueur i afin de mettre en échec l’équilibre.
Nous montrons qu’un tel profil de stratégies σ existe nécessairement, en adaptant des

techniques de Nash ainsi que [SS01]. De plus, σ peut être supposé stationnaire, ce qui ouvre
la voie au développement d’un algorithme de calcul en espace polynomial.

153

LIST OF TABLES

Partie 2 : Réseaux paramétrés

Dans la seconde partie du manuscrit, nous nous intéressons à un modèle plus réaliste où le
nombre d’agents n’est pas déterminé à l’avance, et l’observation de chaque joueur est impar-
faite. Plus précisément, le nombre d’agents est un paramètre, et nous souhaitons répondre à
des problèmes de vérification indépendamment du paramètre choisi.

Différentes méthodes d’interaction

Puisque le paramètre n’est pas fixé, il n’est plus possible de considérer le graphe d’état du
système complet, et il est nécessaire de spécifier séparément le comportement de chaque
agent, puis les modalités d’interaction entre agents. Dans le chapitre 6, nous discutons des
différentes méthodes d’interactions envisagées dans l’étude des systèmes paramétrés. Un bilan
présenté par Esparza [Esp14] propose ainsi une classification des moyens de communication,
par expressivité décroissante :

• Les diffusions de messages globaux (broadcast) ;

• Les variables partagées avec verrou ;

• La communication par rendez-vous ;

• Les variables partagées avec opérations non atomiques (sans verrou).

C’est ce dernier mode de communication qui est étudié ici, du fait de ses propriétés de
monotonicité. En effet, lorsque plusieurs agents ou processus communiquent entre eux, il est
toujours possible de dupliquer n’importe quel processus en lui faisant exécuter les mêmes
transitions au même instant, celles-ci étant soit des lectures, soit des écritures. L’hypothèse
de non atomicité se révèle cruciale car elle interdit la lecture puis écriture simultanée du
registre, opération qui ne pourrait pas être dupliquée.

Réseaux paramétrés

Nous définissons ainsi dans le chapitre 7 le modèle formel de réseaux paramétrés avec variable
partagée. Celui-ci est composé d’un domaine de définition D de la variable partagée, sa
valeur initiale d0 ∈ D, ainsi que de deux automates finis. Chaque automate (q,Q, T) décrit
le comportement d’un processus, initialement dans l’état q ∈ Q, et dont les transitions,
définies par l’ensemble T , sont étiquetées par des opérations de lecture R (d) ou d’écriture
W (d), pour une certaine valeur de registre d ∈ D. Intuitivement, s’il existe une transition
(q,R (d) , q′) ∈ T où d ∈ D est la valeur courante du registre partagé, alors tout processus
dans l’état q peut effectuer une transition vers l’état q′, sans altérer le registre. S’il existe une
transition (q,W (d) , q′) ∈ T , alors tout processus dans l’état q peut effectuer une transition
vers l’état q′, en inscrivant la valeur d dans le registre partagé, et ceux peu importe la valeur
courante du registre.

Nous appelons configuration d’un réseau paramétré P un triplet γ = (q, µ, d) où

• d est la valeur courante du registre partagé ;

• q est l’état courant du processus leader, décrit par le premier automate (ql, Ql, Tl) ;

154

LIST OF TABLES

• µ ∈ NQc est un multiensemble des états des processus contributeurs, décrits par le second
automate (qc, Qc, Tc).

À chaque instant, l’ordonnanceur choisit un processus parmi le leader et les différents contri-
buteurs et réalise une transition, mettant à jour l’état q ou le multiensemble µ, résultant en
une nouvelle configuration γ′. On note généralement γ → γ′ lorsqu’une telle transition est
possible de la configuration γ vers γ′, ou de manière équivalente γ′ ∈ Post(γ) voire γ ∈ Pre(γ′).

Objectifs et régularité

On remarque aisément que l’ajout d’un ou plusieurs processus contributeurs n’altère pas pas
la validité d’un chemin : si (q, µ, d)→∗ (q′, µ′, d′) et qa ∈ Qc est un état contributeur tel que
µ(qa) > 0, alors il existe q′a ∈ Qc tel que µ′(q′a) > 0 et (q, µ⊕ qa, d)→∗ (q′, µ′⊕ q′a, d′). Ce fait
est présenté dans le lemme de copie 7.18 et la figure 7.2 et justifie l’étude des opérations non
atomiques.

