Robust Synchronization in Markov Decision Processes

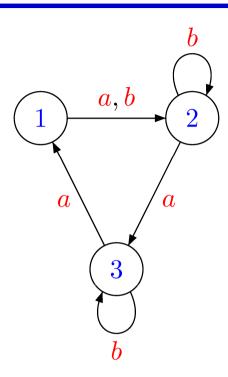
Laurent Doyen
LSV, ENS Cachan & CNRS

Joint work with Thierry Massart, Mahsa Shirmohammadi

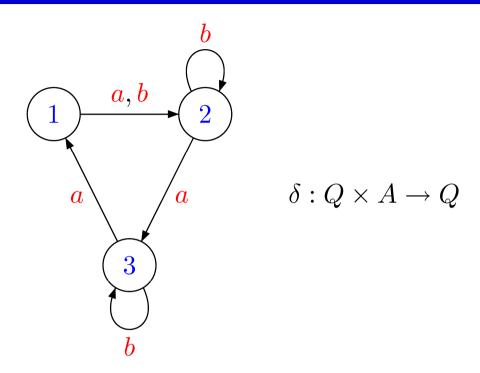
Concur 2014

Outline

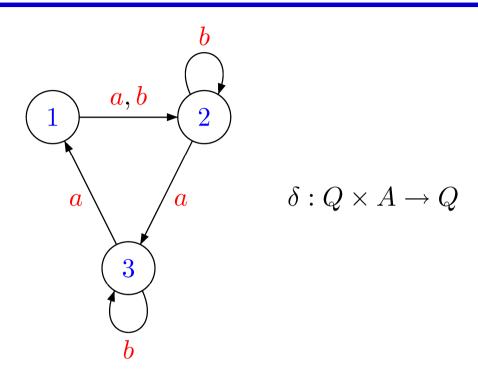
- 1. Synchronization (in finite-state automata)
- 2. Extension to Markov Decision Processes
- 3. Results



Synchronizing word brings the automaton from all states to the same state

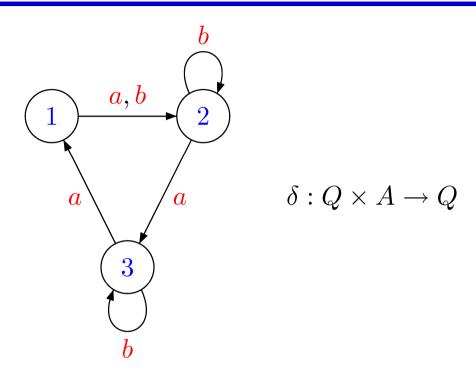


Synchronizing word brings the automaton from all states to the same state

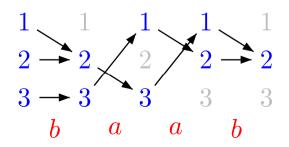


Synchronizing word in DFA

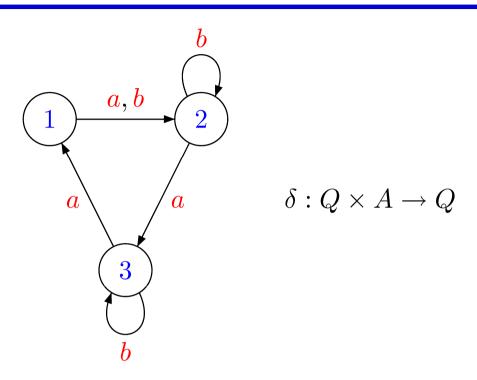
brings the automaton from all states to the same state



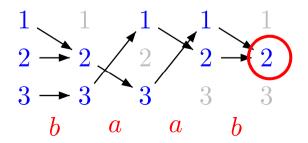
Synchronizing word in DFA



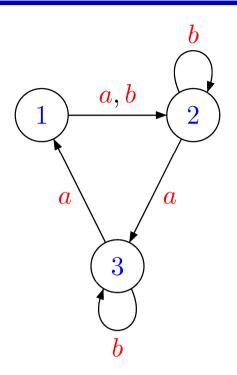
brings the automaton from all states to the same state



