Randomness for Free

Laurent Doyen LSV, ENS Cachan & CNRS

joint work with Krishnendu Chatterjee, Hugo Gimbert, Tom Henzinger

- Games for synthesis
 - Reactive system synthesis = finding a winning strategy in a game
- Game played on a graph
 - Infinite number of rounds
 - Player's moves determine successor state
 - Outcome = infinite path in the graph

When is randomness more powerful ? When is randomness for free ?

- Games for synthesis
 - Reactive system synthesis = finding a winning strategy in a game
- Game played on a graph
 - Infinite number of rounds
 - Player's moves determine successor state
 - Outcome = infinite path in the graph

When is randomness more pow... in game structures ?When is randomness for free ?... in strategies ?

Classification according to Information & Interaction

Interaction: how players' moves are combined.

Information: what is visible to the players.

Round 1

- Classification according to Information & Interaction
 - Interaction: how players' moves are combined.
 - Information: what is visible to the players.

Round 2

- Classification according to Information & Interaction
 - Interaction: how players' moves are combined.
 - Information: what is visible to the players.

Round 3

Classification according to Information & Interaction

Interaction

General case: concurrent & stochastic

Players choose their moves simultaneously and independently

Classification according to Information & Interaction

Interaction

General case: concurrent & stochastic

Players choose their moves simultaneously and independently

Interaction

General case: concurrent & stochastic

$$\delta: S \times A_1 \times A_2 \to \mathcal{D}(S) \qquad \qquad \delta: \left\{ \begin{array}{c} S_A \times A_1 \times A_2 \to S_P \\ S_P \to \mathcal{D}(S_A) \end{array} \right.$$

Separation of concurrency & probabilities

Interaction

Special case: turn-based

Player 1 state

Player 2 state

In each state, one player's move determines successor

Knowledge

• Classification according to Information & Interaction

Information

General case: partial observation

Two partitions $\mathcal{O}_1 \subseteq 2^S$ and $\mathcal{O}_2 \subseteq 2^S$

In state ℓ , player i sees $obs_i(\ell)$ such that $\ell \in obs_i(\ell)$

Information

Special case 1: one-sided complete observation

 $\mathcal{O}_1 = \{\{\ell\} \mid \ell \in S\} \text{ or } \mathcal{O}_2 = \{\{\ell\} \mid \ell \in S\}$

Information

Special case 2: complete observation

 $\mathcal{O}_1 = \{\{\ell\} \mid \ell \in S\} \text{ and } \mathcal{O}_2 = \{\{\ell\} \mid \ell \in S\}$

Player 1's view

Player 2's view

Classification

Classification according to Information & Interaction

 Information
 Interaction

 partial observation
 concurrent

 one-sided complete obs.
 j

 turn-based
 turn-based

 $21/_2$ -player games

Classification

Classification according to Information & Interaction

 $11/_2$ -player games

Markov Decision Process

A strategy for Player i is a function $\sigma_i : S^+ \to \mathcal{D}(A_i)$ that maps histories to probability distribution over actions.

Strategies are observation-based:

$$\forall \rho, \rho' \in S^+$$
: if $obs_i(\rho) = obs_i(\rho')$, then $\sigma_i(\rho) = \sigma_i(\rho')$

A strategy for Player i is a function $\sigma_i : S^+ \to \mathcal{D}(A_i)$ that maps histories to probability distribution over actions.

Strategies are observation-based:

$$\forall
ho,
ho' \in S^+$$
 : if $\operatorname{obs}_i(
ho) = \operatorname{obs}_i(
ho')$, then $\sigma_i(
ho) = \sigma_i(
ho')$

Special case: pure strategies $\sigma_i : S^+ \to A_i$

Objectives

An objective is a measurable set of infinite sequences of states:

$$\varphi\subseteq S^\omega$$

Objectives

An objective is a measurable set of infinite sequences of states:

$$\varphi \subseteq S^\omega$$

Examples:

- Reachability, safety
- Büchi, coBüchi
- Parity
- Borel

Safety

Büchi

coBüchi

Value

Probability of finite prefix of a play:

$$P(s_0 \dots s_n \mid s_0) = \prod_{i=1}^n p(s_i, s_{i+1})$$

$$p(s_i, s_{i+1}) = \sum_{a \in A_1, b \in A_2} \delta(s_i, \sigma_1(s_0 \dots s_i)(a), \sigma_2(s_0 \dots s_i)(b))(s_{i+1})$$

induces a unique probability measure on measurable sets of plays:

$$Pr_{s_0}^{\sigma_1,\sigma_2}(\cdot)$$

and a value function for Player 1:

$$\langle\!\langle 1 \rangle\!\rangle_{val}^G(\varphi)(s) = \sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} Pr_s^{\sigma_1,\sigma_2}(\varphi).$$

