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Outline

• Antichain Algorithms

Finite automata, Büchi automata, alternating  
automata, partial-observation games, QBF

• Quantitative Games

Energy games, mean-payoff games, partial-
observation, energy parity, multi-dimension

• Quantitative Languages

Automata-based model, complexity, expressiveness, 
closure properties, mean-payoff automaton expression

Context and perspective

of a selection of results



Model-checking

[Clarke, Emerson, Pnueli, Sifakis,...]

Check if a Model satisfies a Property ?

…in an automated way
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Avoid failures !
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Ensure responsiveness !
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What kind of models ?

Model-checking

Reactive systems:

• Non-terminating
• Safety-critical
• Data abstraction
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Example

ω-automaton LTLTrace 
inclusion

Server
r ∈{r1,r2}

g ∈{g1,g2}

1 21

« Every request is eventually
granted, no simultaneous
grants »

Closure properties

Expressiveness

Decidability
Translation to automata

Yes/No answerAutomata-based approach to model-checking
[Vardi, Wolper,...]
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Outline

• Boolean automata-based Verification

1. Techniques to speed up well-known verification
algorithms by orders of magnitude

• Quantitative Verification

2. A surprising complexity result in game theory

3. A robust and decidable class of quantitative languages

-

From Boolean to quantitative verification
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Translation to automata

Closure properties

This problem is PSPACE-complete

Algorithm ?



Translation to automata

Closure properties

This problem is PSPACE-complete

Algorithm ?

even if      is given explicitly, even over 
finite words, and even if
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Efficient Algorithm ?

there is no path from inital to accepting
states in Ac.

iff

Subset construction

(over finite words)

(state-explosion 
problem)
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Init Final

Reachability

Is there a (finite) path from Init to Final ?



Reachability

Is there a (finite) path from Init to Final ?



Structure in graphs

Init Final



Structure in graphs

Init Final

Graph is partially ordered…



Structure in graphs

Init Final

Final
Graph is monotone…
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Key property

Two interpretations:

⊆ is a forward simulation relation in Ac

Promising states

Here the two interpretations coincide!

⊆ is a backward simulation relation in Ac

Symbolic representation 



Structure in graphs
. . . .

. . . .
Key property

Two interpretations:

⊆ is a forward simulation relation in Ac

Promising states

Works with ANY backward simulation!

Works with ANY forward simulation!

⊆ is a backward simulation relation in Ac

Symbolic representation 
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Antichains everywhere!
HSCC’06, CSL’06,

CONCUR’08, Inf&Comp’10

CAV’06

TACAS’07, LMCS’09 

TACAS’08 

ATVA’11 

Partial-observation Reachability/Parity games

Finite automata (language inclusion, universality)

Büchi automata (language inclusion, universality)

LTL satisfiability and model-checking

QBF

...

Finite Tree Automata [Bouajjani et al. 08]

Program Termination [Vardi et al. 09]

Minimizing Alternating Büchi [Abdulla et al. 09]

LTL synthesis [Raskin et al. 09]

Büchi universality [Vardi et al. 10]

Simulation Subsumption [Abdulla et al. 10,11]



Tools

http://www.antichains.be

ATVA’08

TACAS’09

Raskin et al.
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Tools

2006

2006

2007

2008

2009

Reachability/Parity games with imperfect information

Finite automata (language inclusion, universality)

Büchi automata (language inclusion, universality)

LTL satisfiability and model-checking

LTL synthesis

50 times faster than nuSMV…

LTL model-checking
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• Boolean Verification

1. Techniques to speed up well-known verification
algorithms by orders of magnitude

• Quantitative Verification

2. A surprising complexity result in game theory

3. A robust and decidable class of quantitative languages

-

From Boolean to quantitative verification
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Model-checking

[Clarke, Emerson, Sifakis,...]

Check if a Model satisfies a Property ?

…in an automated way
Generalisa

tion ?
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From Boolean to Quantitative spec 

Server
request

grant

Clients

« Every request is eventually
granted, no simultaneous
grants »

Solution 1: grant within 106 years

Solution 2: grant even if no request

« Minimize delays for pending
requests, minimize number of 
grants »

Switch to Quantitative Spec



Boolean specs do not 
distinguish wrong systems either!
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Wrong solution 2: 99% request granted



From Boolean to Quantitative spec 

Server
request

grant

Clients

« Every request is eventually
granted, no simultaneous
grants »

Wrong solution 1: no grant at all

Wrong solution 2: 99% request granted

« Maximize average number
of granted requests »Switch to Quantitative Spec
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E.g., (co)Büchi, Muller, parity, etc.