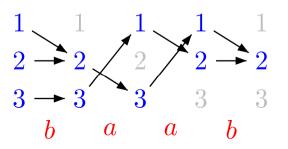
Synchronizing word in DFA

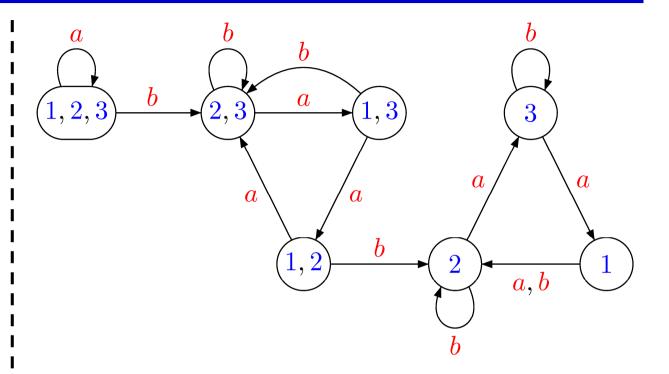


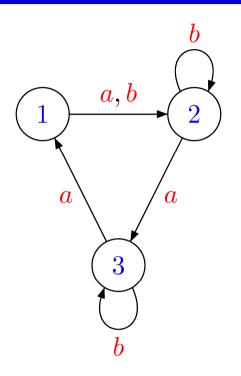
brings the automaton from all states to the same state



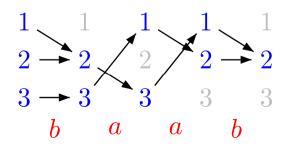
Synchronizing word hin DFA

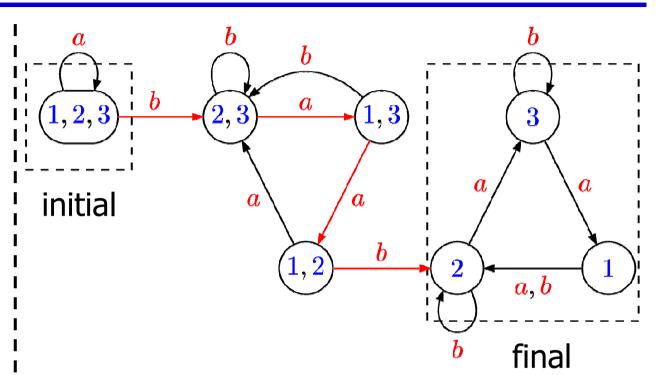




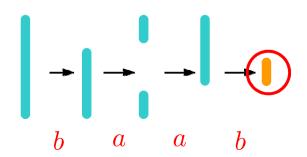


Synchronizing word hin DFA





⇔ Reachability question in powerset graph



Basic model

 $\begin{array}{ll} \mathsf{DFA} & \delta: Q \times A \to Q \\ \mathsf{word} & \mathbb{N} \to A \end{array}$

Basic model

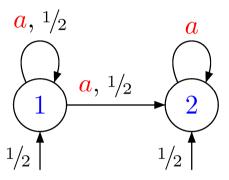
$$\begin{array}{ll} \mathsf{DFA} & \delta: Q \times A \to Q \\ \mathsf{word} & \mathbb{N} \to A \end{array}$$

