Games and Automata: From Boolean to Quantitative Verification

- Habilitation thesis defense -

Laurent Doyen CNRS

ENS Cachan, March 13th, 2012

Outline

- Antichain Algorithms
 - Finite automata, Büchi automata, alternating automata, partial-observation games, QBF
- Quanti Energ obser Of a selection of results
- Quantitative Languages

Automata-based model, complexity, expressiveness, closure properties, mean-payoff automaton expression

 $M \stackrel{?}{\models} \varphi$

Check if a Model satisfies a Property ? ...in an automated way

[Clarke, Emerson, Pnueli, Sifakis,...]

What kind of properties ?

What kind of properties ?

Avoid failures !

What kind of properties ?

Ensure responsiveness !

What kind of models ?

What kind of models ?

Reactive systems:

- Non-terminating
- Safety-critical
- Data abstraction

$$M \stackrel{?}{\models} \varphi$$

 « Every request is eventually granted, no simultaneous grants »

 « Every request is eventually granted, no simultaneous grants »

Closure properties $M \stackrel{?}{\models} \varphi$ Expressiveness/Decidability

ω-automaton

 « Every request is eventually granted, no simultaneous grants »

 φ

M

 « Every request is eventually granted, no simultaneous grants »

 $\Box(\underline{r_i} \to \Diamond \underline{g_i}) \land \Box \neg (\underline{g_1} \land \underline{g_2})$

Translation to automata

LTL

Closure properties Expressiveness

Decidability

ω-automaton

Outline

From **Boolean** to **quantitative** verification

Outline

From Boolean to quantitative verification

- Boolean automata-based Verification
 - 1. Techniques to speed up well-known verification algorithms by orders of magnitude
- Quantitative Verification
 - 2. A surprising complexity result in game theory
 - 3. A robust and decidable class of quantitative languages

$$M \models \varphi \qquad L(M) \subseteq L(\varphi)$$

 $M \models \varphi \qquad L(M) \subseteq L(\varphi)$ Translation to automata $L(M) \subseteq L(A_{\varphi})$

$$\begin{split} M &\models \varphi & L(M) \subseteq L(\varphi) \\ \text{Translation to automata} & L(M) \subseteq L(A_{\varphi}) \\ & L(M) \cap L(A_{\varphi})^c = \emptyset \\ \text{Closure properties} & L(M \times A_{\varphi}^c) = \emptyset \end{split}$$

$$\begin{split} M &\models \varphi & L(M) \subseteq L(\varphi) \\ \text{Translation to automata} & L(M) \subseteq L(A_{\varphi}) \\ & L(M) \cap L(A_{\varphi})^c = \varnothing \\ \text{Closure properties} & L(M \times A_{\varphi}^c) = \varnothing \end{split}$$

This problem is PSPACE-complete

 $M \models \varphi \qquad L(M) \subseteq L(\varphi)$ Translation to automata $L(M) \subseteq L(A_{\varphi})$ $L(M) \cap L(A_{\varphi})^{c} = \emptyset$ Closure properties $L(M \times A_{\varphi}^{c}) = \emptyset$

This problem is PSPACE-complete

even if A_{φ} is given explicitly, even over $L(A^c) = \emptyset$ finite words, and even if $L(M) = \Sigma^*$

Efficient Algorithm ?

(over finite words) $L(A^c) = \emptyset$

iff there is no path from inital to accepting states in A^c.

Efficient Algorithm ?

(over finite words) $L(A^c) = \emptyset$

.

 $\begin{array}{c} \cdot & \cdot & - \\ \cup & \cdot & \cdot \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ $\xrightarrow{w} \quad \subseteq \{3,4\}$ \cup

Pruning is sound: either

• $\{1,2\} \longrightarrow \{3,4\}$ or

•
$$\{1,2\} \xrightarrow{\exists w} \{3,4\}$$

 $\{1\} \xrightarrow{\exists w} \{3,4\}$

Subset Construction

Subset Construction

Reachability

Is there a (finite) path from Init to Final?

Reachability

Is there a (finite) path from Init to Final?

