

Games for Controller Synthesis

Laurent Doyen

EPFL

MoVeP'08

Given a plant P and a specification ϕ ,...

Given a plant P and a specification φ , is there a controller C such that the closed-loop system C || P satisfies φ ?

Synthesis as a game

Given a plant P and a specification φ , is there a controller C such that the closed-loop system C P satisfies φ ?

Specification

$$\varphi \equiv \varphi_1(a_1, u_1) \land \varphi_2(a_2, u_2)$$

Plant: 2-players game arena Input (Player 1, System, Controller) vs. Output (Player 2, Environment, Plant) Specification: game objective for Player 1

Given a plant P and a specification φ , is there a controller C such that the closed-loop system C || P satisfies φ ?

If a controller C exists, then construct such a controller.

Synthesis as a game

Specification: game objective for Player 1

Controller: winning strategy for Player 1

We are often interested in simple controllers: finite-state, or even stateless (memoryless).

We are also often interested in "least restrictive" controllers.

Example

Objective: avoid Bad

Example

Example

Winning strategy = Controller

Games for Synthesis

Several types of games:

- Turn-based vs. Concurrent
- Perfect-information vs. Partial information
- Sure vs. Almost-sure winning
- Objective: graph labelling vs. monitor
- Timed vs. untimed
- Stochastic vs. deterministic
- etc. ...

This tutorial: Games played on graphs, 2 players, turn-based, ω-regular objectives.

Games for Synthesis

This tutorial: Games played on graphs, 2 players, turn-based, ω-regular objectives.

Part #1: perfect-information Part #2: partial-information

Two-player game structures

Playing the game: the players move a token along the edges of the graph

- The token is initially in v_0 .
- In rounded states, Player 1 chooses the next state.
- In square states, Player 2 chooses the next state.

Play: $v_0 v_1$

ECOLE POLYTECHNIQUE Two-player game graphs

A **2-player game graph**
$$G = \langle V_1, V_2, \hat{v}, Succ \rangle$$
 consists of:

- V_1 the set of Player 1 states,
- V_2 the set of Player 2 states,

with $V_1 \cap V_2 = \emptyset$ and $V := V_1 \cup V_2$;

- $\hat{v} \in V$ the initial state,
- Succ : $V \to 2^V \setminus \emptyset$ the transition relation.

Two-player game graphs

A **play** in $G = \langle V_1, V_2, \hat{v}, Succ \rangle$ is an infinite sequence $w = v_0 v_1 v_2 \cdots \in V^{\omega}$ such that:

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

 $V = V_1 \cup V_2$

$$\mathsf{Succ}: V \to 2^V \setminus \varnothing$$

1.
$$v_0 = \hat{v}$$
,
2. $v_{i+1} \in \text{Succ}(v_i)$ for all $i \ge 0$.

Who is winning ?

Play: $v_0 v_1 v_3 v_0 v_2 ...$

Who is winning ?

Play: $v_0 v_1 v_3 v_0 v_2 ...$

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Who is winning ?

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

A 2-player game is **zero-sum** if $W_2 = V^{\omega} \setminus W_1$.

Winning condition

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Given $\mathcal{T} \subseteq V$, let

• $\mathsf{Reach}(\mathcal{T}) = \{v_0 v_1 \dots \in V^\omega \mid \exists i : v_i \in \mathcal{T}\}$

Touch \mathcal{T} eventually

Reachability

Winning condition

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Given $\mathcal{T} \subseteq V$, let

- $\mathsf{Reach}(\mathcal{T}) = \{v_0 v_1 \dots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T}\}$
- Safe(\mathcal{T}) = { $v_0 v_1 \dots \in V^{\omega} \mid \forall i : v_i \in \mathcal{T}$ }

Touch \mathcal{T} eventually Avoid $V \setminus \mathcal{T}$ forever

Reachability

Winning condition

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Given $\mathcal{T} \subseteq V$, let

- $\mathsf{Reach}(\mathcal{T}) = \{v_0 v_1 \dots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T}\}$
- $\mathsf{Safe}(\mathcal{T}) = \{v_0 v_1 \dots \in V^{\omega} \mid \forall i : v_i \in \mathcal{T}\}$