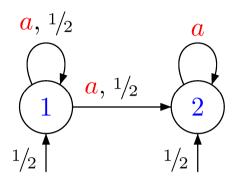
stochastic transitions

MDP – Markov decision process

$$\delta: Q \times A \to \mathcal{D}(Q)$$

 $d_0 \in \mathcal{D}(Q)$ initial distribution



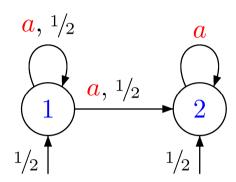


Finite state space

Stochastic transitions

Probability measure over events, i.e. sets of state sequences

$$\mathbb{P}(1_{\mathbf{a}}1(\mathbf{a}2)^{\omega}) = \frac{1}{8}$$



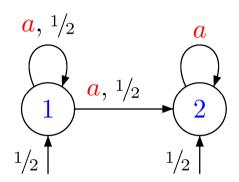
Finite state space

Stochastic transitions

Probability measure over events, i.e. sets of state sequences

$$\mathbb{P}(1a1(a2)^{\omega}) = \frac{1}{8}$$

Traditional semantics



Finite state space

Stochastic transitions

Probability measure over events, i.e. sets of state sequences

$$\mathbb{P}(\frac{1a}{1}(a2)^{\omega}) = \frac{1}{8}$$

Traditional semantics

$$\frac{1}{2} \binom{.5}{.5} \xrightarrow{a} \binom{.25}{.75} \xrightarrow{a} \binom{.125}{.875} \xrightarrow{a} \cdots$$

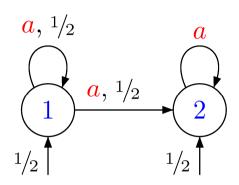
Infinite state space

Deterministic transitions

Set of distribution sequences

$$\Omega \subseteq \mathcal{D}(Q)^{\omega}$$

Distribution-based semantics



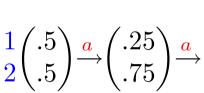
Finite state space

Stochastic transitions

Probability measure over events, i.e. sets of state sequences

$$\mathbb{P}(\frac{1a}{1}(a2)^{\omega}) = \frac{1}{8}$$

Traditional semantics

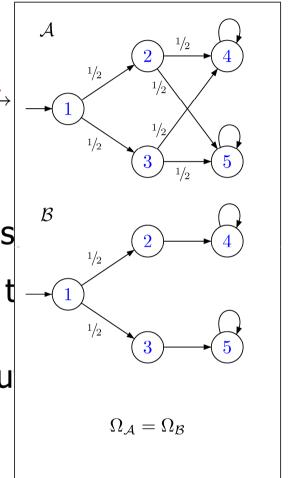


Infinite state s

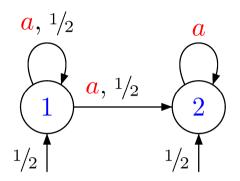
Deterministic

Set of distribu sequences

$$\Omega \subseteq \mathcal{D}(Q)^{\omega}$$

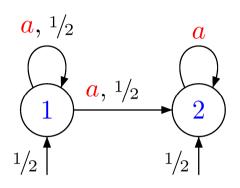


Distribution-based semantics



$$\frac{1}{2} \binom{.5}{.5} \xrightarrow{a} \binom{.25}{.75} \xrightarrow{a} \binom{.125}{.875} \xrightarrow{a} \cdots$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 not reachable



$$\frac{1}{2} \begin{pmatrix} .5 \\ .5 \end{pmatrix} \xrightarrow{a} \begin{pmatrix} .25 \\ .75 \end{pmatrix} \xrightarrow{a} \begin{pmatrix} .125 \\ .875 \end{pmatrix} \xrightarrow{a} \cdots$$

Not synchronizing

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 not reachable

...but almost-sure synchronizing:

$$\mathsf{Final}^{\epsilon} = \{d \in \mathcal{D}(Q) \mid d(\mathbf{2}) > 1 - \epsilon\}$$
 is reachable for all $\epsilon > 0$

$$\binom{\epsilon}{1-\epsilon}$$
 reachable for arbitrarily small ϵ

Basic model

$$\begin{array}{ll} \mathsf{DFA} & \delta: Q \times A \to Q \\ \mathsf{word} & \mathbb{N} \to A \end{array}$$