Value

Probability of finite prefix of a play:

$$P(s_0 \dots s_n \mid s_0) = \prod_{i=1}^n p(s_i, s_{i+1})$$

 $p(s_i, s_{i+1}) = \sum_{a \in A_1, b \in A_2} \delta(s_i, \sigma_1(s_0 \dots s_i)(a), \sigma_2(s_0 \dots s_i)(b))(s_{i+1})$

induces a unique probability measure on measurable set of plays:

Our reductions preserve values andand a valueexistence of optimal strategies.

$$\langle\!\langle 1 \rangle\!\rangle_{val}^G(\varphi)(s) = \sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} Pr_s^{\sigma_1,\sigma_2}(\varphi).$$

Outline

- Randomness in game structure
 - for free with complete-observation, concurrent
 - for free with one-sided, turn-based
- Randomness in strategies
 - for free in (PO)MDP
- Corollary: undecidability results

Rational probabilities Probabilities $\frac{1}{2}$ only

1. Make all states have two successors

Outline

- Randomness in game structure
 - for free with complete-observation, concurrent
 - for free with one-sided, turn-based
- Randomness in strategies
 - for free in (PO)MDP
- Corollary: undecidability results

Classification

Classification according to Information & Interaction

Simulate probabilistic state with concurrent state

Probability to go from s to s'_0 : s'_0 $p(s, s'_0) = p(a_1) \cdot p(b_1) + p(a_2) \cdot p(b_2)$ If $p(a_1) = p(a_2) = \frac{1}{2}$, then $p(s, s'_0) = \frac{1}{2} \cdot p(b_1) + \frac{1}{2} \cdot p(b_2) = \frac{1}{2} \cdot (p(b_1) + p(b_2)) = \frac{1}{2}$ If $p(b_1) = p(b_2) = \frac{1}{2}$, then s'_1 $p(s, s'_0) = p(a_1) \cdot \frac{1}{2} + p(a_2) \cdot \frac{1}{2} = (p(a_1) + p(a_2)) \cdot \frac{1}{2} = \frac{1}{2}$ $s_0' \mid s_1'$ b_1 $b_2 | s'_1 |$ s_0'

Probability to c

$$p(s, s'_{0}) = \begin{array}{l} \text{Each player can unilaterally decide to} \\ simulate the original game. \end{array}$$
If $p(a_{1}) = p(a_{2}) = \frac{1}{2}$, then

$$p(s, s'_{0}) = \frac{1}{2} \cdot p(b_{1}) + \frac{1}{2} \cdot p(b_{2}) = \frac{1}{2} \cdot (p(b_{1}) + p(b_{2})) \cdot \frac{1}{2} \end{array}$$
If $p(b_{1}) = p(b_{2}) = \frac{1}{2}$, then

$$p(s, s'_{0}) = p(a_{1}) \cdot \frac{1}{2} + p(a_{2}) \cdot \frac{1}{2} = (p(a_{1}) + p(a_{2})) \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$\overline{b_{1}} \quad \frac{s'_{0}}{s'_{1}} \quad \frac{s'_{1}}{s'_{0}}$$

Simulate probabilistic state with concurrent state

 b_2

 s'_1

 s_0'

For {complete,one-sided,partial} observation, given a game with rational probabilities $\langle G, \varphi \rangle$

we can construct a concurrent game with deterministic transition function $\langle \bar{G},\bar{\varphi}\rangle$

such that:

$$\langle\!\langle \mathbf{1} \rangle\!\rangle_{val}^G(\varphi)(s) = \langle\!\langle \mathbf{1} \rangle\!\rangle_{val}^{\bar{G}}(\bar{\varphi})(s).$$

and existence of optimal observation-based strategies is preserved.

The reduction is in polynomial time for complete-observation games.

Partial information

Information leak from the back edges...

Partial information

Information leak from the back edges...

Partial information

Information leak from the back edges...