- Touch \mathcal{T} eventually
- Avoid $V \setminus \mathcal{T}$ forever
- $\mathsf{Büchi}(\mathcal{T}) = \{v_0 v_1 \dots \in V^{\omega} \mid \forall j \cdot \exists i \ge j : v_i \in \mathcal{T}\}$ Visit \mathcal{T} ∞ -often
- $\operatorname{coBüchi}(\mathcal{T}) = \{v_0 v_1 \dots \in V^{\omega} \mid \exists j \cdot \forall i \geq j : v_i \in \mathcal{T}\}$ Visit $V \setminus \mathcal{T}$ finitely often

Reachability

Safety

Büchi

coBüchi

Remark

A winning condition for Player k is a set $W_k \subseteq V^{\omega}$ of plays.

Reach(\mathcal{T}), Safe(\mathcal{T}), Büchi(\mathcal{T}) and coBüchi(\mathcal{T}) are subsumed by the **parity** condition:

• Given a priority function $p: V \to \mathbb{N}$, define $Parity(p) = \{v_0v_1 \cdots | \min\{d | \forall i \cdot \exists j \ge i : p(v_i) = d\}$ is even $\}$

"Minimal priority seen ∞ -often is even"

Strategies

Players use strategies to play the game,

i.e. to choose the successor of the current state.

 $G = \langle V_1, V_2, \hat{v}, \mathsf{Succ} \rangle$

A strategy for Player k is a function:

$$\lambda: V^*V_k \to V$$

such that

 $\lambda(v_1v_2\ldots v_n) \in \operatorname{Succ}(v_n)$ for all $v_1,\ldots,v_{n-1} \in V$ and $v_n \in V_k$

Strategies outcome

Graph: nondeterministic generator of behaviors.

Strategy: deterministic selector of behavior.

Graph + Strategies for both players \rightarrow Behavior

Given strategies λ_k for Player k (k = 1, 2), the **outcome** of $\langle \lambda_1, \lambda_2 \rangle$ is the play

 $w = v_0 v_1 \dots$ such that:

$$v_i \in V_k \to v_{i+1} = \lambda_k(v_0 \dots v_i)$$

for all $i \ge 0$ and $k \in \{1, 2\}$

This play is denoted $Outcome(G, \lambda_1, \lambda_2)$

• Given a game G and winning conditions W_1 and W_2 , a strategy λ_k is **winning** for Player k in (G,W_k) if for all strategies λ_{3-k} of Player 3-k, the outcome of { λ_k , λ_{3-k} } in G is a winning play of W_k .

- Player 1 is winning if $\exists \lambda_1 \cdot \forall \lambda_2$: $Outcome(G, \lambda_1, \lambda_2) \in W_1$
- Player 2 is winning if $\exists \lambda_2 \cdot \forall \lambda_1 : Outcome(G, \lambda_1, \lambda_2) \in W_2$

Symbolic algorithms to solve games

ÉCOLE POLYTECHNIQUE ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Given $\mathcal{T} \subseteq V$, let

• $\exists \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \exists v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$

ÉCOLE POLYTECHNIQUE ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Given $\mathcal{T} \subseteq V$, let

- $\exists \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \exists v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$
- $\forall \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \forall v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$

ÉCOLE POLYTECHNIQUE ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Given $\mathcal{T} \subseteq V$, let

- $\exists \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \exists v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$
- $\forall \mathsf{CPre}(\mathcal{T}) = \{ v \in V \mid \forall v' \in \mathsf{Succ}(v) : v' \in \mathcal{T} \}$

From a state v, Player 1 can **force** the next position of the game to be in \mathcal{T} if:

$$v \in \underbrace{(\exists \mathsf{CPre}(\mathcal{T}) \cap V_1) \cup (\forall \mathsf{CPre}(\mathcal{T}) \cap V_2)}_{1\mathsf{CPre}(\mathcal{T})}$$

$1\mathsf{CPre}(\mathcal{T}) := (\exists \mathsf{CPre}(\mathcal{T}) \cap V_1) \cup (\forall \mathsf{CPre}(\mathcal{T}) \cap V_2)$

and symmetrically

 $2\mathsf{CPre}(\mathcal{T}) := (\forall \mathsf{CPre}(\mathcal{T}) \cap V_1) \cup (\exists \mathsf{CPre}(\mathcal{T}) \cap V_2)$

Note: $\mathcal{T}' \subseteq \mathcal{T}$ implies $\begin{cases} 1\mathsf{CPre}(\mathcal{T}') \subseteq 1\mathsf{CPre}(\mathcal{T}) \\ 2\mathsf{CPre}(\mathcal{T}') \subseteq 2\mathsf{CPre}(\mathcal{T}) \end{cases}$

 $1CPre(\cdot)$ and $2CPre(\cdot)$ are **monotone** functions.