stochastic transitions

MDP – Markov decision process

$$\delta: Q \times A \to \mathcal{D}(Q)$$

 $d_0 \in \mathcal{D}(Q)$ initial distribution

Basic model

stochastic transitions

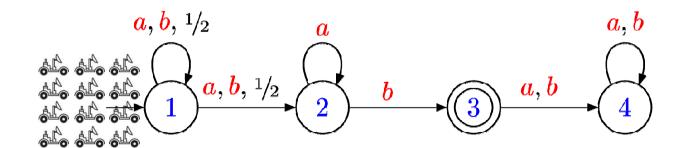
MDP – Markov decision process

$$\delta: Q \times A \to \mathcal{D}(Q)$$

 $d_0 \in \mathcal{D}(Q)$ initial distribution

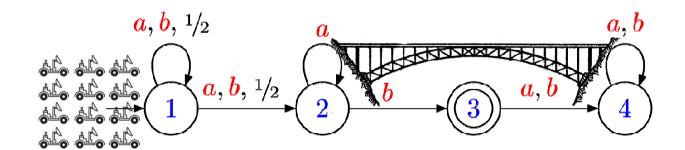
Basic model

MDP: model of a robot crossing a bridge



Basic model

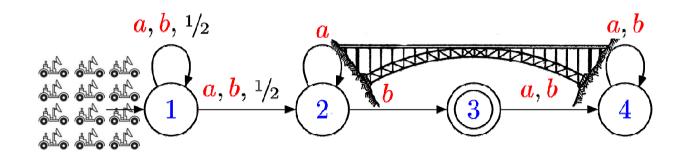
MDP: model of a robot crossing a bridge



Basic model

MDP: model of a robot crossing a bridge

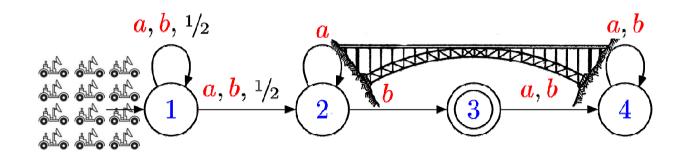
Embed a program α in each robot to ensure a group eventually meet on the bridge