La principale question adressée dans cette seconde partie est l’accessibilité d’une confi-
guration recouvrant un état fixé qf ∈ Qc, c’est-à-dire que l’on cherche à savoir si qf est
atteint par n’importe lequel des processus contributeurs. L’ensemble de configurations est
ainsi Uf = {(q, µ, d) | µ(qf) > 0}. On remarque que l’ajout de processus contributeurs
supplémentaires ne nuit pas à l’accessibilité, puisqu’on peut choisir de conserver ces processus
supplémentaires inactifs, et toujours atteindre Uf .

Un autre objectif traité dans cette thèse est le consensus, où l’on requiert désormais que
tous les processus atteignent qf au même instant, c’est-à-dire U ′f = {(q, µ, d) | ∀q′ 6= qf µ(q′) =
0}.

On introduit la relation d’ordre � définie pour tout couple de configuration (q, µ, d) et
(q′, µ′, d′) par (q, µ, d) � (q′, µ′, d′) si, et seulement si, q = q′, d = d′ et pour tout qa, soit
µ(qa) = µ′(qa) = 0, soit 0 < µ(qa) ≤ µ′(qa). Munis de cette relation d’ordre, les deux objectifs
précédents sont exprimables aisément, car clos par le haut pour la relation �, qui est un bel
ordre. Cela signifie en particulier que les ensembles Uf considérés sont engendrés par la clôture
d’un nombre fini d’éléments minimaux. Dans les deux cas de la couverture et du consensus, ces
éléments minimaux sont même de petite taille : si (q, µ, d) ∈ minUf , alors ∀q′ µ(q′) ∈ {0, 1}.
Ces objectifs seront nommés dans la suite simple et la plupart des résultats s’appliqueront
ainsi

De la même manière, nous définissons l’ensemble des configurations initiales par U0 = ↑
(ql, qc, d0).

Ordonnanceur

Deux cas de figures d’ordonnanceurs sont considérés :

• Un ordonnanceur non déterministe : existe-t-il un chemin d’une configuration initiale
γ0 ∈ U0 vers une configuration finale γf ∈ Uf .

• Un ordonnanceur probabiliste : étant donné une configuration initiale γ0 ∈ U0 et en
considérant des transitions choisies de manière probabiliste, quelle est la probabilité
d’atteindre Uf .

Nous retenons ici la seconde approche, d’un point de vue qualitatif, en évaluant uniquement
si la probabilité d’accessibilité est nulle, entre 0 et 1, ou égale à 1. En effet, dans ce cadre plus

155

LIST OF TABLES

restreint, la question de l’accessibilité probabiliste ne dépend pas des valeurs de probabilités
exactes choisies par l’ordonnanceur.

Analyse non déterministe

Le chapitre 8 s’intéresse à l’accessibilité avec probabilité strictement positive. On remarque
premièrement qu’une telle propriété équivaut à l’existence d’un chemin avec ordonnanceur
non déterministe. Nous revisitons ainsi des résultats présentés dans [EGM13].

En particulier, nous montrons que tout chemin entre U0 et Uf peut être compressé en
un nombre polynomial de transitions et impliquant donc un faible nombre de processus.
Ceci est réalisé à l’aide d’un graphe symbolique, ne gardant pas en mémoire le nombre exact
de processus contributeurs, mais uniquement l’ensemble des états activés par au moins un
contributeur. Ce graphe a ainsi de bonnes propriétés de compatibilité avec la relation �.

D’autre part, nous rappelons une précédente preuve de réduction du problème 3SAT vers
l’accessibilité dans un réseau, ce qui démontre que le problème d’accessibilité avec probabilité
strictement positive est NP-complet.

Analyse probabiliste

Le problème de l’accessibilité presque sûre, c’est-à-dire avec probabilité 1, est traité dans le
chapitre 9. Contrairement au cas précédent, l’ajout de nouveaux processus peut débloquer
de nouveaux comportements qui a leur tour, pourraient empêcher l’accessibilité avec proba-
bilité 1.

Valeur seuil

Cette nouvelle analyse repose donc sur un nouveau concept de valeur seuil, à partir de laquelle
le paramètre fixant le nombre de contributeurs impose toujours une accessibilité presque sûre
ou à l’inverse, impose toujours une accessibilité avec probabilité strictement inférieure à 1.