Boolean acceptance conditions separate good and 
bad runs:
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From Boolean to…

E.g., (co)Büchi, Muller, parity, etc.

Quantitative value functions assign value to runs:

Rω → R

Boolean acceptance conditions separate good and 
bad runs:

{0,1}ω → {0,1}
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Some value functions

(reachability)

(Büchi)

(coBüchi)

(vi ∈ {0,1})
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• Boolean Verification

1. Techniques to speed up well-known verification
algorithms by orders of magnitude

• Quantitative Verification

2. Mean-payoff parity games are in NP ∩ coNP

3. A robust and decidable class of quantitative languages

-

From Boolean to quantitative verification
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Example

Mean-payoff parity games

ω-regular specifications
(reactivity, liveness,…)

Quantitative specification
(cost optimization,…)

• Memoryless strategies

• NP ∩ coNP

• Memoryless strategies

• NP ∩ coNP



Example

Mean-payoff Büchi games

Visit q0 infinitely often,
and maximize mean-payoff



Example

Visit q0 infinitely often,
and maximize mean-payoff

Optimal strategy: spend more and more time in q1

Requires infinite memory…

Mean-payoff Büchi games
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Example

Mean-payoff parity games

• Memoryless strategies

• still in NP ∩ coNP

1. Reduction to parity games
with positive counter

2. Finite-memory strategies
suffice

3. Winning strategies can be decomposed into
memoryless strategies, and combined using counters.

4. Decomposition can be guessed in NP



Example

Mean-payoff parity games

• Memoryless strategies

• still in NP ∩ coNP

ICALP’10

K. Chatterjee
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• Boolean Verification

1. Techniques to speed up well-known verification
algorithms by orders of magnitude

• Quantitative Verification

2. Mean-payoff parity games are in NP ∩ coNP

3. A robust and decidable class of quantitative languages
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From Boolean to quantitative verification



Quantitative Languages



Long-term goal

Is there a Quantitative Framework with  

- an appealing mathematical formulation, 
- useful expressive power, robustness and 
- good algorithmic properties ?

(Like the boolean theory of ω-regularity.)

Note: “Quantitative” is more than “timed” and “probabilistic”

[Henzinger,...]



Quantitative languages

L(w) can be interpreted as:

• the amount of some resource needed by the
system to produce w (power, energy, time consumption),

• a reliability measure (the average number of “faults” in w).

A quantitative language is a function:



Quantitative languages

L(w) can be interpreted as:

• the amount of some resource needed by the
system to produce w (power, energy, time consumption),

• a reliability measure (the average number of “faults” in w).

A quantitative language is a function:

Classical Boolean languages are the special case where



Languages & Automata
Boolean languages are generated by finite automata.



Languages & Automata
Boolean languages are generated by finite automata.

Quantitative languages are generated by weighted automata,

LA(w) = 

A is deterministic:       value of (unique) run
A is non-deterministic: sup of run values
A is universal:           inf of run values
A is alternating:         value of game-outcome run (sup inf) 
…



Quantitative Languages

20 classes of quantitative languages...



Quantitative Languages

1. Decision problems

2. Expressiveness

3. Closure properties
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Given weighted automata A,    and 

decide

Decision problems

Quant. emptiness

Quant. universality

Quant. inclusion

Quant. equivalence

Undecidable for 
LimAvg.

Open question 
for Disc.

CSL’08, CSL’10, ToCL’10



Quantitative Languages

1. Decision problems

2. Expressiveness

3. Closure properties



Expressiveness

Compare classes of quantitative languages 
defined by weighted automata 

O(20 x 20) comparisons…



Expressiveness

and         cannot be determinized.

LICS’09, LMCS’10

Compare classes of quantitative languages 
defined by weighted automata 

O(20 x 20) comparisons…



Quantitative Languages

1. Decision problems

2. Expressiveness

3. Closure properties
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Operations

Operations on quantitative languages:

• max(L1,L2)

• min(L1,L2)

• complement(L1) = 1-L1

• L1 + L2

Note L1 ≤ L2 iff L1 + (1-L2) ≤ 1



LimAvg Automata

LICS’09, FCT’09



LimAvg Automata

LICS’09, FCT’09



Beyond Weighted
Automata



LimAvg Automata



E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton Expressions

LimAvg-automaton expressions are defined by:

where A is a deterministic LimAvg-automaton.



E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton Expressions

LimAvg-automaton expressions are defined by:

E.g.: max(A1 + A2, min(A3, A4))

where A is a deterministic LimAvg-automaton.



E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg Automaton Expressions

LimAvg-automaton expressions are defined by:

where A is a deterministic LimAvg-automaton.