Basic model

MDP: model of a robot crossing a bridge

Embed a program α in each robot to ensure a group eventually meet on the bridge



Basic model

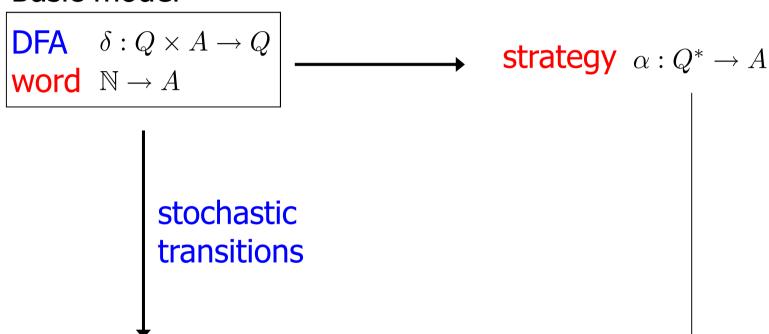
stochastic transitions

MDP – Markov decision process

$$\delta: Q \times A \to \mathcal{D}(Q)$$

 $d_0 \in \mathcal{D}(Q)$ initial distribution

Basic model

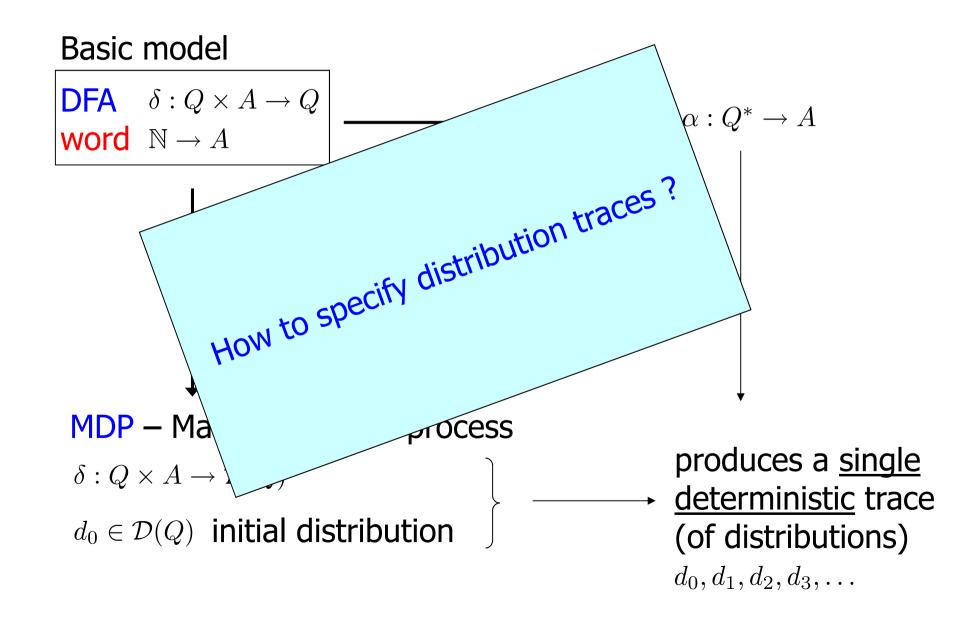


MDP – Markov decision process

$$\delta: Q \times A \to \mathcal{D}(Q)$$
 $d_0 \in \mathcal{D}(Q)$ initial distribution

produces a single deterministic trace (of distributions)

$$d_0,d_1,d_2,d_3,\ldots$$



```
MDP + strategy \alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots
```

reach a given set D of distributions

```
\exists \alpha \cdot \exists n : d_n^{\alpha} \in D (related to Skolem problem)
```

```
MDP + strategy \alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots
```

- reach a given set D of distributions $\exists \alpha \cdot \exists n : d_n^{\alpha} \in D$ (related to Skolem problem)
- reach a distribution with support in $T \subseteq Q$

```
\exists \alpha \cdot \exists n : d_n^{\alpha}(T) = 1 sure eventually synchronizing
```

```
MDP + strategy \alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots
```

- reach a given set D of distributions $\exists \alpha \cdot \exists n : d_n^{\alpha} \in D$ (related to Skolem problem)
- reach a distribution with support in $T \subseteq Q$

```
\exists \alpha \cdot \exists n : d_n^{\alpha}(T) = 1 sure eventually synchronizing
```

 $\exists \alpha : \sup_n d_n^{\alpha}(T) = 1$ almost-sure eventually synchronizing

 $\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$ limit-sure eventually synchronizing

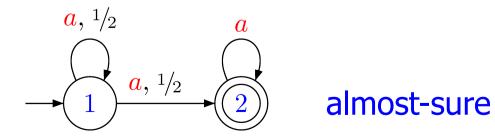
MDP + strategy
$$\alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots$$

- reach a given set D of distributions $\exists \alpha \cdot \exists n : d_n^{\alpha} \in D$ (related to Skolem problem)
- reach a distribution with support in $T \subseteq Q$

 $\exists \alpha \cdot \exists n : d_n^{\alpha}(T) = 1$ sure eventually synchronizing

 $\exists \alpha : \sup_n d_n^{\alpha}(T) = 1$ almost-sure eventually synchronizing

 $\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$ limit-sure eventually synchronizing



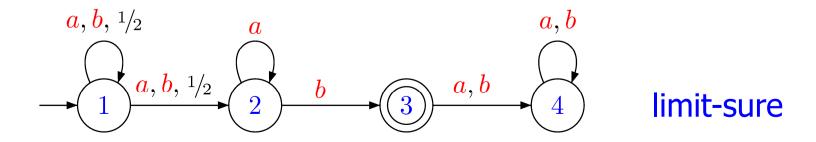
MDP + strategy
$$\alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots$$

- reach a given set D of distributions $\exists \alpha \cdot \exists n : d_n^{\alpha} \in D$ (related to Skolem problem)
- reach a distribution with support in $T \subseteq Q$

 $\exists \alpha \cdot \exists n : d_n^{\alpha}(T) = 1$ sure eventually synchronizing

 $\exists \alpha : \sup_n d_n^{\alpha}(T) = 1$ almost-sure eventually synchronizing

 $\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$ limit-sure eventually synchronizing



```
MDP + strategy \alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots
```

