TD 6 : Entropie et codage

1 Échauffement

Exercice 1 On a une pièce biaisée de probabilité 0 (on ne connaît pas <math>p). Comment peut-on simuler une pièce parfaite en utilisant la piece biaisée?

Exercice 2 On a une pièce parfaite (p = 1/2). Comment peut-on simuler un dé à $n \in \{3, 4, 5, \ldots\}$ faces?

Peut-on réaliser cette simulation en temps constant?

2 Entropie

Exercice 3 Soit X une v.a. sur un domaine fini. Quelle est (en général) la relation d'inégalité entre H(X) et H(Y) si

a.
$$Y = 2^X$$
?

b.
$$Y = cos(X)$$
?

Exercice 4 Quelle est la valeur minimale de $H(p_1, ..., p_n) = H(\vec{p})$ pour \vec{p} dans l'ensemble des vecteurs de probabilité de dimension n? Donner tous les \vec{p} qui réalisent ce minimum.

Exercice 5 On lance une pièce parfaite jusqu'à obtenir face. La v.a. X dénote le nombre de lancers effectués.

- a. Trouver H(X).
- b. On tire au hasard une v.a. X selon cette distribution. Trouver une séquence efficace de requêtes oui/non de la forme « Est-ce que X est dans l'ensemble S? » pour déterminer X. Comparer H(X) avec l'espérance du nombre de requêtes nécessaires pour trouver X.

Exercice 6 Dans le cadre des InterENS Culturelles 2014, une série de 7 matchs d'improvisation est organisée entre les équipes de Cachan et de Ker-Lann. La première équipe à remporter 4 matchs est déclarée gagnante. Soit X la v.a. représentant les résultats possibles, par exemple CCCC, KCKCKCK ou CCCKKKK. Soit Y le nombre de matchs joués $(4 \le Y \le 7)$. On suppose les équipes équilibrées, et les matchs indépendants. Calculer H(X), H(Y), H(Y|X) et H(X|Y).

3 Algorithme de Sardinas & Patterson

Exercice 7 Si $u, v \in \Sigma^*$, on définit $u - v = \{u_{l+1} \dots u_k\}$ si $u = u_1 \dots u_k$ et $v = u_1 \dots u_l$ $(l \le k)$ et $u - v = \emptyset$ sinon (par exemple, $abc - a = \{bc\}$, $ab - ba = \emptyset$). Étant donné $S \subseteq \Sigma^*$, on définit

$$T_0 = \bigcup_{\substack{u,v \in S \\ u \neq v}} u - v$$

et on définit T comme étant le plus petit ensemble qui contient T_0 et qui satisfait l'inégalité

$$\bigcup_{s \in S, v \in T} ((s - v) \cup (v - s)) \subseteq T$$

a. L'objectif de cette question est de montrer que S est uniquement déchiffrable ssi T ne contient pas le mot vide. Pour tout $i \ge 1$, on pose

$$T_i = T_{i-1} \cup \bigcup_{u \in S, v \in T_{i-1}} ((u-v) \cup (v-u))$$

Il est facile de voir que $T = \bigcup_i T_i$ et que les T_i ne contiennent que des suffixes de mots de S. En outre, puisque $T_i \subset T_{i+1}$ pour $i \geq 0$, il existe $n \geq 0$ tel que $T = T_n = T_{n+1}$.

(a) Si S est uniquement déchiffrable, on pourra (démontrer et) utiliser le lemme suivant :

Lemma 1 Pour tout $u \in T$ et pour tous $u_1, \ldots, u_k, v_1, \ldots, v_\ell \in S$ tels que $u_1 u_2 \ldots u_k = u v_1 v_2 \ldots v_k$, on a $\varepsilon \in T$.

(b) Si $\varepsilon \in T$, on pourra (démontrer et) utiliser le lemme suivant :

Lemma 2 Pour tout i, s'il existe $u \in T_i$ et $u_1, \ldots, u_k, v_1, \ldots, v_\ell \in S$ tels que $uu_1 \ldots u_k = v_1 \ldots v_\ell$, alors il existe $v \in T_0$ et $u'_1, \ldots, u'_k, v'_1, \ldots, v'_\ell \in S$ tels que $vu'_1 \ldots u'_k = v'_1 \ldots v'_\ell$.

b. Quel S est uniquement déchiffrable :

$$S_0 = \{0, 10, 11\}$$
 $S_1 = \{0, 01, 11\}$ $S_2 = \{0, 01, 10\}$ $S_3 = \{0, 01\}$

$$S_4 = \{00, 01, 10, 11\}$$
 $S_5 = \{110, 11, 10\}$ $S_6 = \{110, 11, 100, 00, 10\}$

c. Donner un algorithme (polynomial) pour décider si S est un code. Estimer la complexité de l'algorithme.

2