Closure properties:



LimAvg Automaton Expressions

Decision problems: all questions reduce to quant. emptiness

E ::= A | max(E,E) | min(E,E) | Sum(E,E)

LimAvg-automaton expressions are defined by:

where A is a deterministic LimAvg-automaton.



Value set

Solve decision problems using the value set:

Value Set = { (LA1
(w),LA2

(w),LA3
(w),LA4

(w)) | w ∈ Σω} ⊆ R4

How to compute this set ?

E.g.: E = max(A1 + A2, min (A3, A4))



Value set

Solve decision problems using the value set:

Value Set = { (LA1
(w),LA2

(w),LA3
(w),LA4

(w)) | w ∈ Σω} ⊆ R4

How to compute this set ?

Uses arguments in computational geometry, yields
4EXPTIME complexity for emptiness.

E.g.: E = max(A1 + A2, min (A3, A4))



Value set

Solve decision problems using the value set:

Value Set = { (LA1
(w),LA2

(w),LA3
(w),LA4

(w)) | w ∈ Σω} ⊆ R4

E(Σω) = { max(x+y, min(z,t)) | (x,y,z,t) ∈ Value Set}

is a finite union of intervals.

Find maximum of E(Σω) to solve emptiness

E.g.: E = max(A1 + A2, min (A3, A4))



LimAvg Automaton Expressions

LimAvg-automaton 
expression

LimAvg-automaton 
expression
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inclusion
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LimAvg Automaton Expressions

LimAvg-automaton 
expression

LimAvg-automaton 
expression

Quant. 
inclusion

Closure properties

Expressiveness

Decidability

CONCUR’10

K. Chatterjee

H. Edelsbrunner

T. Henzinger

P. Rannou
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Conclusion – Key results

1. Efficient antichain algorithms

2. Quantitative games

Mean-payoff parity games in NP ∩ coNP

3. Quantitative generalization of languages

LimAvg automaton expressions: robust and decidable
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1. Efficient antichain algorithms
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Perspectives

Can we predict the performance of antichain algorithms ?

Complexity theory beyond worst-case…



2. Quantitative games

Mean-payoff parity games in NP ∩ coNP

• Multi-dimensional mean-payoff games – complexity

• New classes of quantitative stochastic games

in progress, PhD thesis of Mahsa Shirmohammadi

• New classes of games on counter systems

in progress, PhD thesis of Julien Reichert

Perspectives



3. Quantitative generalization of languages

LimAvg automaton expressions: robust and decidable

• Discounted-sum “expressions” ?

• Incorporate Boolean conditions

• Theory of quantitative regularity

- analogous of Borel hierarchy

- safety vs. liveness

- logical characterization

Perspectives



Acknowledgments

The work in this thesis has been carried out in the following teams:

• Tom Henzinger (EPFL, 2006-2008)

• Jean-François Raskin (ULB, 2009)

• Alain Finkel (LSV, 2009-now)

J-F. RaskinT. Henzinger A. Finkel



Credits

With the following co-authors (students in blue):

• Joël Ouaknine 

• Tatjana Petrov

• Sangram Raje

• Philippe Rannou

• Jean-François Raskin

• Julien Reichert

• Mahsa Shirmohammadi

• Rohit Singh

• Szymon Torunczyk

• James Worrell

• Gilles Geeraerts

• Raffaella Gentilini

• Hugo Gimbert

• Tom Henzinger

• Barbara Jobstmann

• Axel Legay

• Nicolas Maquet

• Nicolas Markey

• Thierry Massart

• Dejan Nickovic

• Dietmar Berwanger

• Thomas Brihaye

• Lubos Brim

• Véronique Bruyère

• Jakub Chaloupka

• Krishnendu Chatterjee

• Aldric Degorre

• Martin De Wulf

• Marc Ducobu

• Herbert Edelsbrunner



Credits

With the following co-authors:

• Joël Ouaknine 

• Tatjana Petrov

• Sangram Raje

• Philippe Rannou

• Jean-François Raskin

• Julien Reichert

• Mahsa Shirmohammadi

• Rohit Singh

• Szymon Torunczyk

• James Worrell

• Gilles Geeraerts

• Raffaella Gentilini

• Hugo Gimbert

• Tom Henzinger

• Barbara Jobstmann

• Axel Legay

• Nicolas Maquet

• Nicolas Markey

• Thierry Massart

• Dejan Nickovic

• Dietmar Berwanger

• Thomas Brihaye

• Lubos Brim

• Véronique Bruyère

• Jakub Chaloupka

• Krishnendu Chatterjee

• Aldric Degorre

• Martin De Wulf

• Marc Ducobu

• Herbert Edelsbrunner



Thank you !

Questions ?

The end