- reach a given set D of distributions $\exists \alpha \cdot \exists n : d_n^{\alpha} \in D$ (related to Skolem problem)
- reach a distribution with support in $T \subseteq Q$

```
\exists \alpha \cdot \exists n : d_n^{\alpha}(T) = 1 sure eventually synchronizing \exists \alpha : \sup_n d_n^{\alpha}(T) = 1 almost-sure eventually synchronizing \sup_{\alpha} \sup_n d_n^{\alpha}(T) = 1 limit-sure eventually synchronizing
```

- visit infinitely often a distribution with support in $T \subseteq Q$
- eventually visit only distributions with support in $T \subseteq Q$

MDP + strategy
$$\alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots$$

	Eventually	Weakly	Strongly
Sure	$\exists \alpha \exists n d_n^{\alpha}(T) = 1$		
Almost-sure	$\exists \alpha \ \sup_{n} d_{n}^{\alpha}(T) = 1$		
Limit-sure	$\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$		

eventually

MDP + strategy
$$\alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots$$

	Eventually	Weakly	Strongly
Sure	$\exists \alpha \exists n d_n^{\alpha}(T) = 1$	$\exists_{\alpha} \ \forall N \ \exists n \ge N \ d_n^{\alpha}(T) = 1$	
Almost-sure	$\exists \alpha \ \sup_{n} d_{n}^{\alpha}(T) = 1$	$\exists \alpha \ \limsup_{n \to \infty} d_n^{\alpha}(T) = 1$	
Limit-sure	$\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$	$\sup_{\mathbf{\alpha}} \limsup_{n \to \infty} d_n^{\mathbf{\alpha}}(T) = 1$	

MDP + strategy
$$\alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots$$

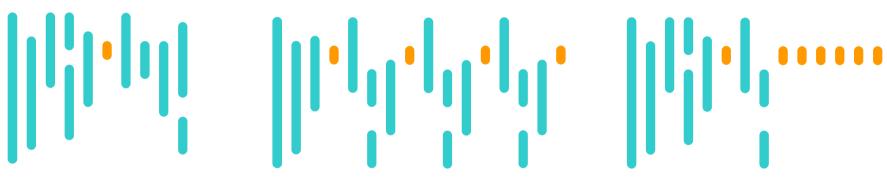
	Eventually	Weakly	Strongly
Sure	$\exists \alpha \exists n d_n^{\alpha}(T) = 1$	$\exists_{\alpha} \ \forall N \ \exists n \ge N \ d_n^{\alpha}(T) = 1$	$\exists_{\mathbf{\alpha}} \ \exists N \ \forall n \ge N \ d_n^{\mathbf{\alpha}}(T) = 1$
Almost-sure	$\exists \alpha \ \sup_{n} d_{n}^{\alpha}(T) = 1$	$\exists \alpha \ \limsup_{n \to \infty} d_n^{\alpha}(T) = 1$	$\exists \alpha \liminf_{n \to \infty} d_n^{\alpha}(T) = 1$
Limit-sure	$\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$	$\sup_{\alpha} \limsup_{n \to \infty} d_n^{\alpha}(T) = 1$	$\sup_{\mathbf{\alpha}} \liminf_{n \to \infty} d_n^{\mathbf{\alpha}}(T) = 1$

Distribution traces

MDP + strategy
$$\alpha \longrightarrow d_0^{\alpha}, d_1^{\alpha}, d_2^{\alpha}, d_3^{\alpha}, \dots$$

	Eventually	Weakly	Strongly
Sure	$\exists \alpha \exists n d_n^{\alpha}(T) = 1$	$\exists_{\alpha} \ \forall N \ \exists n \ge N \ d_n^{\alpha}(T) = 1$	$\exists \alpha \ \exists N \ \forall n \ge N \ d_n^{\alpha}(T) = 1$
Almost-sure	$\exists \alpha \ \sup_{n} d_{n}^{\alpha}(T) = 1$	$\exists \alpha \ \limsup_{n \to \infty} d_n^{\alpha}(T) = 1$	$\exists \alpha \liminf_{n \to \infty} d_n^{\alpha}(T) = 1$
Limit-sure	$\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$	$\sup_{\mathbf{\alpha}} \limsup_{n \to \infty} d_n^{\mathbf{\alpha}}(T) = 1$	$\sup_{\mathbf{\alpha}} \liminf_{n \to \infty} d_n^{\mathbf{\alpha}}(T) = 1$

eventually [FoSSaCS'14]



weakly [this paper]

strongly [this paper]