Formellement, en notant Pn(♦Uf) la probabilité d’atteindre Uf à partir d’une configuration
initiale à n contributeurs, on montre que la suite dPn(♦Uf)e à valeur dans {0, 1} admet une
limite, c’est-à-dire qu’il existe un entier N tel que :

• ou bien pour tout n ≥ N , Pn(♦Uf) = 1 : N est alors une valeur seuil positive ;

• ou bien pour tout n ≥ N , Pn(♦Uf) < 1 : N est alors une valeur seuil négative ;

La preuve d’existence s’appuie sur l’analyse d’inclusion d’ensemble d’accessibilité et de co-
accessibilité, qui est facilité par la structure de bel ordre de �.

Bornes de complexité

Une fois l’existence d’une valeur seuil établie, il reste à déterminer s’il s’agit d’un seuil positif
ou négatif, répondant ainsi à une analyse globale du problème. En effet, une valeur seuil
fournit une indication sur le comportement limite d’un protocole. Afin de répondre à cette
question, il suffit d’analyser notre système pour un paramètre étant une valeur seuil, que l’on
veut donc la plus petite possible. Nous nous intéressons ainsi à des exemples de protocole
dont la valeur seuil minimale est importante, ce qui fournit des bornes inférieures

156

LIST OF TABLES

• Nous démontrons premièrement qu’il existe des protocoles dont la valeur seuil minimale
est linéaire en la taille du protocole.

• À l’aide de ce premier résultat, il est possible de générer un nouveau protocole dont la
valeur seuil est négative, et exponentielle en la taille du protocole.

• Cet exemple est ensuite généralisé, pour réaliser l’encodage d’une machine de Turing
linéairement bornée. Un seuil négatif dans le protocole obtenu devient alors équivalent
à l’arrêt de la machine de Turing. Le problème de décision d’un seuil négatif, puis a
fortiori, d’un seuil positif, est donc PSPACE-difficile.

De manière orthogonale, nous développons une technique générale pour borner la taille
d’une valeur seuil par une quantité doublement exponentielle en la taille du protocole. Ce
résultat généralise ainsi les bornes doublement exponentielles de Rackoff [Rac78] pour la
couverture dans les réseaux de Petri. Ceci fournit d’autre part un algorithme de décision en
espace (simplement) exponentiel, grâce au théorème de Savitch [Sip97].

Extensions

Des extensions sont présentées sont dans le chapitre 10 :

• Le model checking presque sûr d’un protocole, par rapport à une formule LTL ;

• La gestion d’un nombre fini de registres partagés, en introduisant des opérations de
copie d’un registre à un autre ;

• La gestion d’identifiant de processus (pid), tant que la monotonicité est préservée.

Nous indiquons comment les techniques précédentes peuvent être adaptées, et dans les
deux premiers cas, nous fournissons des bornes doublement exponentielles ainsi qu’un algo-
rithme de décision en espace exponentiel.

Stratégies locales

Le dernier chapitre 11 introduit alors le concept de stratégies issues de la première partie
de la thèse, et montre que certains problèmes de synthèse sont décidables, sous certaines
hypothèses :

• Nous considérons uniquement l’accessibilité avec probabilité strictement positive, ou
strictement inférieure à 1,

• pour des objectifs de couverture,

• avec des stratégies locales, c’est-à-dire n’ayant pour observation que la séquence d’état
localement visités.

Dans les deux cas étudiés, accessibilité avec probabilité strictement supérieure à 0 ou
strictement inférieure à 1, la mémoire requise par une stratégie locale peut être limitée à une
quantité polynomiale, ce qui signifie encore une fois que les problèmes correspondant sont
NP-complets.

