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Synthesis as a game

Given a plant P and a specification φ, is there a controller C
such that the closed-loop system C║P satisfies φ ?
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Plant: 2-players game arena

Input (Player 1, System, Controller)
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Output (Player 2, Environment, Plant)

Specification: game objective

for Player 1



Uncontrollable actions

The Synthesis Question

Given a plant P and a specification φ, is there a controller C
such that the closed-loop system C║P satisfies φ ?

Controllable actions

u

a Plant
a?

u!

u

aController

?
If a controller C exists, then construct such a controller.
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Uncontrollable actions

Synthesis as a game
Controllable actions
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Plant: 2-players game arena

Specification: game objective for Player 1

Controller: winning strategy for Player 1

We are often interested in simple controllers: 
finite-state, or even stateless (memoryless).

We are also often interested in “least restrictive” controllers.
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Winning strategy = Controller



Games for Synthesis

This tutorial: Games played on graphs, 2 players, 
turn-based, ω-regular objectives.

Several types of games:

• Turn-based vs. Concurrent
• Perfect-information vs. Partial information
• Sure vs. Almost-sure winning
• Objective: graph labelling vs. monitor
• Timed vs. untimed
• Stochastic vs. deterministic
• etc. …



Games for Synthesis

Part #1: perfect-information

Part #2: partial-information

This tutorial: Games played on graphs, 2 players, 
turn-based, ω-regular objectives.

Outline



Two-player 

game structures





Rounded 
states belong 

to Player 1



Rounded 
states belong 

to Player 1

Square 
states belong 

to Player 2



belongs to Player 1

belongs to Player 2

Playing the game: the players move a token along the edges of the graph
• The token is initially in v0.
• In rounded states, Player 1 chooses the next state.
• In square states, Player 2 chooses the next state.
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belongs to Player 1

belongs to Player 2

Play: v0 v1 v3 v0 v2 …



A 2-player game graph
consists of:

Two-player game graphs



Two-player game graphs

A play in                                    is an infinite 

sequence                                     such that:



Play: v0 v1 v3 v0 v2 …

Who is winning ?



Play: v0 v1 v3 v0 v2 …

Who is winning ?

A winning condition for Player k is a set                  of plays. 



Who is winning ?

A winning condition for Player k is a set                  of plays. 

A 2-player game is zero-sum if                           .



Winning condition

Reachability

A winning condition for Player k is a set                  of plays. 



Winning condition

Reachability Safety

A winning condition for Player k is a set                  of plays. 



Winning condition

B C

Reachability Safety Büchi coBüchi

A winning condition for Player k is a set                  of plays. 



Remark

p=4 p=1 p=3 p=1 p=0

p=2 p=0 p=3 p=1 p=2

A winning condition for Player k is a set                  of plays. 



Strategies

Players use strategies to play the game,

i.e. to choose the successor of the current state.

A strategy for Player k is a function:



Strategies outcome

Graph: nondeterministic generator of behaviors.

Strategy: deterministic selector of behavior.

Graph + Strategies for both players → Behavior



Strategies outcome



Winning strategies

• Given a game G and winning conditions W1 and W2,

• Player 1 is winning if 

• Player 2 is winning if

a strategy λk is winning for Player k in (G,Wk) if for all 
strategies λ3-k of Player 3-k, the outcome of {λk, λ3-k} in G 
is a winning play of Wk.



Winning strategies

=

Controllers that enforce 
winning plays



Symbolic algorithms to 
solve games



Controllable predecessors



Controllable predecessors



Controllable predecessors



Controllable predecessors



Symbolic algorithm to 
solve safety games



Solving safety games

To win a safety game, Player 1 should be able to 
force the game to be in      at every step.



0 step: 

Solving safety games

States in which Player 1 can force the game to 
stay in      for the next:
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force the game to be in      at every step.
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0 step: 

1 step: 

2 steps: 

…

n steps: 

Solving safety games

States in which Player 1 can force the game to 
stay in      for the next:

To win a safety game, Player 1 should be able to 
force the game to be in      at every step.



Solving safety games
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Solving safety games



Solving safety games



Solving safety games



Solving safety games



Solving safety games

This is the set of states from which 
Player 1 can confine the game in
forever no matter how Player 2 behaves.



Solving safety games

is a solution of the set-equation 

and it is the greatest solution.



Solving safety games

is a solution of the set-equation 

and it is the greatest solution.

We say that      is the greatest fixpoint of the 
function                     , written:

greatest fixpoint operator



On fixpoint
computations



Partial order

A partially ordered set             is a set     equipped 
with a partial order , i.e. a relation such that:

is not necessarily total, i.e. there can be       
such that              and            .



Partial order

Let            . 

is an upper bound of      if             for all             .

is a least upper bound of      if 

(1)    is an upper bound of     , and

(2)              for all upper bounds     of     .

Note: if     has a least upper bound, then it is unique 
(by anti-symmetry), and we write                      .