Symbolic algorithm to solve safety games

 $\mathsf{Safe}(\mathcal{T}) = \{ v_0 v_1 \cdots \in V^{\omega} \mid \forall i : v_i \in \mathcal{T} \}$

Avoid $V \setminus \mathcal{T}$ forever

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

To win a safety game, Player 1 should be able to force the game to be in \mathcal{T} at every step.

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

0 step: $X_0 = T$

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

- 0 step: $X_0 = T$
- 1 step: $X_1 = \mathcal{T} \cap 1CPre(\mathcal{T})$

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

- 0 step: $X_0 = T$
- 1 step: $X_1 = \mathcal{T} \cap 1CPre(\mathcal{T})$

2 steps: $X_2 = \mathcal{T} \cap 1CPre(\mathcal{T}) \cap 1CPre(\mathcal{T} \cap 1CPre(\mathcal{T}))$

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

- 0 step: $X_0 = T$
- 1 step: $X_1 = \mathcal{T} \cap 1CPre(\mathcal{T})$

2 steps: $X_2 = \mathcal{T} \cap 1CPre(\mathcal{T}) \cap 1CPre(\mathcal{T} \cap 1CPre(\mathcal{T}))$

subset of \mathcal{T}

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

- 0 step: $X_0 = T$
- 1 step: $X_1 = \mathcal{T} \cap 1CPre(\mathcal{T})$
- 2 steps: $X_2 = \mathcal{T} \cap 1CPre(\mathcal{T} \cap 1CPre(\mathcal{T}))$

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

- 0 step: $X_0 = T$
- 1 step: $X_1 = \mathcal{T} \cap 1CPre(X_0)$
- 2 steps: $X_2 = T \cap 1CPre(X_1)$

States in which Player 1 can force the game to stay in \mathcal{T} for the next:

```
0 step: X_0 = T
```

1 step: $X_1 = \mathcal{T} \cap 1CPre(X_0)$

```
2 steps: X_2 = \mathcal{T} \cap 1CPre(X_1)
```

```
n steps: X_n = \mathcal{T} \cap 1CPre(X_{n-1})
```


 $X_0 = \mathcal{T}$ $X_1 = \mathcal{T} \cap \mathsf{1CPre}(X_0)$

 $X_0 = \mathcal{T}$ $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$

 $X_0 = \mathcal{T}$ $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$ $X_2 = \mathcal{T} \cap 1\mathsf{CPre}(X_1)$

 $X_{0} = \mathcal{T}$ $X_{1} = \mathcal{T} \cap 1\mathsf{CPre}(X_{0})$ $X_{2} = \mathcal{T} \cap 1\mathsf{CPre}(X_{1})$

 $X_0 = \mathcal{T}$ $X_1 = \mathcal{T} \cap 1\mathsf{CPre}(X_0)$ $X_2 = \mathcal{T} \cap 1\mathsf{CPre}(X_1)$

 X_2 is a solution of the set-equation $X = T \cap 1CPre(X)$

and it is the greatest solution.

 X_2 is a solution of the set-equation $X = \mathcal{T} \cap 1CPre(X)$

and it is the greatest solution.

We say that X_2 is the **greatest fixpoint** of the function $T \cap 1CPre(\cdot)$, written:

On fixpoint computations

A partially ordered set $\langle S, \sqsubseteq \rangle$ is a set *S* equipped with a **partial order** \sqsubseteq , *i.e.* a relation such that:

 \sqsubseteq is not necessarily total, *i.e.* there can be x, y such that $x \not\sqsubseteq y$ and $y \not\sqsubseteq x$.

Partial order

Let $X \subseteq S$.

y is an **upper bound** of *X* if $x \sqsubseteq y$ for all $x \in X$. *y* is a **least upper bound** of *X* if (1) *y* is an upper bound of *X*, and (2) $y \sqsubseteq y'$ for all upper bounds y' of *X*.