Two interpretations:

 \subseteq is a forward simulation relation in A^c

\subseteq is a backward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c Use \subseteq to prune the search Antichain of promising states

Two interpretations:

 \subseteq is a forward simulation relation in A^c

\subseteq is a backward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Two interpretations:

 \subseteq is a forward simulation relation in A^c

Promising states

 \subseteq is a backward simulation relation in A^c Symbolic representation

Two interpretations:

- \subseteq is a forward simulation relation in A^c
 - **Promising** states

 \subseteq is a backward simulation relation in A^c

Symbolic representation

Here the two interpretations coincide!

Antichains everywhere!

Partial-observation Reachability/Parity games

. . .

Finite automata (language inclusion, universality) Büchi automata (language inclusion, universality) LTL satisfiability and model-checking QBF

HSCC'06, CSL'06, CONCUR'08, Inf&Comp'10 CAV'06 TACAS'07, LMCS'09 TACAS'08 ATVA'11

Antichains everywhere!

Partial-observation Reachability/Parity games

Finite automata (language inclusion, universality) Büchi automata (language inclusion, universality) LTL satisfiability and model-checking QBF

HSCC'06, CSL'06, CONCUR'08, Inf&Comp'10 CAV'06 TACAS'07, LMCS'09 TACAS'08 ATVA'11

. . .

J-F. Raskin M. De Wulf N. Maquet T. Henzinger D. Berwanger

Antichains everywhere!

Partial-observation Reachability/Parity games

Finite automata (language inclusion, universality) Büchi automata (language inclusion, universality) LTL satisfiability and model-checking QBF

```
HSCC'06, CSL'06,
CONCUR'08, Inf&Comp'10
CAV'06
TACAS'07, LMCS'09
TACAS'08
ATVA'11
```

```
Finite Tree Automata [Bouajjani et al. 08]
Program Termination [Vardi et al. 09]
Minimizing Alternating Büchi [Abdulla et al. 09]
LTL synthesis [Raskin et al. 09]
Büchi universality [Vardi et al. 10]
Simulation Subsumption [Abdulla et al. 10,11]
```

. . .

Tools

http://www.antichains.be

Tools

NFA universality

Tools

Reachability/Parity games Finite automata (language Büchi automata (language LTL satisfiability and mode LTL synthesis

50 times faster than nuSMV...

LTL model-checking

Outline

From Boolean to quantitative verification

- Boolean Verification
 - 1. Techniques to speed up well-known verification algorithms by orders of magnitude
- Quantitative Verification
 - 2. A surprising complexity result in game theory
 - 3. A robust and decidable class of quantitative languages

Model-checking

 $M \stackrel{?}{\models} \varphi$

Check if a Model satisfies a Property ? ...in an automated way

[Clarke, Emerson, Sifakis,...]

Model-checking

[Clarke, Emerson, Sifakis,...]

 « Every request is eventually granted, no simultaneous grants »

 « Every request is eventually granted, no simultaneous grants »

 « Every request is eventually granted, no simultaneous grants »

(Part of) the Model is not given

→ Construct a correct system

(typically reduces to game solving)

[Church, Büchi, Landweber, Rabin, Pnueli,...]

 Every request is eventually granted, no simultaneous grants »

→ Construct a correct system

(typically reduces to game solving)

[Church, Büchi, Landweber, Rabin, Pnueli,...]

 Every request is eventually granted, no simultaneous grants »

Solution 1: grant within 10⁶ years

Solution 2: grant even if no request

 Every request is eventually granted, no simultaneous grants »

Solution 1: grant within 10⁶ years

Solution 2: grant even if no request

Boolean specs do not distinguish correct systems

Switch to **Quantitative** Spec

 Minimize delays for pending requests, minimize number of grants »

 Every request is eventually granted, no simultaneous grants »

Wrong solution 1: no grant at all

Wrong solution 2: 99% request granted

Boolean specs do not distinguish wrong systems either!

Switch to **Quantitative** Spec

« Maximize average number of granted requests »

From Boolean to...

Boolean acceptance conditions separate good and bad runs:

 $\{0,1\}^\omega \rightarrow \{0,1\}$

E.g., (co)Büchi, Muller, parity, etc.

From Boolean to...

Boolean acceptance conditions separate good and bad runs:

 $\{0,1\}^\omega \rightarrow \{0,1\}$

E.g., (co)Büchi, Muller, parity, etc.