Partial order

Examples:

has no



Partial order

Examples:

has no



Partial order

A set                                      is a chain if

The partially ordered set            is complete if

(1)    has a lub, written                        , and

(2) every chain             has a lub.



Fixpoints

Let                    be a function.

is monotonic if            implies                      .

is continuous if(1)     is monotonic, and

(2)                               for every chain    . 

where 

Note:           is a chain (i.e. ) 

by monotonicity, and therefore                    exists.



Fixpoints

Let                    be a function.

is a fixpoint of     if 

is a least fixpoint of     if 

(1)    is a fixpoint of    , and

(2)              for all fixpoints of    .



Kleene-Tarski Theorem

Let             be a partially ordered set.

If      is a complete partial order, and 

is a continuous function, then 

has a least fixpoint, denoted 

and 

Proof: exercise.
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Over finite sets S, 
all monotonic functions

are continuous.

Proof: exercise.



Kleene-Tarski Theorem

Let             be a partially ordered set.

If      is a complete partial order, and 

is a continuous function, then 

has a least fixpoint, denoted 

and 

The greatest fixpoint
of    can be defined dually by

where          is the greatest lower bound 
operator (dual of         ) and                  

Over finite sets S, 
all monotonic functions

are continuous.

Proof: exercise.



Partial order:                with                            . 

Safety game

Winning states of a safety game:

Limit of the iterations:



Symbolic algorithm to 
solve reachability

games



Solving reachability games

To win a reachability game, Player 1 should be 
able to force the game be in      after finitely 
many steps.



Solving reachability games

To win a reachability game, Player 1 should be 
able to force the game be in      after finitely 
many steps.

Let      be the set of states from which Player 1 can 
force the game to be in      within at most    steps:



Solving reachability games

Tthe limit of this iteration is the least fixpoint
of the function                     , written:

least fixpoint operator



Symbolic algorithms

Let                                     be a 2-player game graph.

Player 1 has a winning strategy

Theorem



Remarks (I)

Memoryless strategies are always sufficient to win parity 
games, and therefore also for safety, reachability, Büchi
and coBüchi objectives.



Remarks (I)

A memoryless winning strategy



Remarks (II)

Parity games are determined: 
in every state, either Player 1 or Player 2 has a winning 
strategy.



Remarks (II)

Parity games are determined: 
in every state, either Player 1 or Player 2 has a winning 
strategy.

Determinacy says:

More generally, zero-sum games with Borel objectives 
are determined [Martin75].



Remarks (II)

For instance, since                                            ,

Player 1 does not win                  

iff Player 2 wins                           .

Claim: if                     , then                        

Proof: exercise

Hint: show that                                       



Remarks (II)



Remarks (II)

States in which Player 1 
wins for              .

States in which Player 2 
wins for                       .



Games of imperfect 
information



The Synthesis Question

?cold

hot
delay

delay

off

on

on, off

on, delay

off, delay

The controller knows the state of the plant (“perfect information”).
This, however, is often unrealistic.

• Sensors provide partial information (imprecision),
• Sensors have internal delays,
• Some variables of the plant are invisible,
• etc….
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Imperfect information Observations
Obs 0



cold

hot
delay

delay

off

on

on, off

on, delay

off, delay

Imperfect information Observations
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Obs 1
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When observing Obs 2, 
there is no unique good choice: 

memory is necessary

cold

hot
delay

delay

off

on

on, off

on, delay

off, delay

Imperfect information Observations
Obs 0

Obs 1

Obs 2



delay

delay

off

on

on, off

on, delay

off, delay

Playing the game: Player 2 moves a token along the edges of the graph,
Player 1 does not see the position of the token.

• Player 1 chooses an action (on, off, delay), and then
• Player 2 resolves the nondeterminism and announces the color of the state.

Player 2 states Nondeterminism



delay

delay

off

on

on, off

on, delay

off, delay

Player 2:

Player 1:



Player 2: v1 chooses v1, announces Obs 0

delay

delay

off

on

on, off

on, delay

off, delay

Player 1:



delay

delay

off

on

on, off

on, delay

off, delay

Player 2: v1 delay

Player 1: delay plays action delay



Player 2: v1 delay v3      chooses v3, announces Obs 2

delay

delay

off

on

on, off

on, delay

off, delay

Player 1: delay



delay

delay

off

on

on, off

on, delay

off, delay

Player 2: v1 delay v3 off

Player 1: delay off 



delay

delay

off

on

on, off

on, delay

off, delay

Player 2: v1 delay v3 off v2 …

Player 1: delay off …



Imperfect information

A game graph + Observation structure

delay

delay

off

on

on, off

on, delay

off, delay



Strategies

An observation-based strategy for Player 1 is a function:

Player 1 chooses a letter in     ,

Player 2 resolves nondeteminisim.

A strategy for Player 2 is a function:



Outcome



A winning condition for Player 1 is a set                     
of sequences of observations. The set      defines the 
set of winning plays:

Winning strategies

Player 1 is winning if 



Solving games of 
imperfect information



Imperfect information

Games of imperfect information can be solved by a 
reduction to games of perfect information.