Note: if *X* has a least upper bound, then it is unique (by anti-symmetry), and we write y = lub(X).

Partial order

Examples: $\langle \mathbb{N}, \leq \rangle$

 $X = \{3, 5, 7, 8\}$ lub(X) = 8 $X = \{1, 3, 5, 7, 9, ...\}$ X has no lub

Partial order

Examples: $\langle \mathbb{N}, \leq \rangle$

$$X = \{3, 5, 7, 8\}$$
 $lub(X) = 8$
 $X = \{1, 3, 5, 7, 9, ...\}$ X has no lub

$\langle \mathcal{P}(\{0,1,2\}),\subseteq angle$

$$X = \{\{0\}, \{2\}\} \qquad \mathsf{lub}(X) = \{0, 2\}$$

A set
$$X = \{x_0, x_1, x_2, \dots\}$$
 is a **chain** if $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \dots$

The partially ordered set $\langle S, \sqsubseteq \rangle$ is **complete** if

(1) \varnothing has a lub, written $lub(\varnothing) = \bot$, and

(2) every chain $X \subseteq S$ has a lub.

Let $f: S \to S$ be a function.

f is monotonic if $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$. is continuous if(1) *f* is monotonic, and (2) f(lub(X)) = lub(f(X)) for every chain *X*.

where $f(X) = \{f(x_0), f(x_1), f(x_2), \dots\}$

Note: f(X) is a chain (*i.e.* $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \cdots$) by monotonicity, and therefore lub(f(X)) exists.

Fixpoints

Let $f: S \to S$ be a function.

x is a **fixpoint** of f if x = f(x)x is a **least fixpoint** of f if (1) x is a fixpoint of f, and (2) $x \sqsubseteq x'$ for all fixpoints x' of f.

Kleene-Tarski Theorem

Let $\langle S, \sqsubseteq \rangle$ be a partially ordered set.

If \sqsubseteq is a complete partial order, and $f : S \to S$ is a continuous function, then f has a least fixpoint, denoted lfp(f)and $lfp(f) = lub(\{\bot, f(\bot), f^2(\bot), f^3(\bot), \dots\})$

Proof: exercise.

Kleene-Tarski Theorem

Let $\langle S, \sqsubseteq \rangle$ be a partially ordered set.

If \sqsubseteq is a complete partial order, and $f: S \to S$

is a continuous function, then

f has a least fixpoint, denoted lfp(f)

and $lfp(f) = lub(\{\perp, f(\perp), f^2(\perp), f^3(\perp), \ldots\})$

Proof: exercise.

Over finite sets S, all monotonic functions are continuous.

The greatest fixpoint of *f* can be defined dually by $gfp(f) = glb(\{\top, f(\top), f^2(\top), f^3(\top), ...\})$ where $glb(\cdot)$ is the greatest lower bound operator (dual of $lub(\cdot)$) and $glb(\emptyset) = \top$

and $lfp(f) = lub(\{\perp, f(\perp), f^2(\perp), f^3(\perp), \ldots\})$

Proof: exercise.

Over finite sets S, all monotonic functions are continuous.

Safety game

Winning states of a safety game:

$$\nu X \cdot \mathcal{T} \cap \mathsf{1CPre}(X)$$

 $\mathsf{gfp}(\mathcal{T} \cap \mathsf{1CPre}(X))$

Limit of the iterations: $X_0 = \mathcal{T} \cap 1\text{CPre}(V)$ $X_1 = \mathcal{T} \cap 1\text{CPre}(X_0)$ $X_2 = \mathcal{T} \cap 1\text{CPre}(X_1)$:

Partial order: $\langle 2^V, \subseteq \rangle$ with $\top = V$, $\bot = \emptyset$.

Symbolic algorithm to solve reachability games

 $\mathsf{Reach}(\mathcal{T}) = \{v_0 v_1 \dots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T}\}$

Visit \mathcal{T} eventually

To win a reachability game, Player 1 should be able to force the game be in \mathcal{T} after finitely many steps.

 $\mathsf{Reach}(\mathcal{T}) = \{v_0 v_1 \dots \in V^{\omega} \mid \exists i : v_i \in \mathcal{T}\}$

Visit \mathcal{T} eventually

To win a reachability game, Player 1 should be able to force the game be in \mathcal{T} after finitely many steps.

