Quantitative Languages

Laurent Doyen LSV, ENS Cachan & CNRS

joint work with Krishnendu Chatterjee and Tom Henzinger (IST Austria)

(CSL'08, LICS'09)

Model-Checking

-perhaps a proof-perhaps some counterexamples

Model-Checking

Model-Checking

- a trace is either good or bad

Quantitative Analysis

Quantitative Analysis

Quantitative Model-checking

Is there a Quantitative Framework with

- an appealing mathematical formulation, - useful expressive power, and
 - good algorithmic properties ?

(Like the boolean theory of ω -regularity.)

Note: "Quantitative" is more than "timed" and "probabilistic"

Quantitative languages

A language is a boolean function:

$$\mathsf{L}: \Sigma^\omega \to \{0,1\}$$

Quantitative languages

A language is a boolean function:

$$\mathsf{L}: \Sigma^\omega \to \{0,1\}$$

A quantitative language is a function:

$$\mathsf{L}: \mathbf{\Sigma}^{\omega} \to \mathbb{R}$$

L(w) can be interpreted as:

- the amount of some resource needed by the system to produce w (power, energy, time consumption),
- a reliability measure (the average number of "faults" in w).

Quantitative languages

Quantitative language inclusion

Is $L_A(w) \le L_B(w)$ for all words w ?

L _A (w)	L _B (w)
peak resource consumption	resource bound
Long-run average response time	Average response-time requirement

Outline

- Motivation
- Weighted automata
- Decision problems
- Expressive power
- Closure properties

Boolean languages are generated by finite automata.

Nondeterministic Büchi automaton

Boolean languages are generated by finite automata.

Nondeterministic Büchi automaton

Value of a run r: Val(r)= 1 if an accepting state occurs ∞ -ly often in r

0 otherwise

Boolean languages are generated by finite automata.

Nondeterministic Büchi automaton

Value of a run r: Val(r) = 1 if an accepting state occurs ∞ -ly often in r

Value of a word w: max of {values of the runs r over w}

Boolean languages are generated by finite automata.

Nondeterministic Büchi automaton L_A(w) = max of {Val(r) | r is a run of A over w}

Weighted automata

Quantitative languages are generated by weighted automata.

$$\begin{array}{ccc} q_1 & a & \\ \hline \gamma = 3 & \end{array} \begin{array}{c} q_2 \\ \hline \end{array}$$

Weight function $\gamma: Q \times \Sigma \times Q \to \mathbb{Q}$

Weighted automata

Quantitative languages are generated by weighted automata.

$$\begin{array}{c} q_1 \\ \hline \\ \gamma = 3 \end{array} \xrightarrow{q_2}$$

Weight function $\gamma: Q \times \Sigma \times Q \to \mathbb{Q}$

Value of a word w: max of {values of the runs r over w}

Value of a run r: Val(r)

where $\,\, \mathrm{Val} : \mathbb{Q}^\omega \to \mathbb{R}\,\, \mathrm{is}\,\, \mathrm{a}\,\, \mathrm{value}\,\, \mathrm{function}\,\,$

Some value functions

For $v = v_0 v_1 \dots (v_i \in \mathbb{Q})$, let $(v_i \in \{0, 1\})$

- $Sup(v) = sup\{v_n \mid n \ge 0\};$ (reachability)
- $\operatorname{LimSup}(v) = \limsup_{n \to \infty} v_n = \lim_{n \to \infty} \sup\{v_i \mid i \ge n\};$ (Büchi)

•
$$\operatorname{LimInf}(v) = \liminf_{n \to \infty} v_n = \lim_{n \to \infty} \inf\{v_i \mid i \ge n\};$$
 (coBüchi)

Some value functions

For
$$v = v_0 v_1 \dots (v_i \in \mathbb{Q})$$
, let
• $Sup(v) = sup\{v_n \mid n \ge 0\}$; (reachability)
• $LimSup(v) = \limsup_{n \to \infty} v_n = \limsup_{n \to \infty} sup\{v_i \mid i \ge n\}$; (Büchi)
• $Limlef(w) = \liminf_{n \to \infty} w_n = \lim_{n \to \infty} inf\{w_i \mid i \ge n\}$; (CoBüchi)

•
$$\operatorname{LimInf}(v) = \liminf_{n \to \infty} v_n = \lim_{n \to \infty} \inf\{v_i \mid i \ge n\};$$
 (coBüchi)

•
$$\operatorname{Lim}\operatorname{Avg}(v) = \liminf_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} v_i;$$

• given
$$0 < \lambda < 1$$
, $\operatorname{\mathsf{Disc}}_{\lambda}(v) = \sum_{i=0}^{\infty} \lambda^{i} \cdot v_{i}$.

