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Stochastic games on graphs

• Games for synthesis

- Reactive system synthesis = finding a winning 
strategy in a game 

• Game played on a graph

- Infinite number of rounds

- Player’s moves determine successor state

- Outcome = infinite path in the graph

When is randomness more powerful ?

When is randomness for free ?
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- Reactive system synthesis = finding a winning 
strategy in a game 

• Game played on a graph

- Infinite number of rounds

- Player’s moves determine successor state

- Outcome = infinite path in the graph

When is randomness more powerful ?

When is randomness for free ?

… in game structures ?

… in strategies ?

Stochastic games on graphs
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Mode of interaction

• Classification according to Information & Interaction 

Interaction

General case: concurrent & stochastic

Player 1’s move

Player 2’s move

Probability distribution 
on successor state

Players choose their moves simultaneously and independently

-player games (MDP)
if A1 or A2 is a singleton.



Mode of interaction

Interaction

General case: concurrent & stochastic

Separation of concurrency & probabilities



Mode of interaction

Interaction

Special case: turn-based

Player 1 state Player 2 state

In each state, one player’s move determines successor



Knowledge

• Classification according to Information & Interaction 

In state   , player    sees           such that 

Information

General case: partial observation

Two partitions             and

Player 1’s view Player 2’s view



Knowledge

Information

Special case 1: one-sided complete observation

or

Player 1’s view Player 2’s view



Knowledge

Information

Special case 2: complete observation

and

Player 1’s view Player 2’s view
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• Classification according to Information & Interaction 
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one-sided complete obs.

partial observation

turn-based

concurrent

Information Interaction 
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Classification

• Classification according to Information & Interaction 

complete observation 
MDP

one-sided complete obs. POMDP

turn-based

concurrent

=

Information
Interaction 

-player games Markov Decision 
Process

partial observation

=



Strategies

A strategy for Player    is a function that
maps histories to probability distribution over actions.

Strategies are observation-based:



Strategies

A strategy for Player    is a function that
maps histories to probability distribution over actions.

Strategies are observation-based:

Special case: pure strategies 
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Objectives

An objective is a measurable set of infinite sequences of 
states:

Examples:

- Reachability, safety
- Büchi, coBüchi
- Parity
- Borel

B C

Büchi coBüchi

Reachability Safety



Value

Probability of finite prefix of a play:

induces a unique probability measure on measurable sets of 
plays:

and a value function for Player 1:



Value

Probability of finite prefix of a play:

induces a unique probability measure on measurable set of 
plays:

and a value function for Player 1:

Our reductions preserve values and 
existence of optimal strategies.



Outline

• Randomness in game structure

- for free with complete-observation, concurrent

- for free with one-sided, turn-based

• Randomness in strategies 

- for free in (PO)MDP

• Corollary: undecidability results



Preliminary

Rational probabilities    Probabilities    only     

1. Make all states have two successors

1

2 3
4

1

2

3 4
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Preliminary

Rational probabilities    Probabilities    only     

2. Use binary encoding of p and q-p to simulate 
[Zwick,Paterson 96] :  

• Polynomial-time reduction, 
for parity objectives
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Classification

• Classification according to Information & Interaction 

complete observation

one-sided complete obs.

partial observation

turn-based

concurrent

Information Interaction 
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Simulate probabilistic state with concurrent state
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Probability to go from s to s’0: 

If                        , then

If                        , then

Simulate probabilistic state with concurrent state

Each player can unilaterally decide to 
simulate the original game.

Reduction



Simulate probabilistic state with concurrent state

Player 1 can obtain at least the 
value v(s) by playing all actions 
uniformly at random: v’(s) ≥ v(s) 

Player 2 can force the value to be
at most v(s) by playing all actions 
uniformly at random: v’(s) ≤ v(s) 

Reduction



For {complete,one-sided,partial} observation, given a 
game with rational probabilities

we can construct a concurrent game with deterministic 
transition function 

such that: 

and existence of optimal observation-based strategies is 
preserved.    

The reduction is in polynomial time for 
complete-observation games.

Reduction



Information leak from the back edges…
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No information leakage if 
all probabilities have same denominator q

� use 1/q=gcd of all probabilities in G



Information leak from the back edges…

Partial information

No information leakage if 
all probabilities have same denominator q

� use 1/q=gcd of all probabilities in G

The reduction is then exponential.



Example



Outline

• Randomness in game structure

- for free with complete-observation, concurrent

- for free with one-sided, turn-based

• Randomness in strategies 

- for free in (PO)MDP

• Corollary: undecidability results



Overview

• Classification according to Information & Interaction 

complete observation

one-sided complete obs.

partial observation

turn-based

concurrent

Information Interaction 



Reduction

Simulate probabilistic state with imperfect information 
turn-based states

Player 1 states

Player 2 state

Player 1 
observation



Reduction

Each player can unilaterally decide to simulate the probabilistic state
by playing uniformly at random:

Player 2 chooses states (s,0),(s,1) unifiormly at random
Player 1 chooses actions 0,1 unifiormly at random

Simulate probabilistic state with imperfect information 
turn-based states



Games with rational probabilities can be reduced to turn-
based-games with deterministic transitions and (at least) 
one-sided complete observation.