Robustness

Complexity

Robustness

Almost-sure and limit-sure coincide for weakly and strongly synchronizing

Complexity

Robustness

Almost-sure and limit-sure coincide for weakly and strongly synchronizing

	Eventually	Weakly	Strongly
Sure	$\exists \alpha \exists n d_n^{\alpha}(T) = 1$	$\exists \alpha \ \forall N \ \exists n \ge N \ d_n^{\alpha}(T) = 1$	$\exists \alpha \ \exists N \ \forall n \ge N \ d_n^{\alpha}(T) = 1$
Almost-sure	$\exists \alpha \ \sup_n d_n^{\alpha}(T) = 1$	$\exists \frac{\alpha}{n} \lim \sup_{n \to \infty} d_n^{\alpha}(T) = 1$	$\exists \alpha \text{ lim inf } d^{\alpha}(T) = 1$
Limit-sure	$\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$		$\exists \alpha \text{ min min}_{n \to \infty} \alpha_n(x) = 1$

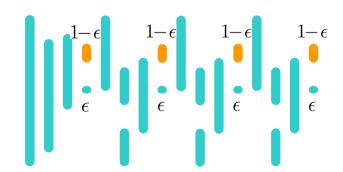
Robustness

Almost-sure and limit-sure coincide for weakly and strongly synchronizing

	Eventually	Weakly	Strongly
Sure	$\exists \alpha \exists n d_n^{\alpha}(T) = 1$	$\exists \alpha \ \forall N \ \exists n \ge N \ d_n^{\alpha}(T) = 1$	$\exists \alpha \ \exists N \ \forall n \ge N \ d_n^{\alpha}(T) = 1$
Almost-sure	$\exists \alpha \ \sup_{n} d_{n}^{\alpha}(T) = 1$	$\exists \frac{\alpha}{n} \lim \sup_{n \to \infty} d_n^{\alpha}(T) = 1$	$\exists \alpha \text{ lim inf } d^{\alpha}(T) = 1$
Limit-sure	$\sup_{\alpha} \sup_{n} d_{n}^{\alpha}(T) = 1$		$\exists \alpha \text{ min m}_{n \to \infty} \alpha_n(r) = r$

Proof sketch (for Weakly)

Limit-sure
$$\forall \epsilon > 0 \cdot \exists \alpha : \limsup_{n \to \infty} d_n^{\alpha}(T) \geq 1 - \epsilon$$



implies almost-sure by "partly" switching to ϵ -strategies for smaller and smaller ϵ smaller and smaller ϵ

$$\exists \alpha \cdot \forall \epsilon > 0 : \limsup_{n \to \infty} d_n^{\alpha}(T) \geq 1 - \epsilon$$

Robustness

Almost-sure and limit-sure coincide for weakly and strongly synchronizing

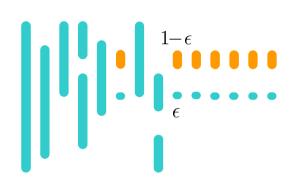
Complexity

Robustness

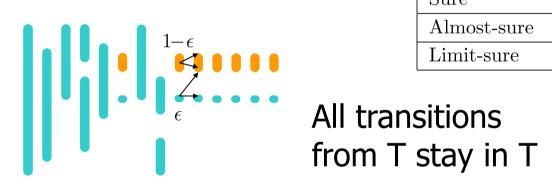
Almost-sure and limit-sure coincide for weakly and strongly synchronizing