Quantitative value functions assign value to runs:

 $\mathbb{R}^\omega \to \mathbb{R}$

Some value functions

For
$$v = v_0 v_1 \dots (v_i \in \mathbb{R})$$
, let

- $\operatorname{Sup}(v) = \sup\{v_n \mid n \ge 0\};$
- $\operatorname{LimSup}(v) = \limsup_{n \to \infty} v_n;$
- $\operatorname{LimInf}(v) = \liminf_{n \to \infty} v_n;$

(v_i ∈ {0,1}) (reachability) (Büchi) (coBüchi)

Some value functions

For
$$v = v_0 v_1 \dots (v_i \in \mathbb{R})$$
, let
• $Sup(v) = sup\{v_n \mid n \ge 0\}$; (reachability)
• $LimSup(v) = \limsup_{n \to \infty} v_n$; (Büchi)
• $LimInf(v) = \liminf_{n \to \infty} v_n$; (coBüchi)
• $LimAvg(v) = \limsup_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} v_i$; aka MeanPayoff (v)
• given $0 < \lambda < 1$, $Disc_{\lambda}(v) = \sum_{i=0}^{\infty} \lambda^i \cdot v_i$.

Outline

From Boolean to quantitative verification

Boolean Verification

1. Techniques to speed up well-known verification algorithms by orders of magnitude

- Quantitative Verification
 - 2. Mean-payoff parity games are in NP \cap coNP
 - 3. A robust and decidable class of quantitative languages

ω-regular specifications (reactivity, liveness,...)

w-regular specifications (reactivity, liveness,...)

- Memoryless strategies
- NP \cap coNP

Quantitative specification (cost optimization,...)

 ω -regular specifications (reactivity, liveness,...)

- Memoryless strategies
- NP \cap coNP

- Memoryless strategies
- NP \cap coNP

Mean-payoff Büchi games

Visit q₀ infinitely often, and maximize mean-payoff

Mean-payoff Büchi games

Visit q₀ infinitely often, and maximize mean-payoff

Optimal strategy: spend more and more time in q_1 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, ...

Requires infinite memory...

 \bullet still in NP \cap coNP

 \bullet still in NP \cap coNP

 Reduction to parity games with positive counter
 Finite-memory strategies suffice

• still in NP \cap coNP

 Reduction to parity games with positive counter
 Finite-memory strategies suffice

3. Winning strategies can be decomposed into memoryless strategies, and combined using counters.

4. Decomposition can be guessed in NP

 \bullet still in NP \cap coNP

K. Chatterjee

ICALP'10

Outline

From Boolean to quantitative verification

Boolean Verification

1. Techniques to speed up well-known verification algorithms by orders of magnitude

- Quantitative Verification
 - 2. Mean-payoff parity games are in NP \cap coNP
 - 3. A robust and decidable class of quantitative languages

Long-term goal

Is there a Quantitative Framework with

- an appealing mathematical formulation,
- useful expressive power, robustness and
- good algorithmic properties ?

(Like the boolean theory of ω -regularity.)

Note: "Quantitative" is more than "timed" and "probabilistic"

[Henzinger,...]

Quantitative languages

A quantitative language is a function:

$$\mathsf{L}: \mathbf{\Sigma}^{\omega} \to \mathbb{R}$$

L(w) can be interpreted as:

- the amount of some resource needed by the system to produce w (power, energy, time consumption),
- a reliability measure (the average number of "faults" in w).

Quantitative languages

A quantitative language is a function:

$$\mathsf{L}: \mathbf{\Sigma}^{\omega} \to \mathbb{R}$$

Classical Boolean languages are the special case where

$$\mathsf{L}: \mathbf{\Sigma}^\omega \to \{\mathbf{0}, \mathbf{1}\}$$

L(w) can be interpreted as:

- the amount of some resource needed by the system to produce w (power, energy, time consumption),
- a reliability measure (the average number of "faults" in w).

Languages & Automata

Boolean languages are generated by finite automata.

Languages & Automata

Boolean languages are generated by finite automata.

Quantitative languages are generated by weighted automata,

 $L_A(w) =$

. . .

A is deterministic:A is non-deterministic:A is universal:A is alternating:

value of (unique) run
sup of run values
inf of run values
value of game-outcome run (sup inf)

Quantitative Languages

	det.	nondet.	univ.	alt.
Sup				
LimSup				
LimInf				
LimAvg				
$Disc_\lambda$				

20 classes of quantitative languages...