Outline

- Motivation
- Weighted automata
- Decision problems
- Expressive power
- Closure properties

Emptiness

Given $\nu \in \mathbb{Q}$, is $L_A(w) \ge \nu$ for some word w ?

- solved by finding the maximal value of an infinite path in the graph of A,
- memoryless strategies exist in the corresponding quantitative 1-player games,
- decidable in polynomial time for Sup, LimSup, LimInf, LimAvg and $Disc_{\lambda}$.

Language Inclusion

Is $L_A(w) \le L_B(w)$ for all words w ?

- **PSPACE-complete for** Sup, LimSup and LimInf.
- Solvable in polynomial-time when B is deterministic for LimAvg and $Disc_{\lambda}$,
- open question for nondeterministic automata.

Language Inclusion

	Quant. L.	
	inclusion	
Sup	PSpace	
LimSup	PSpace	
LimInf	PSpace	
LimAvg	?	
$Disc_\lambda$?	

Discounted-sum automata, $\lambda = 3/4$ Is $L_A(w) \le L_B(w)$ for all words w ?

Discounted-sum automata, $\lambda = 3/4$

Is $L_A(w) \le L_B(w)$ for all words w?

 $a, 2 \\ b, 0$

 q'_3

Language inclusion as a game

• turn-based, two players;

• Challenger wins iff $\exists w : L_A(w) > L_B(w)$.

Is $L_A(w) \le L_B(w)$ for all words w ?

Tokens on the initial states

Challenger: q_1

Simulator: q'_1

Challenger: $q_1 \xrightarrow{a} q_1$ Simulator: q'_1

Challenger:
$$q_1 \xrightarrow{a}{1} q_1$$

Simulator: $q'_1 \xrightarrow{a}{2} q'_2$

Challenger:
$$q_1 \xrightarrow{a} 1 q_1 \xrightarrow{b} 1 q_1$$

Simulator: $q'_1 \xrightarrow{a} 2 q'_2$

Challenger:
$$q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_1$$

Simulator: $q'_1 \xrightarrow{a} q'_2 \xrightarrow{b} q'_2$

٠

Challenger:
$$q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} \cdots$$

Simulator: $q'_1 \xrightarrow{a} q'_2 \xrightarrow{b} q'_2$

Challenger:
$$q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} \cdots$$

Simulator: $q'_1 \xrightarrow{a} q'_2 \xrightarrow{b} q'_2 \xrightarrow{b} \cdots$

Challenger:
$$q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_1 \xrightarrow{b} \cdots$$
 $\operatorname{Disc}_{\frac{3}{4}}(1, 1, 1, \ldots) = \frac{1}{1 - \frac{3}{4}} = 4.$
Simulator: $q'_1 \xrightarrow{a} q'_2 \xrightarrow{b} q'_2 \xrightarrow{b} \cdots$ $\operatorname{Disc}_{\frac{3}{4}}(2, 0, 0, \ldots) = 2.$
Language-inclusion game

Language-inclusion game

The game is blind if the Challenger cannot observe the state of the Simulator.

Challenger has no winning strategy in the blind game if and only if $L_A(w) \le L_B(w)$ for all words w.

Language-inclusion game

The game is blind if the Challenger cannot observe the state of the Simulator.

Challenger has no winning strategy in the blind game if and only if $L_A(w) \le L_B(w)$ for all words w.

When the game is not blind, we say that B simulates A if the Challenger has no winning strategy.

Simulation implies language inclusion.