Let X_i be the set of states from which Player 1 can force the game to be in \mathcal{T} within at most *i* steps:

$$X_0 = \mathcal{T}$$
$$X_{i+1} = X_i \cup 1\mathsf{CPre}(X_i) \quad \text{for all } i \ge 0$$

The limit of this iteration is the **least fixpoint** of the function $T \cup 1CPre(\cdot)$, written:

Symbolic algorithms

Let $G = \langle V_1, V_2, \hat{v}, Succ \rangle$ be a 2-player game graph.

Theorem			
Player 1 has a winning strategy			
in $\langle G,$	$Reach(\mathcal{T}) angle$	iff	$\hat{v} \in \mu X \cdot \mathcal{T} \cup 1CPre(X)$
in $\langle G,$	$Safe(\mathcal{T}) angle$	iff	$\hat{v} \in \nu X \cdot \mathcal{T} \cap 1CPre(X)$
in $\langle G,$	$B\"uchi(\mathcal{T}) angle$	iff	$\hat{v} \in \nu Y \cdot \mu X \cdot 1CPre(X) \cup (\mathcal{T} \cap 1CPre(Y))$
in $\langle G,$	$coB\"uchi(\mathcal{T}) angle$	iff	$\hat{v} \in \mu Y \cdot \nu X \cdot 1CPre(X) \cap (\mathcal{T} \cup 1CPre(Y))$

Memoryless strategies are always sufficient to win parity games, and therefore also for safety, reachability, Büchi and coBüchi objectives.

A memoryless winning strategy

Parity games are **determined**:

in every state, either Player 1 or Player 2 has a winning strategy.

Parity games are **determined**: in every state, either Player 1 or Player 2 has a winning strategy.

$$\phi_1 \equiv \exists \lambda_1 \cdot \forall \lambda_2 : \mathsf{Outcome}(G, \lambda_1, \lambda_2) \in \mathsf{Parity}(p)$$

$$\phi_2 \equiv \exists \lambda_2 \cdot \forall \lambda_1 : \mathsf{Outcome}(G, \lambda_1, \lambda_2) \not\in \mathsf{Parity}(p)$$

Determinacy says: $\phi_1 \lor \phi_2$

More generally, zero-sum games with Borel objectives are determined [Martin75].

For instance, since $V^{\omega} \setminus \text{Safe}(\mathcal{T}) = \text{Reach}(V \setminus \mathcal{T})$,

Player 1 does not win $\langle G, \mathsf{Safe}(\mathcal{T}) \rangle$

iff Player 2 wins $\langle G, \operatorname{Reach}(V \setminus T) \rangle$.

 $X_* = \nu X \cdot \mathcal{T} \cap \mathsf{1CPre}(X)$

$$X'_* = \mu X' \cdot \mathcal{T}' \cup 2\mathsf{CPre}(X')$$

Claim: if $\mathcal{T}' = V \setminus \mathcal{T}$, then $X'_* = V \setminus X_*$

Proof: exercise

Hint: show that $V \setminus 1CPre(X) = 2CPre(V \setminus X)$

 $\mathcal{T} = V \setminus \{v_7\}$

Remarks (II)

Objective for Player 1: Safe(T)for Player 2: $Reach(\{v_7\})$

 $X_{0} = \{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\} \qquad X'_{0} = \{v_{7}\}$ $X_{1} = \{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\} \qquad X'_{1} = \{v_{5}, v_{6}, v_{7}\}$ $X_{2} = \{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\} \qquad X'_{2} = \{v_{5}, v_{6}, v_{7}\}$

States in which Player 1 wins for Safe(T).

States in which Player 2 wins for $\operatorname{Reach}(V \setminus T)$.

Games of imperfect information

The Synthesis Question

The controller knows the state of the plant ("perfect information"). This, however, is often unrealistic.

- Sensors provide partial information (imprecision),
- Sensors have internal delays,
- Some variables of the plant are invisible,
- etc....

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Obs 0

Imperfect information → Observations

Obs 0 Obs 1

off v_1 delay v_3 on, delay v_0 on, off v_1 delay v_3 on, delay v_0 on, off v_1 delay v_3 on, delay v_0 on, off Bad off, delay

Imperfect information → Observations

Player 2 states → Nondeterminism

Playing the game: Player 2 moves a **token** along the edges of the graph, Player 1 does not see the position of the token.