Quantitative Languages

- 1. Decision problems
- 2. Expressiveness
- 3. Closure properties

Given weighted automata A, B and $\nu \in \mathbb{Q}$ decide

Quant. emptiness $\exists w : L_A(w) \ge \nu$ Quant. universality $\forall w : L_A(w) \ge \nu$

Given weighted automata A, B and $\nu \in \mathbb{Q}$ decide

Quant. emptiness Quant. universality Quant. inclusion Quant. equivalence

 $\exists w : L_{\mathsf{A}}(w) \ge \nu$ $\forall w : L_{\mathsf{A}}(w) \ge \nu$

 $\forall w : L_{\mathsf{A}}(w) \leq L_{\mathsf{B}}(w)$ $\forall w : L_{\mathsf{A}}(w) = L_{\mathsf{B}}(w)$

Given weighted automata A, B and $\nu \in \mathbb{Q}$ decide

Quant. emptiness Quant. universality Quant. inclusion Quant. equivalence $\exists w : L_{\mathsf{A}}(w) \ge \nu$ $\forall w : L_{\mathsf{A}}(w) \ge \nu$

 $\forall w : L_{\mathsf{A}}(w) \leq L_{\mathsf{B}}(w)$ $\forall w : L_{\mathsf{A}}(w) = L_{\mathsf{B}}(w)$

	det.	nondet.	univ.	alt.		det.	nondet.	univ.	alt.		det.	nondet.	univ.	alt.		det.	nondet.	univ.	alt.
Sup	P	Р	PSpace	PSpace	Sup	Р	PSpace	PSpace	PSpace	Sup	Р	PSpace	PSpace	PSpace	Sup	Р	PSpace	PSpace	PSpace
LimSup	Р	Р	PSpace	PSpace	LimSup	Р	PSpace	PSpace	PSpace	LimSup	Р	PSpace	PSpace	PSpace	LimSup	Р	PSpace	PSpace	PSpace
LimInf	Р	Р	PSpace	PSpace	LimInf	Р	PSpace	PSpace	PSpace	LimInf	Р	PSpace	PSpace	PSpace	LimInf	Р	PSpace	PSpace	PSpace
LimAvg	Р	Р	undec.	undec.	LimAvg	Р	undec.	undec.	undec.	LimAvg	Р	undec.	undec.	undec.	LimAvg	Р	undec.	undec.	undec.
$Disc_{\lambda}$	Р	Р	?	?	Disc _λ	P	?	7	?	Disc _λ	Р	?	?	?	Disc	Р	?	?	?

CSL'08, CSL'10, ToCL'10

Given weighted automata A, B and $\nu \in \mathbb{Q}$ decide

Quant. emptiness Quant. universality Quant. inclusion Quant. equivalence $\exists w : L_{\mathsf{A}}(w) \ge \nu$ $\forall w : L_{\mathsf{A}}(w) \ge \nu$

 $\forall w : \mathsf{L}_{\mathsf{A}}(w) \leq \mathsf{L}_{\mathsf{B}}(w)$

$$\forall w : \mathsf{L}_{\mathsf{A}}(w) = \mathsf{L}_{\mathsf{B}}(w)$$

Undecidable for LimAvg.

Open question for Disc.

	det.	nondet.	univ.	alt.		det.	nondet.	univ.	alt.			det.	nondet.	univ.	alt.			det.	nondet.	univ.	alt.
Sup	Р	Р	PSpace	PSpace	Sup	Р	PSpace	PSpace	PSpace	S	up	Р	PSpace	PSpace	PSpace	-	Sup	Р	PSpace	PSpace	PSpace
LimSup	Р	Р	PSpace	PSpace	LimSup	Р	PSpace	PSpace	PSpace	Li	imSup	Р	PSpace	PSpace	PSpace	-	LimSup	Р	PSpace	PSpace	PSpace
LimInf	Р	Р	PSpace	PSpace	LimInf	Р	PSpace	PSpace	PSpace	Li	imInf	Р	PSpace	PSpace	PSpace	-	LimInf	Р	PSpace	PSpace	PSpace
LimAvg	P	Р	undec.	undec.	LimAvg	Р	undec.	undec.	undec.	Li	.imAvg	Р	undec.	undec.	undec.	-	LimAvg	Р	undec.	undec.	undec.
Disc _λ	Р	Р	?	?	Disc _λ	Р	?	7	?	D)isc _λ	Р	?	?	?	-	$Disc_\lambda$	Р	?	?	?