Simulation is decidable

	Quant. L. inclusion	Quant. simulation	(Reduction to)
Sup	PSpace	Р	(weak parity)
LimSup	PSpace	$NP \cap coNP$	(parity)
LimInf	PSpace	$NP \cap coNP$	(parity)
LimAvg	?	$NP \cap coNP$	(mean payoff)
$Disc_\lambda$?	$NP \cap coNP$	(discounted sum)

Universality and Equivalence

Universality problem:

Given $\nu \in \mathbb{Q}$, is $L_A(w) \ge \nu$ for all words w?

Language equivalence problem:

Is $L_A(w) = L_B(w)$ for all words w?

Complexity/decidability: same situation as Language inclusion.

Outline

- Motivation
- Weighted automata
- Decision problems
- Expressive power
- Closure properties

Reducibility

A class C of weighted automata can be reduced to a class C' of weighted automata if

for all $A \in C$, there is $A' \in C'$ such that $L_A = L_{A'}$.

Reducibility

A class C of weighted automata can be reduced to a class C' of weighted automata if

for all $A \in C$, there is $A' \in C'$ such that $L_A = L_{A'}$.

E.g. for boolean languages:

- Nondet. coBüchi can be reduced to nondet. Büchi
- Nondet. Büchi cannot be reduced to det. Büchi (nondet. Büchi cannot be determinized)

Some easy facts

 $Disc_{\lambda}$ and LimAvg can define quantitative languages with infinite range, Sup, LimInf and LimSup cannot.

 $Disc_{\lambda}$ and LimAvg cannot be reduced to Sup, LimInf and LimSup.

Some easy facts

For discounted-sum, **prefixes** provide good approximations of the value.

For LimSup, LimInf and LimAvg, **suffixes** determine the value.

Disc_{λ} cannot be reduced to LimInf, LimSup and LimAvg.

LimInf, LimSup and LimAvg cannot be reduced to $Disc_{\lambda}$.


```
\mathsf{L}_1 = (\Sigma^* \cdot a)^{\omega}
```

"infinitely many a"

Deterministic Büchi automaton

Assume that L_1 is definable by a LimAvg automaton A.

Then, all *b*-cycles in A have average weight ≤ 0 .

 $\mathsf{L}_1 = (\Sigma^* \cdot a)^{\omega}$

"infinitely many a "

Deterministic Büchi automaton

Hence, the maximal average weight of a run over any word in $\Sigma^* \cdot b^n$ tends to (at most) 0 when $n \to \infty$.

 $\mathsf{L}_1 = (\Sigma^* \cdot a)^{\omega}$

"infinitely many a"

Deterministic Büchi automaton

Let
$$w_n = (a \cdot b^n)^{\omega}$$
 We have $L_1(w_n) = 1$
 $w_n = \underbrace{a \cdot b \cdots b}_{v_n} \cdot \underbrace{a \cdot b \cdots b}_{v_n} \cdots$ where $v_n \leq \varepsilon$ for sufficiently large n .

$$\mathsf{L}_1 = (\Sigma^* \cdot a)^{\omega}$$

"infinitely many a"

Deterministic Büchi automaton

Let
$$w_n = (a \cdot b^n)^{\omega}$$
 We have $L_1(w_n) = 1$

 $w_n = \underbrace{a \cdot b \cdots b}_{v_n} \cdot a$ Hence, $\operatorname{LimAvg}(w_n) = 0 \neq 1$.

and A cannot exist !

(co)Büchi and LimAvg

det. Büchi cannot be reduced to LimAvg.

By analogous arguments,

det. coBüchi cannot be reduced to det. LimAvg.

 $\mathsf{L}_2 = \Sigma^* \cdot b^{\omega}$

"finitely many a "

Deterministic coBüchi automaton

(co)Büchi and LimAvg

Det. coBüchi automaton

$$\mathsf{L}_2 = \Sigma^* \cdot b^{\omega}$$

L₂ is defined by the following nondet. LimAvg automaton:

(co)Büchi and LimAvg

Det. coBüchi automaton

$$\mathsf{L}_2 = \Sigma^* \cdot b^{\omega}$$

L₂ is defined by the following nondet. LimAvg automaton:

 $LimAvg_{[0,1]}$ is reducible to $LimAvg_{\{0,1\}}$.

 $\mathsf{Disc}_{[0,1]}$ is not reducible to $\mathsf{Disc}_{\{0,1\}}$.