- Player 1 chooses an action (on, off, delay), and then
- Player 2 resolves the nondeterminism and announces the color of the state.

Player 2:

Player 1:

Player 2: v₁

chooses v₁, announces Obs 0

Player 2: v₁ delay Player 1: delay

plays action *delay*

Player 2:v1delayv3offPlayer 1:delayoff

Imperfect information

A game graph + Observation structure

 $G = \langle V, \hat{v}, \mathsf{Succ} \rangle \qquad \langle \Sigma, \mathsf{Obs} \rangle$

Indistinguishable states belong to the same observation. Let $obs(v) \in Obs$ be the (unique) observation containing v.

Strategies

Player 1 chooses a letter in Σ ,

Player 2 resolves nondeteminisim.

An observation-based strategy for Player 1 is a function:

$$\lambda_1: \mathsf{Obs}^+ \to \Sigma$$

A strategy for Player 2 is a function:

$$\lambda_2: V^+ \times \Sigma \to V$$

such that

$$\lambda_2(v_1 \dots v_n, \sigma) \in \operatorname{Succ}(v_n, \sigma)$$
 for all $v_1, \dots, v_n \in V$ and $\sigma \in \Sigma$

Outcome

$$\lambda_1: \mathsf{Obs}^+ \to \Sigma$$

$$\lambda_2: V^+ \times \Sigma \to V$$

The **outcome** of $\langle \lambda_1, \lambda_2 \rangle$ is the play

 $w = v_0 v_1 \dots$ such that:

$$v_{i+1} = \lambda_2(v_0 \dots v_i, \sigma)$$
 where $\sigma = \lambda_1(obs(v_0) \dots obs(v_i))$

for all $i \geq 0$.

This play is denoted $Outcome(G, \lambda_1, \lambda_2)$

A winning condition for Player 1 is a set $U_1 \subseteq Obs^{\omega}$ of sequences of observations. The set U_1 defines the set of winning plays:

$$W_1 = \{v_0 v_1 \cdots \mid \mathsf{obs}(v_0) \mathsf{obs}(v_1) \cdots \in U_1\}$$

Player 1 is winning if

$$\exists \lambda_1 \cdot \forall \lambda_2 : \mathsf{Outcome}(G, \lambda_1, \lambda_2) \in W_1$$

Solving games of imperfect information

Imperfect information

Games of imperfect information can be solved by a reduction to games of perfect information.

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: **a set of states**, called a **cell**.

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: **a set of states**, called a **cell**.

Initial knowledge: cell $\{\hat{v}\}$

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: **a set of states**, called a **cell**.

Initial knowledge: cell $\{\hat{v}\}$

Player 1 plays σ,

Player 2 chooses V₂.

Current knowledge: cell $\{v_2, v_3\}$

 $\mathsf{Post}_{\sigma}(\{\hat{v}\}) \cap \frac{o_2}{o_2}$

Imperfect information

$$G = \langle V, \hat{v}, \mathsf{Succ} \rangle$$
$$\langle \Sigma, \mathsf{Obs} \rangle$$

V

State space

Initial state

 \widehat{v}

Perfect information

$$G' = \langle V_1', V_2', \hat{v}', \mathsf{Succ}' \rangle$$

$$V_1' = 2^V$$
$$V_2' = 2^V \times \Sigma$$

$$\hat{v}' = \{\hat{v}\}$$

$$G = \langle V, \hat{v}, \mathsf{Succ} \rangle$$
$$\langle \Sigma, \mathsf{Obs} \rangle$$

Parity condition

$$p:\mathsf{Obs}\to\mathbb{N}$$

$$G' = \langle V'_1, V'_2, \hat{v}', \mathsf{Succ}' \rangle$$

$$p': V_1' \cup V_2' \to \mathbb{N}$$

$$p'(s) = p'(s, \sigma) = p(o)$$

where $s \subseteq o$.

$$G = \langle V, \hat{v}, \mathsf{Succ} \rangle$$
$$\langle \Sigma, \mathsf{Obs} \rangle$$

Parity condition

$$p:\mathsf{Obs}\to\mathbb{N}$$

$$G' = \langle V'_1, V'_2, \hat{v}', \mathsf{Succ}' \rangle$$

$$p':V_1'\cup V_2'\to \mathbb{N}$$

$$p'(s) = p'(s, \sigma) = p(o)$$

where $s \subseteq o$.