Example

Outline

- Randomness in game structure
 - for free with complete-observation, concurrent
 - for free with one-sided, turn-based
- Randomness in strategies
 - for free in (PO)MDP
- Corollary: undecidability results

Overview

Classification according to Information & Interaction

Simulate probabilistic state with imperfect information turn-based states

Simulate probabilistic state with imperfect information turn-based states

Each player can unilaterally decide to simulate the probabilistic state by playing uniformly at random:

Player 2 chooses states (s,0),(s,1) unifiormly at random Player 1 chooses actions 0,1 unifiormly at random

Games with rational probabilities can be reduced to turnbased-games with deterministic transitions and (at least) one-sided complete observation.

Values and existence of optimal strategies are preserved.

Randomness for free

In transition function (this talk):

	$2^{1/2}$ -player			$1 \frac{1}{2}$ -player	
	complete	one-sided	partial	MDP	POMDP
turn-based		free	free		
concurrent	free	free	free	(NA)	(NA)

When randomness is not for free

- Complete-information turn-based (21/2) games
 - in deterministic games, value is either 0 or 1 [Martin98]
 - MDPs with reachability objective can have values in [0,1]

Randomness is not for free.

- $1\frac{1}{2}$ -player games (MDP & POMDP)
 - in deterministic partial info 11/2-player games, value is either 0 or 1 [see later]
 - MDPs have value in [0,1]

Randomness is not for free.

Randomness for free

In transition function (this talk):

	$2^{1/2}$ -player			$1 \frac{1}{2}$ -player	
	complete	one-sided	partial	MDP	POMDP
turn-based	not	free	free	not	not
concurrent	free	free	free	(NA)	(NA)

Randomness for free

In transition function (this talk):

	$2^{1/2}$ -player			$1 \frac{1}{2}$ -player	
	complete	one-sided	partial	MDP	POMDP
turn-based	not	free	free	not	not
concurrent	free	free	free	(NA)	(NA)

In strategies (Everett'57, Martin'98, CDHR'07):

	$2^{1/2}$ -player			$1 \frac{1}{2}$ -player	
	complete	one-sided	partial	MDP	POMDP
turn-based	$\epsilon > 0$	not	not	$\epsilon \ge 0$?
concurrent	not	not	not	(NA)	(NA)

Randomness in strategies

Example

- concurrent, complete observation
- reachability

Reminder: randomized strategy for Player $i: \sigma_i : S^+ \to \mathcal{D}(A_i)$ pure strategy for Player $i: \sigma_i : S^+ \to A_i$

Randomness in strategies

Example

- turn-based, one-sided complete observation

- reachability

Outline

- Randomness in game structure
 - for free with complete-observation, concurrent
 - for free with one-sided, turn-based
- Randomness in strategies
 - for free in (PO)MDP
- Corollary: undecidability results

Randomness in strategies

Randomness in strategies

 $\langle G, \varphi \rangle$ 1½-player game (POMDP), s₀ initial state.

For every randomized observation-based strategy σ , there exists a pure observation-based strategy σ_P such that: $\Pr^{\sigma}(\varphi) \leq \Pr^{\sigma_P}(\varphi)$

Proof. (assume alphabet of size 2, and fan-out = 2)

Given σ , we show that the value $\Pr^{\sigma}(\varphi)$ of σ can be obtained as the average of the value of pure strategies σ_x :

$$\Pr^{\sigma}(\varphi) = \int_{\mathcal{D}} \Pr^{\sigma_x}(\varphi) \ d\nu$$

Strategies σ_x are obtained by «de-randomization» of σ

```
Assume \sigma(s_1)(a) = p and \sigma(s_1)(b) = 1-p
```

 σ is equivalent to playing σ_0 with frequency p and σ_1 with frequency 1-p where:

Strategies σ_x are obtained by «de-randomization» of σ

```
Assume \sigma(s_1)(a) = p and \sigma(s_1)(b) = 1-p
```

 σ is equivalent to playing σ_0 with frequency p and σ_1 with frequency 1-p where:

$$\sigma_{0}(\rho) \begin{cases} \text{plays } a & \text{if } \rho = s \\ \text{plays like } \sigma(\rho) & \text{otherwise} \end{cases}$$
$$\sigma_{1}(\rho) \begin{cases} \text{plays } b & \text{if } \rho = s \\ \text{plays like } \sigma(\rho) & \text{otherwise} \end{cases}$$

$$\Pr^{\sigma}(\varphi) = p \cdot \Pr^{\sigma_0}(\varphi) + (1-p) \cdot \Pr^{\sigma_1}(\varphi)$$