B

(q, 0)

 $LimAvg_{[0,1]}$ is reducible to $LimAvg_{\{0,1\}}$.

Α

q

a, b, 1

 $a, b, \frac{3}{4}$

Store the value $\Delta_n = \sum_{i}^{n} v_i^A - \sum_{i}^{n} v_i^B$

Key: Δ_n can take finitely many different values. in the example, $\Delta_n \in \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$

 $LimAvg_{[0,1]}$ is reducible to $LimAvg_{\{0,1\}}$.

Α

 $LimAvg_{[0,1]}$ is reducible to $LimAvg_{\{0,1\}}$.

Α

 $LimAvg_{[0,1]}$ is reducible to $LimAvg_{\{0,1\}}$.

A a, b, 1 q $a, b, \frac{3}{4}$

 $LimAvg_{[0,1]}$ is reducible to $LimAvg_{\{0,1\}}$.

 $LimAvg_{[0,1]}$ is reducible to $LimAvg_{\{0,1\}}$.

What about Discounted Sum ?

Last result

λ=3/4

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

Let $diff(w) = \frac{v_a(w) - v_b(w)}{\lambda^{|w|}}$

If
$$diff(w) = s$$

then
$$\begin{cases} diff(w \cdot a) = \frac{v_a(w) + \lambda^{|w|} - v_b(w)}{\lambda^{|w|+1}} = \frac{s+1}{\lambda} \\ diff(w \cdot b) = \frac{v_a(w) - v_b(w) - \lambda^{|w|}}{\lambda^{|w|+1}} = \frac{s-1}{\lambda} \end{cases}$$

$$v_a(w) = \sum_{i|w_i=a}^{|w|} \lambda^i \qquad v_b(w) = \sum_{i|w_i=b}^{|w|} \lambda^i$$

Let $diff(w) = \frac{v_a(w) - v_b(w)}{\lambda^{|w|}}$

$$diff(w) = \frac{v_a(w) - v_b(w)}{\lambda^{|w|}}$$

How many different values can diff(w) take ?

$$diff(w) = \frac{v_a(w) - v_b(w)}{\lambda^{|w|}}$$

How many different values can diff(w) take ?

$$diff(w) = \frac{v_a(w) - v_b(w)}{\lambda^{|w|}}$$

How many different values can diff(w) take ?

infinitely many if $diff(w_1) \neq diff(w_2)$ for all $w_1 \neq w_2$.

By a careful analysis of the shape of the family of equations,

it can be proven that no rational $\lambda \in \left]\frac{1}{2}, 1\right[$ can be a solution.

Last result

λ=3/4

Reducibility relations

Outline

- Motivation
- Weighted automata
- Decision problems
- Expressive power
- Closure properties

Operations

$$\mathsf{L}_1,\mathsf{L}_2:\Sigma^\omega\to\mathbb{R}$$

Operations on quantitative languages:

- $shift(L_1,c)(w) = L_1(w) + c$
- scale(L_1, c)(w) = $c \cdot L_1(w)$ (c>0)

Operations

$$\mathsf{L}_1,\mathsf{L}_2:\Sigma^\omega\to\mathbb{R}$$

Operations on quantitative languages:

•
$$shift(L_1,c)(w) = L_1(w) + c$$

- scale(L_1,c)(w) = $c \cdot L_1(w)$ (c>0)
- $max(L_1, L_2)(w) = max(L_1(w), L_2(w))$
- $\min(L_1, L_2)(w) = \min(L_1(w), L_2(w))$
- complement(L_1)(w) = 1- L_1 (w)

 $L_1 \cup L_2$ $L_1 \cap L_2$ $\Sigma^{\omega} \setminus L_1$

Operations

$$\mathsf{L}_1,\mathsf{L}_2:\Sigma^\omega\to\mathbb{R}$$

Operations on quantitative languages:

•
$$shift(L_1,c)(w) = L_1(w) + c$$

- scale(L_1,c)(w) = $c \cdot L_1(w)$ (c>0)
- $max(L_1, L_2)(w) = max(L_1(w), L_2(w))$
- $\min(L_1, L_2)(w) = \min(L_1(w), L_2(w))$
- complement(L_1)(w) = 1- L_1 (w)
- sum(L₁,L₂)(w) = L₁(w) + L₂(w)

 $L_1 \cup L_2$ $L_1 \cap L_2$ $\Sigma^{\omega} \setminus L_1$

All classes of weighted automata are closed under **shift** and **scale**.