Theorem

Player 1 is winning in G,p if and only if Player 1 is winning in G',p'.

Imperfect information

Imperfect information

Direct symbolic algorithm

Controllable predecessor: $1 \text{CPre}: 2^{V'_1} \rightarrow 2^{V'_1}$

 $1\mathsf{CPre}(\{\{v_3, v_4\}, \{v_5, v_6\}\}) = \{\{v_1\}, \{v_2\}\} \\ \neq \{\{v_1, v_2\}\}$

The union of two controllable cells is not necessarily controllable,

but...

$$1\mathsf{CPre}(q) = \{s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in q\}$$

If a cell s is controllable (i.e. winning for Player 1), then all sub-cells s' \subseteq s are controllable.

$$1\mathsf{CPre}(q) = \{s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in q\}$$

The sets of cells computed by the fixpoint iterations are **downward-closed**.

A set q of cells is downward-closed if $s \in q$ and $s' \subseteq s$ implies $s' \in q$.

$$1\mathsf{CPre}(q) = \{s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in q\}$$

The sets of cells computed by the fixpoint iterations are **downward-closed**.

A set q of cells is downward-closed if $s \in q$ and $s' \subseteq s$ implies $s' \in q$.

It is sufficient to keep only the **maximal cells**.

Antichains

Maximal cells in
$$p$$
: $\lceil p \rceil = \{s \in p \mid \forall s' \in p : s \not\subset s'\}$

 $\lceil p \rceil$ is an **antichain**, *i.e.* a set of \subseteq -incomparable cells.

 $\lceil p \rceil = \{s_1, s_2, s_3\}$

Antichains

Maximal cells in
$$p$$
: $\lceil p \rceil = \{s \in p \mid \forall s' \in p : s \not\subset s'\}$

 $\lceil p \rceil$ is an **antichain**, *i.e.* a set of \subseteq -incomparable cells.

For downward-closed set p, we have:

$$1\mathsf{CPre}(p) = \{s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} : \mathsf{Post}_{\sigma}(s) \cap o \in p\} \\ = \{s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} \cdot \exists s' \in \lceil p \rceil : \mathsf{Post}_{\sigma}(s) \cap o \subseteq s'\}$$

Hence, over antichains we define:

 $1\mathsf{CPre}^{\mathcal{A}}(q) = \left\lceil \{s \mid \exists \sigma \in \Sigma \cdot \forall o \in \mathsf{Obs} \cdot \exists s' \in q : \mathsf{Post}_{\sigma}(s) \cap o \subseteq s'\} \right\rceil$

Antichains

 $1CPre(\cdot)$ is monotone with respect to the following order:

$$q \sqsubseteq q' \text{ iff } \forall s \in q \cdot \exists s' \in q' : s \subseteq s'$$

 $\langle \mathcal{A}, \sqsubseteq \rangle$ is a complete partial order.

Least upper bound and greatest lower bound are defined by:

$$q \sqcup q' = \left[\{ s \mid s \in q \lor s \in q' \} \right]$$
$$q \sqcap q' = \left[\{ s \cap s' \mid s \in q \land s' \in q' \} \right]$$

Let $G = \langle V, \hat{v}, Succ, \Sigma, Obs \rangle$ be a 2-player game graph of imperfect information, and $\mathcal{T} \subseteq Obs$ a set of observations.

Games of imperfect information can be solved by the same fixpoint formulas as for perfect information, namely:

Theorem			
Player 1 has a winning strategy			
in $\langle G, R \rangle$	$leach(\mathcal{T}) angle$	iff	$\{\hat{v}\} \sqsubseteq \mu X \cdot \mathcal{T} \sqcup 1CPre(X)$
in $\langle G, S \rangle$	$afe(\mathcal{T}) angle$	iff	$\{\hat{v}\} \sqsubseteq \nu X \cdot \mathcal{T} \sqcap 1CPre(X)$
in $\langle G, B \rangle$	$Süchi(\mathcal{T}) angle$	iff	$\{\hat{v}\} \sqsubseteq \nu Y \cdot \mu X \cdot 1CPre(X) \sqcup (\mathcal{T} \sqcap 1CPre(Y))$
in $\langle G, c \rangle$	$oB\"uchi(\mathcal{T}) angle$	iff	$\{\hat{v}\} \sqsubseteq \mu Y \cdot \nu X \cdot 1CPre(X) \sqcap (\mathcal{T} \sqcup 1CPre(Y))$

Has Player 1 an observation-based strategy to avoid v_3 ?