Equivalently, toss a coin $x \in [0,1]$, play σ_0 if $x \le p$, and play σ_1 if x > p. [$p = \sigma(s_1)(a)$]

Playing σ in G can be viewed as a sequence of coin tosses:

Equivalently, toss a coin $x \in [0,1]$, play σ_0 if $x \le p$, and play σ_1 if x > p. [$p = \sigma(s_1)(a)$]

Playing σ in G can be viewed as a sequence of coin tosses:

Equivalently, toss a coin $x \in [0,1]$, play σ_0 if $x \le p$, and play σ_1 if x > p. [$p = \sigma(s_1)(a)$]

Playing σ in G can be viewed as a sequence of coin tosses:

Given an infinite sequence $x=(x_n)_{n\geq 0}\in [0,1]^{\omega}$, define for all $s_0, s_1, ..., s_n$:

$$\sigma_x(s_0, s_1, \dots, s_n) = \begin{cases} a & \text{if } x_n \leq \sigma(s_0, s_1, \dots, s_n)(a) \\ b & \text{otherwise.} \end{cases}$$

 σ_x is a pure and observation-based strategy !

 σ_x plays like σ , assuming that the result of the coin tosses is the sequence x.

The value $\Pr^{\sigma}(\varphi)$ of σ is the « average of the outcome » of the strategies σ_x .

Assume $x=(x_n)_{n>0}$ and $y=(y_n)_{n>0}$ are fixed. Let outcome^{σ} $(x, y) = s_0 a_1 s_1 a_2 s_2 \dots$ where $a_{n+1} = \begin{cases} a & \text{if } x_n \le \sigma(s_0 s_1 \cdots s_n)(a), \\ b & \text{otherwise.} \end{cases}$ $s_{n+1} = \begin{cases} L(s_n, a_{n+1}) & \text{if } y_n \leq \delta(s_n, a_{n+1})(L(s_n, a_{n+1})), \\ R(s_n, a_{n+1}) & \text{otherwise.} & \mathbf{y_0} \leq \mathbf{q_a} \neq \mathbf{S'_1} & \dots \end{cases}$ $x_{0} \leq p \quad a \quad y_{0} > q_{a} \quad s_{1}''$ $x_{0} \leq p \quad b \quad y_{0} \geq q_{b} \quad s_{1}''$ $y_{0} \geq q_{b} \quad s_{1}'''$ $y_{0} \geq q_{b} \quad s_{1}'''$

Assume
$$x = (x_n)_{n \ge 0}$$
 and $y = (y_n)_{n \ge 0}$ are fixed.
Let $outcome^{\sigma}(x, y) = s_0 a_1 s_1 a_2 s_2 \dots$ where
 $a_{n+1} = \begin{cases} a & \text{if } x_n \le \sigma(s_0 s_1 \cdots s_n)(a), \\ b & \text{otherwise.} \end{cases}$
 $s_{n+1} = \begin{cases} L(s_n, a_{n+1}) & \text{if } y_n \le \delta(s_n, a_{n+1})(L(s_n, a_{n+1})), \\ R(s_n, a_{n+1}) & \text{otherwise.} \end{cases}$
 $y_0 \le q_a \longrightarrow s'_1 \dots$
 $x_0 \le p \longrightarrow a \longrightarrow s'_1 \dots$
 $y_0 > q_b \longrightarrow s''_1 \dots$
 $y_0 > q_b \longrightarrow s''_1 \dots$

Assume
$$x=(x_n)_{n\geq 0}$$
 and $y=(y_n)_{n\geq 0}$ are fixed.
Let $outcome^{\sigma}(x, y) = s_0 a_1 s_1 a_2 s_2 \dots$ where
 $a_{n+1} = \begin{cases} a & \text{if } x_n \leq \sigma(s_0 s_1 \cdots s_n)(a), \\ b & \text{otherwise.} \end{cases}$
 $s_{n+1} = \begin{cases} L(s_n, a_{n+1}) & \text{if } y_n \leq \delta(s_n, a_{n+1})(L(s_n, a_{n+1})), \\ R(s_n, a_{n+1}) & \text{otherwise.} \end{cases}$
 $y_0 \leq q_a \quad s'_1 \quad \dots$
Playing σ in G is equivalent to choosing (x_n) and (y_n)
uniformly at random, and then producing $outcome^{\sigma}(x, y)$
 $x_0 > p \rightarrow b \quad y_0 \leq q_b \rightarrow s''_1 \quad \dots$