G,Obs G’ Winning region 

Imperfect 
information

Perfect 
information

subset 
construction

classical 
techniques



Subset construction

After a finite prefix of a play, Player 1 has a 
partial knowledge of the current state of the 
game: a set of states, called a cell.



Subset construction

After a finite prefix of a play, Player 1 has a 
partial knowledge of the current state of the 
game: a set of states, called a cell.

Initial knowledge: cell



Player 1 plays σ,

Player 2 chooses v2.

Subset construction

After a finite prefix of a play, Player 1 has a 
partial knowledge of the current state of the 
game: a set of states, called a cell.

Initial knowledge: cell

Current knowledge: cell



Subset construction

State 
space

Initial 
state

Imperfect information Perfect information



Subset construction

Transitions



Subset construction

Transitions



Subset construction

Parity 
condition



Subset construction

Parity 
condition

Player 1 is winning in G,p if and only if Player 1 is 
winning in G’,p’.

Theorem



Imperfect information

G,Obs G’ Winning region 

Imperfect 
information

Perfect 
information

subset 
construction

classical 
techniques

Exponential 
blow-up



Imperfect information

G,Obs G’ Winning region 

Imperfect 
information

Perfect 
information

implicit

Direct symbolic algorithm



Symbolic algorithm

Controllable predecessor:

set of cells

set of cells



Obs 2

Obs 1

Symbolic algorithm

The union of two controllable cells is not necessarily controllable,
but…



Symbolic algorithm

If a cell s is controllable (i.e. winning for Player 1),
then all sub-cells s’ ⊆ s are controllable.

copy the strategy from s



Symbolic algorithm

The sets of cells computed by the fixpoint iterations are 
downward-closed.



Symbolic algorithm

The sets of cells computed by the fixpoint iterations are 
downward-closed.

It is sufficient to keep only 
the maximal cells.



Antichains



Antichains



Antichains

is monotone with respect to the following order:

Least upper bound and greatest lower bound are defined by:



Symbolic algorithms

Let                                          be a 2-player game graph of 

imperfect information, and                 a set of observations.

Games of imperfect information can be solved by the same

fixpoint formulas as for perfect information, namely:

Player 1 has a winning strategy

Theorem



Solving safety games

o1

o2

o3



We compute the fixpoint

Solving safety games

o1

o2

o3

Has Player 1 an observation-based 
strategy to avoid v3 ?



Solving safety games



Solving safety games



Solving safety games



Solving safety games



Solving safety games



Solving safety games



Solving safety games



Solving safety games



Solving safety games

Fixed point



Solving safety games

Fixed point

Player 1 is winning since 



Solving safety games

Fixed point

A winning strategy:



Remarks

1. Finite memory may be necessary to win safety and 
reachability games of imperfect information, and therefore 
also for Büchi, coBüchi, and parity objectives.



Remarks

1. Finite memory may be necessary to win safety and 
reachability games of imperfect information, and therefore 
also for Büchi, coBüchi, and parity objectives.

2. Games of imperfect information are not determined.



Non determinacy

Any fixed strategy      of Player 1 can be spoiled by a 
strategy      of Player 2 as follows:

o1 o2

In     :      chooses      if in the next step      plays b, and
chooses      if in the next step      plays a.



o1 o2

Player 1 cannot enforce                      .

Similarly, Player 2 cannot enforce                              .

because when a strategy      of Player 2 is fixed, either       
or                         is a spoiling strategy for Player 1.

Non determinacy



Remarks

1. Finite memory may be necessary to win safety and 
reachability games of imperfect information, and therefore 
also for Büchi, coBüchi, and parity objectives.

2. Games of imperfect information are not determined.

3. Randomized strategies are more powerful, already for 
reachability objectives.



Randomization

o1 o2

The following strategy of Player 1 wins with probability 1:

At every step, play     and     uniformly at random.

After each visit to {v1,v2}, no matter the strategy of Player 2, 
Player 1 has probability    to win (reach v3).



Summary



Conclusion

• Games for controller synthesis: symbolic 
algorithms using fixpoint formulas.

• Imperfect information is more realistic, gives 
more robust controllers; but exponentially harder 
to solve.

• Antichains: exploit the structure of the subset 
construction. 



Conclusion

• Games for controller synthesis: symbolic 
algorithms using fixpoint formulas.

• Imperfect information is more realistic, gives 
more robust controllers; but exponentially harder 
to solve.

• Antichains: exploit the structure of the subset 
construction. 

It is sufficient to keep only 
the maximal elements.



Conclusion

• The antichain principle has applications in other 
problems where subset constructions are used:

• Finite automata: language inclusion, 
universality, etc.

• Alternating Büchi automata: emptiness 
and language inclusion.

• LTL: satisfiability and model-checking.

[De Wulf,D,Henzinger,Raskin 06]

[D,Raskin 07]

[De Wulf,D,Maquet,Raskin 08]
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http://www.antichains.be

Antichains for Logic, Automata and 
Symbolic Kripke Structure Analysis
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Questions ?
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