CSL'08, CSL'10, ToCL'10

Quantitative Languages

- 1. Decision problems
- 2. Expressiveness
- 3. Closure properties

Compare classes of quantitative languages defined by weighted automata

O(20 x 20) comparisons...

Compare classes of quantitative languages defined by weighted automata

O(20 x 20) comparisons...

LimAvg and $Disc_{\lambda}$ cannot be determinized.

LICS'09, LMCS'10

Quantitative Languages

- 1. Decision problems
- 2. Expressiveness
- 3. Closure properties

 $L_1 \cap L_2$

 $\Sigma^{\omega} \setminus L_1$

$$\mathsf{L}_1,\mathsf{L}_2:\Sigma^\omega\to\mathbb{R}$$

Operations on quantitative languages:

- max(L_1, L_2) $L_1 \cup L_2$
- min(L₁,L₂)
- complement(L_1) = 1- L_1
- $L_1 + L_2$

Operations

 $\Sigma^{\omega} \setminus L_1$

$$\mathsf{L}_1,\mathsf{L}_2:\Sigma^\omega\to\mathbb{R}$$

Operations on quantitative languages:

- max(L_1, L_2) $L_1 \cup L_2$
- min(L_1, L_2) $L_1 \cap L_2$
- complement(L_1) = 1- L_1
- $L_1 + L_2$

Note $L_1 \leq L_2$ iff $L_1 + (1-L_2) \leq 1$

LimAvg Automata

LimAvg	Closure properties								
LIIIAvg	max	min	Sum	comp.					
Deterministic	×	×	×						
Nondeterministic	\checkmark	×	×	×					
Alternating	\checkmark	\checkmark	×	\checkmark					

LICS'09, FCT'09

LimAvg Automata

LimAvg	С	Closure properties Decision prob						lems	
LIIIAvg	max	min	Sum	comp.	empt.	univ.	incl.	equiv.	
Deterministic	×	×	×	\checkmark	\checkmark			\checkmark	
Nondeterministic	\checkmark	×	×	×	\checkmark	×	×	×	
Alternating	\checkmark	\checkmark	×	\checkmark	×	×	×	×	

LICS'09, FCT'09

Beyond Weighted Automata

LimAvg Automata

LimAvg	С	losure	properties Decision proble					ns
LIIIAVg	max	\min	Sum	comp.	empt.	univ.	incl.	equiv.
Deterministic	×	Х	×	\checkmark	\checkmark			\checkmark
Nondeterministic	\checkmark	×	×	×	\checkmark	×	×	×
Alternating	\checkmark	\checkmark	×	\checkmark	×	×	×	×
Expressions	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

LimAvg-automaton expressions are defined by:

 $E ::= A \mid max(E,E) \mid min(E,E) \mid Sum(E,E)$

where A is a deterministic LimAvg-automaton.

LimAvg-automaton expressions are defined by:

 $E ::= A \mid max(E,E) \mid min(E,E) \mid Sum(E,E)$

where A is a deterministic LimAvg-automaton.

E.g.: $max(A_1 + A_2, min(A_3, A_4))$

LimAvg-automaton expressions are defined by:

 $E ::= A \mid max(E,E) \mid min(E,E) \mid Sum(E,E)$

where A is a deterministic LimAvg-automaton.

Closure properties:

LimAvg	С	Closure properties								
	max	min	Sum	comp.						
Deterministic	×	×	×	\checkmark						
Nondeterministic	\checkmark	×	×	×						
Alternating	\checkmark		×	\checkmark						
Expressions		\sim								

LimAvg-automaton expressions are defined by:

 $E ::= A \mid max(E,E) \mid min(E,E) \mid Sum(E,E)$

where A is a deterministic LimAvg-automaton.

Decision problems: all questions reduce to quant. emptiness

 $\exists w : \mathsf{E}(w) \ge \nu$

Value set

Solve decision problems using the value set:

E.g.: $E = max(A_1 + A_2, min(A_3, A_4))$

Value Set = { $(L_{A_1}(w), L_{A_2}(w), L_{A_3}(w), L_{A_4}(w)) \mid w \in \Sigma^{\omega} \} \subseteq \mathbb{R}^4$

How to compute this set ?