All classes of nondeterministic weighted automata are closed under **max**.

	\cup	\cap	$\Sigma^{\omega} \setminus L$	
	max	\min	comp.	sum
^D _N SUP				
^D _N LIMINF				
DLIMSUP				
NLIMSUP				
DLIMAVG	×			
NLIMAVG				
DDISC	×			
NDISC				

	\cup	\cap	$\Sigma^{\omega} \setminus L$	
	max	\min	comp.	sum
^D _N SUP			×	
^D _N LIMINF			×	
DLIMSUP			X	
NLIMSUP				
DLIMAVG	×			
NLIMAVG				
DDISC	×			
NDISC				

Analogous results for boolean languages.

There is no nondeterministic LimAvg automaton for the language $L_m = min(L_a, L_b)$.

There is no nondeterministic LimAvg automaton for the language $L_m = min(L_a, L_b)$.

Assume that $L_m = min(L_a, L_b)$ is definable by a LimAvg automaton C.

There is no nondeterministic LimAvg automaton for the language $L_m = min(L_a, L_b)$.

Assume that $L_m = min(L_a, L_b)$ is definable by a LimAvg automaton C.

Then, some a-cycle or b-cycle in C has average weight >0. (consider the word $(a^m b^m)^\omega$ for m large)

There is no nondeterministic LimAvg automaton for the language $L_m = min(L_a, L_b)$.

Assume that $L_m = min(L_a, L_b)$ is definable by a LimAvg automaton C.

Then, some a-cycle (or b-cycle) in C has average weight >0.

Then, some word $w_C a^{\omega}$ gets value >0...

There is no nondeterministic LimAvg automaton for the language $L_m = min(L_a, L_b)$.

There is no nondeterministic Discounted automaton for the language $L_m = min(L_a, L_b)$.

Proof: analogous argument.

	\bigcup	\cap	$\Sigma^{\omega} \setminus L$	
	max	min	comp.	sum
^D _N SUP			×	
^D _N LIMINF			×	
DLIMSUP			×	
NLIMSUP				
DLIMAVG	×	×		
NLIMAVG		×		
DDISC	×	×		
NDISC		×		

	\bigcup	\cap	$\Sigma^{\omega} \setminus L$	
	max	min	comp.	sum
^D _N SUP			×	
^D _N LIMINF		\sim	×	
DLIMSUP			×	
NLIMSUP		\sim		
DLIMAVG	×	×		
NLIMAVG		×	×	
DDISC	×	×		
NDISC		×	×	

 $min(L_1,L_2) = 1-max(1-L_1,1-L_2)$

	\bigcup	\cap	$\Sigma^{\omega} \setminus L$	
	max	\min	comp.	sum
$^{\mathrm{D}}_{\mathrm{N}}$ SUP	\checkmark	\checkmark	×	\checkmark
${}_{\scriptscriptstyle \rm N}^{\scriptscriptstyle \rm D}$ LimInf	\checkmark	\checkmark	×	\checkmark
DLIMSUP	\checkmark	\checkmark	×	\checkmark
NLIMSUP	\checkmark	\checkmark		\checkmark
DLIMAVG	×	×	×	×
NLIMAVG	\checkmark	×	×	×
DDISC	×	×		\checkmark
NDISC	\checkmark	×	×	\checkmark

By analogous arguments (analysis of cycles).

Conclusion

- Quantitative generalization of languages to model programs/systems more accurately.
- LimAvg and Disc_{λ} : deciding language inclusion is open;
- Simulation is a decidable over-approximation.
- Expressive power classification:
 - DBW and LimAvg are incomparable;
 - LimAvg and Disc cannot be determinized.
- Closure properties.

Other lines of work

- Cut-point languages, stability/robustness (LICS'09)
- Alternating/Probabilistic extensions (CONCUR'09, FCT'09)
- Robust class of Limit-Average automata (ongoing work)
- Open problem: quantitative universality (partial results)
- Other/equivalent formalisms for quantitative specification ?

Thank you !

Questions ?