157

Titre : Stratégies randomisées dans les jeux concurrents

Mots clefs : Jeux, stratégies, stochastiques, Nash, équilibres, concurrent

Résumé : Ce travail se concentre sur l'étude
de jeux joués sur des graphes �nis, par un
nombre arbitraire de joueurs, dont les objec-
tifs ne sont pas antagonistes. Chaque joueur re-
présente un agent, c'est-à-dire un programme,
un processus, ou un périphérique, qui interagit
avec les autres joueurs et leur environnement
commun dans le but de satisfaire au mieux
son objectif individuel. Des concepts tels que
les équilibres de Nash, permettant d'exprimer
l'optimalité des stratégies des joueurs, ont été
étudiés dans un cadre déterministe, et l'exis-
tence de tels équilibres n'est pas assurée, même
lorsque les objectifs des joueurs sont de simples

conditions d'accessibilité ou de sûreté. En e�et,
lorsque les joueurs jouent de manière détermi-
niste, le système évolue en conservant une cer-
taine symétrie, ce qui nous motive à considérer
un modèle stochastique où les joueurs et l'envi-
ronnement sont sources d'aléa. Dans le premier
cas, nous montrons que les concepts classiques
d'équilibres de Nash ne peuvent être calculés,
et introduisons des notions approchées d'équi-
libres calculables. Dans le deuxième cas, nous
nous intéressons à l'analyse de systèmes compo-
sés d'un nombre arbitraires de processus, dont
l'exécution est déterminée par un ordonnan-
ceur, c'est-à-dire l'environnement, probabiliste.

Title : Randomized Strategies in Concurrent Games

Keywords : Games, Strategy, Stochastic, Nash, Equilibrium, Concurrent

Abstract : We study games played on graphs
by an arbitrary number of players with non-
zero sum objectives. The players represent
agents (programs, processes or devices) that
can interact to achieve their own objectives as
much as possible. Solution concepts, as Nash
Equilibrium, for such optimal plays, need not
exist when restricting to pure deterministic
strategies, even with simple reachability or sa-
fety objectives. As a matter of fact, symmetry
is preserved when players behave deterministi-

cally, which motivates the studies where either
the players or the environment can use rando-
mization. In the �rst case, we show that clas-
sical concepts like Nash Equilibria, cannot be
computed even with a �xed number of agents
and propose computable approximations. In
the second case, we study systems composed of
several copies of the same process, communiting
through a shared register, and whose executions
are determined by a stochastic scheduler.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

2

	Introduction
	Game theory and computer science
	Non-determinism, stochasticity and quantitative problems
	Strategic optimization
	Outlines
	Related work
	Structure of the Thesis
	Scientific publications

	Preliminaries
	Usual notations
	Operations over a monoid
	Monoid over words
	Relations over a set
	Paths
	Partial functions

	Sets and multisets
	Well-quasi-orders
	Probability theory

	I Mixed Strategies in Concurrent games
	Concurrent games
	Strategies
	Visibility of actions
	Semantics
	Outcome of a game
	Two-player zero-sum games
	Nash Equilibria
	Definition
	Sub-game characterization
	Subgame perfect equilibrium
	Example of equilibria

	Decidability of Nash Equilibria
	Tools
	One-shot games
	k-action matching-pennies games
	Embedded game

	Modules
	Rescale game
	Testing game
	Counting modules
	Description of the reduction

	Conclusions
	Unconstrained problem
	Qualitative objectives
	Summary

	Games that almost-surely terminate
	Avoiding cycling behaviours
	Non-cycling games
	Strong components
	Fixed point analysis

	Equilibria under imprecise deviations
	Restricting to memoryless deviations
	Existence theorem
	Discussions

	Computing stationary equilibria under imprecise deviations

	II Parametrized Stochastic Systems
	Interaction models
	Parametrized register protocols
	Non-deterministic transition system
	Parametrized reachability: a global picture
	Monotonicity
	Upward closed reachability objectives
	Non-atomicity

	Probabilistic transition system
	Qualitative analysis
	Cut-off property

	Probabilistic reachability and safety
	Existence
	Symbolic graph

	Almost-sure reachability
	First examples
	Atomicity prevents cut-off existence
	Symbolic graph is powerless

	Existence
	Bound examples
	Linear cut-off
	Counter machine
	PSPACE-hardness

	Decision procedure
	Refined symbolic graph
	Symbolic based algorithm
	Complexity bounds on covering
	General bounding scheme

	Extensions and discussions
	Model checking
	r-register protocol
	Tools enhancement
	Operations over r registers
	Discussion on the r-register extension
	Comparison with non-atomic protocols

	Process identifiers
	Conclusions

	Toward Strategy Synthesis
	Definitions
	Allowed actions and randomization
	Local strategies
	Semantics
	Cut-off property

	Reachability
	Mixed strategies
	Pure strategies
	Summary

	Safety
	Conclusions

	Bibliography
	List of figures
	List of tables
	Résumé en français