Value set

Solve decision problems using the value set:

E.g.: $E = max(A_1 + A_2, min(A_3, A_4))$

 $\text{Value Set} = \{ (L_{A_1}(w), L_{A_2}(w), L_{A_3}(w), L_{A_4}(w)) \mid w \in \Sigma^{\omega} \} \subseteq \mathbb{R}^4$

How to compute this set ?

Uses arguments in computational geometry, yields 4EXPTIME complexity for emptiness.

Value set

Solve decision problems using the value set:

E.g.: $E = max(A_1 + A_2, min(A_3, A_4))$

 $\text{Value Set} = \{ (L_{A_1}(w), L_{A_2}(w), L_{A_3}(w), L_{A_4}(w)) \mid w \in \Sigma^{\omega} \} \subseteq \mathbb{R}^4$

 $\mathsf{E}(\Sigma^{\omega}) = \{ \max(x+y, \min(z,t)) \mid (x,y,z,t) \in \text{Value Set} \}$

is a finite union of intervals.

Find maximum of $E(\Sigma^{\omega})$ to solve emptiness

LimAvg	С	losure	proper	properties Decision problem					
	max	\min	Sum	comp.	empt.	univ.	incl.	equiv.	
Deterministic	×	×	×	\checkmark	\checkmark			\checkmark	
Nondeterministic	\checkmark	×	×	×	\checkmark	×	×	×	
Alternating	\checkmark	\checkmark	×	\checkmark	×	×	×	×	
Expressions				\checkmark	\checkmark	\checkmark		\checkmark	

LimAvg	С	losure	proper	ties	D	Decision problems				
	max	min	Sum	comp.	empt.	univ.	incl.	equiv.		
Deterministic	×	×	×	\checkmark	\checkmark	\checkmark		\checkmark		
Nondeterministic	\checkmark	×	×	×	\checkmark	×	×	×		
Alternating	\checkmark	\checkmark	×	\checkmark	×	×	×	×		
Expressions				\checkmark		\checkmark		\checkmark		

Conclusion – Key results

1. Efficient antichain algorithms

2. Quantitative games

Mean-payoff parity games in NP \cap coNP

3. Quantitative generalization of languages

LimAvg automaton expressions: robust and decidable

Perspectives

1. Efficient antichain algorithms

Can we predict the performance of antichain algorithms ?

Complexity theory beyond worst-case...

Perspectives

2. Quantitative games

Mean-payoff parity games in ${\sf NP} \cap {\sf coNP}$

- Multi-dimensional mean-payoff games complexity
- New classes of quantitative stochastic games in progress, PhD thesis of Mahsa Shirmohammadi
- New classes of games on counter systems in progress, PhD thesis of Julien Reichert

Perspectives

3. Quantitative generalization of languages LimAvg automaton expressions: robust and decidable

- Discounted-sum "expressions" ?
- Incorporate Boolean conditions
- Theory of quantitative regularity
 - analogous of Borel hierarchy
 - safety vs. liveness
 - logical characterization

Acknowledgments

The work in this thesis has been carried out in the following teams:

- Tom Henzinger (EPFL, 2006-2008)
- Jean-François Raskin (ULB, 2009)
- Alain Finkel (LSV, 2009-now)

T. Henzinger

J-F. Raskin

A. Finkel

Credits

With the following co-authors (students in blue):

- Dietmar Berwanger
- Thomas Brihaye
- Lubos Brim
- Véronique Bruyère
- Jakub Chaloupka
- Krishnendu Chatterjee
- Aldric Degorre
- Martin De Wulf
- Marc Ducobu
- Herbert Edelsbrunner

- Gilles Geeraerts
- Raffaella Gentilini
- Hugo Gimbert
- Tom Henzinger
- Barbara Jobstmann
- Axel Legay
- Nicolas Maquet
- Nicolas Markey
- Thierry Massart
- Dejan Nickovic

- Joël Ouaknine
- Tatjana Petrov
- Sangram Raje
- Philippe Rannou
- Jean-François Raskin
- Julien Reichert
- Mahsa Shirmohammadi
- Rohit Singh
- Szymon Torunczyk
- James Worrell

Thank you !

Questions ?