Complexity

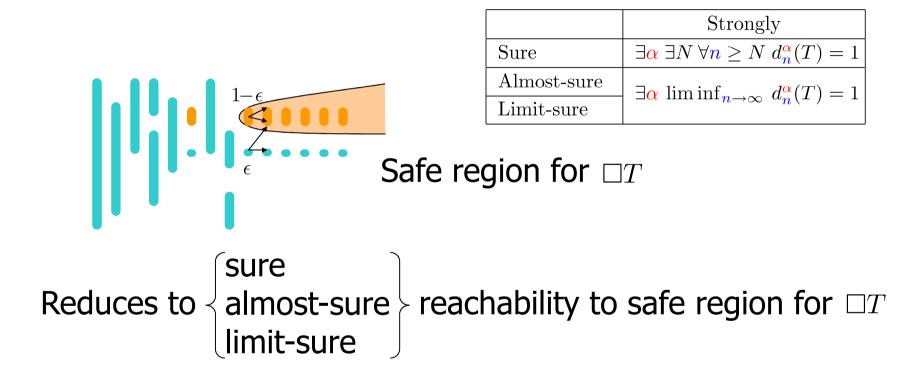
Deciding Weakly synchronization is PSPACE-complete



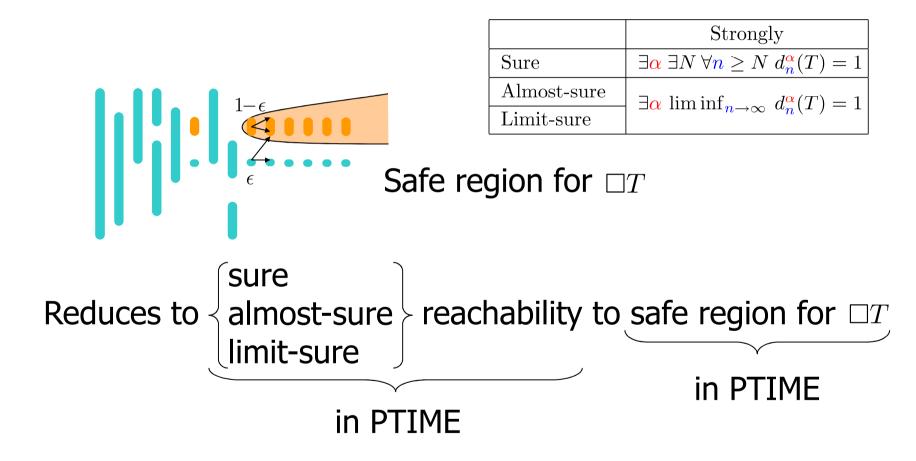
	Strongly	
Sure	$\exists \alpha \ \exists N \ \forall n \ge N \ d_n^{\alpha}(T) = 1$	
Almost-sure	$\exists \frac{\alpha}{n} \lim \inf_{n \to \infty} d_n^{\alpha}(T) = 1$	
Limit-sure		



	Strongly	
Sure	$\exists \alpha \exists N \ \forall n \ge N \ d_n^{\alpha}(T) = 1$	
Almost-sure	$\exists \frac{\alpha}{n} \lim \inf_{n \to \infty} d_n^{\alpha}(T) = 1$	
Limit-sure	$a_n(I) = I$	



Deciding Strongly synchronization is PTIME-complete

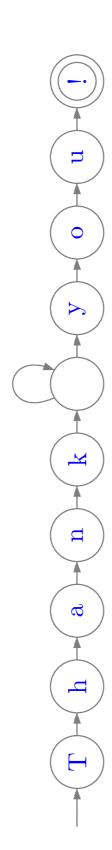


Corollary: almost-sure and limit-sure coincide

	Eventually	Weakly	Strongly
Sure	PSPACE-C [FoSSaCS'14]	PSPACE-C	PTIME-C
Almost-sure	PSPACE-C [FoSSaCS'14]	PSPACE-C	PTIME-C
Limit-sure	PSPACE-C [FoSSaCS'14]	I SI ACL-C	

Also in the paper:

- Variants with same complexity
- Memory requirement for synchronizing strategies



Thank you!

Questions?