Assume
$$\mathbf{x} = (\mathbf{x}_n)_{n \ge 0}$$
 and $\mathbf{y} = (\mathbf{y}_n)_{n \ge 0}$ are fixed.
Let $\operatorname{outcome}^{\sigma}(x, y) = s_0 a_1 s_1 a_2 s_2 \dots$ where
 $a_{n+1} = \begin{cases} a & \text{if } x_n \le \sigma(s_0 s_1 \cdots s_n)(a), \\ b & \text{otherwise.} \end{cases}$
 $s_{n+1} = \begin{cases} L(s_n, a_{n+1}) & \text{if } y_n \le \delta(s_n, a_{n+1})(L(s_n, a_{n+1})), \\ R(s_n, a_{n+1}) & \text{otherwise.} \end{cases}$
 $y_0 \le q_a \longrightarrow S'_1 \dots$
Playing σ in G is equivalent to choosing (\mathbf{x}_n) and (\mathbf{y}_n) can be generated separately, and independently ! ...
 $y_0 \ge q_b \longrightarrow S''_1$

Proof

The value $Pr^{\sigma}(\varphi)$ of σ is the « average of the outcome » of the strategies σ_x .

$$\begin{aligned} \Pr^{\sigma}(\varphi) &= \int_{p \in (SA)^{\omega}} \mathbf{1}_{\varphi}(p) \ d\mu^{\sigma}(p) \\ &= \int_{(x,y) \in [0,1]^{\omega} \times [0,1]^{\omega}} \mathbf{1}_{\varphi}(\mathsf{outcome}^{\sigma}(x,y)) \ d(\nu \times \nu)(x,y) \\ &= \int_{x \in [0,1]^{\omega}} \left(\int_{y \in [0,1]^{\omega}} \mathbf{1}_{\varphi}(\mathsf{outcome}^{\sigma}(x,y)) \ d\nu(y) \right) \ d\nu(x) \\ &= \int_{x \in [0,1]^{\omega}} \left(\int_{y \in [0,1]^{\omega}} \mathbf{1}_{\varphi}(\mathsf{outcome}^{\sigma_{x}}(\cdot,y)) \ d\nu(y) \right) \ d\nu(x) \\ &= \int_{x \in [0,1]^{\omega}} \Pr^{\sigma_{x}}(\varphi) \ d\nu(x) \end{aligned}$$

Proof

The value $\Pr^{\sigma}(\varphi)$ of σ is the « average of the outcome » of the strategies σ_x .

$$\begin{aligned} \Pr^{\sigma}(\varphi) &= \int_{p \in (SA)^{\omega}} \mathbf{1}_{\varphi}(p) \ d\mu^{\sigma}(p) \\ \mathbf{Pr}^{\sigma}(\varphi) &\leq \Pr^{\sigma_{x}}(\varphi) \text{ for some } \sigma_{x} \\ &= \int_{x \in \mathbf{I}_{x}} \left(\int \mathbf{1}_{\varphi}(\operatorname{outcome}^{\sigma}(x, y)) \ d\nu(y) \right) \ d\nu(x) \\ &= \int_{x \in \mathbf{I}_{x}} \operatorname{Pure \ and \ randomized \ strategies} \\ &= \int_{x \in \mathbf{I}_{x}} \operatorname{Pr}^{\sigma_{x}}(\varphi) \ d\nu(x) \end{aligned}$$

Randomness for free

In transition function:

	$2^{1/2}$ -player			$1 \frac{1}{2}$ -player	
	complete	one-sided	partial	MDP	POMDP
turn-based	not	free	free	not	not
concurrent	free	free	free	(NA)	(NA)

In strategies:

	$2^{1/2}$ -player			$1^{1/2}$ -player	
	complete	one-sided	partial	MDP	POMDP
turn-based	$\epsilon > 0$	not	not	$\epsilon \ge 0$	$\epsilon \ge 0$
concurrent	not	not	not	(NA)	(NA)

Corollary

Using [BaierBertrandGrößer'08]:

Almost-sure coBüchi (and positive Büchi) with randomized (or pure) strategies is undecidable for POMDPs.

Using randomness for free in transition functions :

Almost-sure coBüchi (and positive Büchi) is undecidable for deterministic turn-based one-sided complete observation games.

Thank you !

Questions ?