Values and existence of optimal 
strategies are preserved. 

Reduction



Randomness for free

In transition function (this talk):



When randomness is not for free

• Complete-information turn-based (    ) games

- in deterministic games, value is either 0 or 1 [Martin98]
- MDPs with reachability objective can have values in [0,1]

Randomness is not for free.

• -player games (MDP & POMDP)

- in deterministic partial info     -player games, value is
either 0 or 1 [see later]

- MDPs have value in [0,1]

Randomness is not for free.



Randomness for free

In transition function (this talk):



Randomness for free

In transition function (this talk):

In strategies (Everett’57, Martin’98, CDHR’07):



Randomness in strategies

Example
- concurrent, complete observation
- reachability

Reminder: randomized strategy for Player   :

pure strategy for Player   : 

Randomized strategies are 
more powerful



Randomness in strategies

Example
- turn-based, one-sided complete observation
- reachability

Randomized strategies are 
more powerful



Outline

• Randomness in game structure

- for free with complete-observation, concurrent

- for free with one-sided, turn-based

• Randomness in strategies 

- for free in (PO)MDP

• Corollary: undecidability results



(p)

Randomness in strategies

Randomized
strategy

probability p 

a

b
(1-p)

RandStrategy(p)
{ 

x = rand(0…1)
if x≤p then out(a) 
else out(b)

}



(p)

Randomness in strategies

Randomized
strategy

probability p 

a

b
(1-p)

Random
generator

Uniform 
probability

x ∈ [0,1]

Pure strategy
a

Pure strategy
b

x ≤ p

x > p



Randomness for free in strategies

For every randomized observation-based strategy , there
exists a pure observation-based strategy such that:

1½-player game (POMDP), s0 initial state.

Proof. (assume alphabet of size 2, and fan-out = 2)

Given σ, we show that the value           of σ can be obtained 
as the average of the value of pure strategies σx:



Randomness for free in strategies

Strategies σx are obtained by «de-randomization» of σ

Assume σ(s1)(a) = p and σ(s1)(b) = 1-p

σ is equivalent to playing σ0 with frequency p 
and σ1 with frequency 1-p where:
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Randomness for free in strategies

Equivalently, toss a coin x ∈ [0,1],
play σ0 if x ≤ p, and play σ1 if x > p.

Playing σ in G can be viewed as a sequence of coin tosses:

s0

a

b

x ≤ p

x > p

toss x ∈ [0,1]

[ p = σ(s1)(a) ]
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a

b

x ≤ p

x > p

y ≤ qa

y > qa

y ≤ qb

y > qb

s’
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s1
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Randomness for free in strategies

Equivalently, toss a coin x ∈ [0,1],
play σ0 if x ≤ p, and play σ1 if x > p.

Playing σ in G can be viewed as a sequence of coin tosses:

s0

a

b

x ≤ p

x > p

y ≤ qa

y > qa

y ≤ qb

y > qb

…

…

s’

s’’

s’’’

s’’’’

s1

s1

s1

s1

toss x ∈ [0,1] toss y ∈ [0,1] toss x ∈ [0,1]

[ p = σ(s1)(a) ]

[ qa = δ(s1,a)(s1) ]s’

[ qb = δ(s1,b)(s1 ) ]s’’’



Randomness for free in strategies

Given an infinite sequence x=(xn)n≥0 ∈ [0,1]ω, define for 
all s0, s1, …, sn:

σx is a pure and observation-based strategy !

σx plays like σ, assuming that the result of the coin tosses 
is the sequence x.

The value           of σ is the « average of the outcome »
of the strategies σx. 



Randomness for free in strategies
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Assume x=(xn)n≥0 and y=(yn)n≥0 are fixed.

Let                                            where
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Theorem: 
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Randomness for free in strategies

s0

a

b

x0 ≤ p

x0 > p

y0 ≤ qa

y0 > qa

y0 ≤ qb

y0 > qb

…

…

s’

s’’

s’’’

s’’’’

s1

s1

s1

s1

Assume x=(xn)n≥0 and y=(yn)n≥0 are fixed.

Let                                            where

Playing σ in G is equivalent to choosing (xn) and (yn) 
uniformly at random, and then producingThe random sequences (xn) and (yn) can be

generated separately, and independently ! 



Proof

The value           of σ is the « average of the outcome »
of the strategies σx. 



Proof

The value           of σ is the « average of the outcome »
of the strategies σx. 

Pure and randomized strategies
are equally powerful in POMDPs !



Randomness for free

In transition function:

In strategies:



Corollary

Almost-sure coBüchi (and positive Büchi) with randomized 
(or pure) strategies is undecidable for POMDPs.

Using [BaierBertrandGrößer’08]:

Using randomness for free in transition functions :

Almost-sure coBüchi (and positive Büchi) is undecidable
for deterministic turn-based one-sided complete 
observation games.



Thank you !

Questions ?