We compute the fixpoint $\nu X \cdot T \sqcap 1\mathsf{CPre}(X)$

Objective: Safe(T)

 $X_0 = \mathcal{T} = \{\{v_0, v_1\}, \{v_2\}\}$

$X_1 = \mathsf{CPre}(X_0) \sqcap \mathcal{T} = \left\{ \{v_1\}_b, \{v_0, v_2\}_a \right\} \sqcap \mathcal{T}$

 $\mathcal{T} = \mathsf{Obs} \setminus \{o_3\}$ b v_1 a, baab v_0 v_3 a v_2 a

Objective: Safe(T)

$$X_0 = \{\{v_0, v_1\}, \{v_2\}\}$$

 $X_1 = \{\{v_0\}, \{v_1\}, \{v_2\}\}$

$$X_2 = \mathsf{CPre}(X_1) \sqcap \mathcal{T} = \left\{ \{v_0\}_a, \{v_1\}_b, \{v_2\}_a \right\} \sqcap \mathcal{T}$$

 $X_2 = \{\{v_0\}, \{v_1\}, \{v_2\}\}$

Player 1 is winning since $\{v_0\} \in X_2$

Remarks

1. **Finite memory** may be necessary to win safety and reachability games of imperfect information, and therefore also for Büchi, coBüchi, and parity objectives.

1. **Finite memory** may be necessary to win safety and reachability games of imperfect information, and therefore also for Büchi, coBüchi, and parity objectives.

2. Games of imperfect information are not determined.

Non determinacy

Any fixed strategy λ_1 of Player 1 can be spoiled by a strategy λ_2 of Player 2 as follows:

In v_0 : λ_2 chooses v_1 if in the next step λ_1 plays b, and λ_2 chooses v_2 if in the next step λ_1 plays a.

Non determinacy

Player 1 cannot enforce $Reach(\{v_3\})$.

Similarly, Player 2 cannot enforce $Safe(\{v_0, v_1, v_2\})$.

because when a strategy λ_2 of Player 2 is fixed, either $\lambda_1(o_1o_1) = a$ or $\lambda'_1(o_1o_1) = b$ is a spoiling strategy for Player 1.

1. **Finite memory** may be necessary to win safety and reachability games of imperfect information, and therefore also for Büchi, coBüchi, and parity objectives.

2. Games of imperfect information are not determined.

3. **Randomized** strategies are more powerful, already for reachability objectives.

Randomization

The following strategy of Player 1 wins with probability 1: At every step, play a and b uniformly at random.

After each visit to $\{v_1, v_2\}$, no matter the strategy of Player 2, Player 1 has probability $\frac{1}{2}$ to win (reach v_3).

Summary

- Games for controller synthesis: symbolic algorithms using fixpoint formulas.
- Imperfect information is more realistic, gives more robust controllers; but exponentially harder to solve.
- Antichains: exploit the structure of the subset construction.

- Games for controller synthesis: symbolic algorithms using fixpoint formulas.
- Imperfect information is more realistic, gives more robust controllers; but exponentially harder to solve.
- Antichains: exploit the structure of the subset construction.

It is sufficient to keep only the **maximal elements**.

- The antichain principle has applications in other problems where subset constructions are used:
 - Finite automata: language inclusion, universality, etc. [De Wulf,D,Henzinger,Raskin 06]
 - Alternating Büchi automata: emptiness and language inclusion. [D,Raskin 07]
 - LTL: satisfiability and model-checking.

[De Wulf,D,Maquet,Raskin 08]

Alaska

Antichains for Logic, Automata and Symbolic Kripke Structure Analysis

http://www.antichains.be

Acknowledgments

Credits

Antichains for games is a joint work with Krishnendu Chatterjee, Martin De Wulf, Tom Henzinger and Jean-François Raskin.

Special thanks to Jean-François Raskin for slides preparation.

Thank you !

