Quantitative
Languages

Krishnendu Chatterjee, UCSC

Tom Henzinger, EPFL

CSL 2008




Languages

A language
L(A) c 2@

can be viewed as a boolean function:

LA: Z“) —> {0,1}



Model-Checking

Model-checking problem

Input: Model A of the program

Model B of the specification

Question: does the program A satisfy
the specification B ?
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Automata & Languages

Model-checking as
language inclusion

Input: finite automata A and B

Question: is L(A) < L(B) ?

A
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Automata & Languages

Model-checking as
language inclusion

Input: finite automata A and B

Question: is Ly(w) < Lg(w) for all words w ?




Quantitative languages

A quantitative language (over infinite words)
IS a function

L:>% >R

L(w) can be interpreted as:

e the amount of some resource needed by the
system to produce w (power, energy, time consumption),

e a reliability measure (the average number of “faults” in w),

e a probability, etc.



Quantitative languages

Quantitative language inclusion

Is Ly(w) < Lg(w) for all words w ?

Example:
Ly(w) Lg(w)
peak resource resource bound
consumption
Long-run average response Average response-time
time requirement
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Automata

Boolean languages are generated by finite automata.
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Nondeterministic Buchi automaton
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Automata

Boolean languages are generated by finite automata.

a,b a
7\ 77\
1o }—2—f(01) L= (a+b)"a*

Nondeterministic Buchi automaton

Value of a run r: Val(r)=1 if an accepting state occurs co-ly
ofteninr

Value of a word w: max of {values of the runs r over w}



Automata

Boolean languages are generated by finite automata.

a,b a
7\
=

(&) L=(a+b)-a*

)B

-

4o

Nondeterministic Buchi automaton

\ /

L,(w) = max of {Val(r) | ris a run of A over w}



Weighted automata

Quantitative languages are generated by weighted
automata.

a
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Weighted automata

Quantitative languages are generated by weighted
automata.

a
@ v =3 '@

Weight function v :Q X 2 X Q — Q

Value of a word w: max of {values of the runs r over w}

Value of a run r: Val(r)

where Val : Q“ — R is a value function



Some value functions

For v = vguy ... (v; € Q), let

e Sup(v) = sup{v, | n > 0};

e LimSup(v) =limsup v, = lim sup{v; | i > n};
n— 00 n—0oo

e LimInf(v) =liminf v, = lim inf{v; | i > n};



Some value functions

For v = vguy ... (v; € Q), let

e Sup(v) = sup{v, | n > 0};

e LimSup(v) =limsup v, = lim sup{v; | i > n};
n— 00 n—0o0

e LimInf(v) =liminf v, = lim inf{v; | ¢ > n};

|
|

mn

1
e LimAvg(v) = liminf — - ) w;;
n—oo M

@n)

=
oo

e given a discount factor 0 < A < 1, Discy(v) = Z PARETS
i=0
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Emptiness

Givenv € Q, is Ly,(w) = v for some word w ?

e solved by finding the maximal value of an
infinite path in the graph of A,

e memoryless strategies exist in the
corresponding quantitative 1-player games,

e decidable in polynomial time for Sup, LimSup,
LimInf, LimAvg and Disc).




Language Inclusion

Is Ly(w) < Lg(w) for all words w ?

o PSPACE-complete for Sup, LimSup and LimInf.

e Solvable in polynomial-time when B is deterministic
for LimAvg and Discy,

e open question for nondeterministic automata.



Language-inclusion game

Language inclusion
as a game

Discounted-sum automata, A=3/4



Language-inclusion game

Language inclusion
as a game

Tokens on the initial states



Language-inclusion game

Language inclusion
as a game a, 2

b. 0
a,b
F 1 ) (L-fln

Challenger constructs a run r; of A,

A

Simulator constructs a run r, of B.

Challenger wins if Val(r;) > Val(r,).

Challenger: @

. /
Simulator: @«



Language-inclusion game

Language inclusion
as a game

Challenger: a1— a

Simulator: ¢



Language-inclusion game

Language inclusion
as a game

Challenger: a1 @

/

Simulator: ¢1— 4

e



Language-inclusion game

Language inclusion
as a game

b
Challenger: a1 — a1~ a

Simulator:  ¢i—~



Language-inclusion game

Language inclusion
as a game

b
Challenger: a1 — a1—a

/ y by

Simulator: 41—~ -~ ¢




Language-inclusion game

Language inclusion
as a game

b b
Challenger: @1— ai—q1— -

Simulator: ¢ > > Qo 0>q2




Language-inclusion game

Language inclusion
as a game

b b
Challenger: 1 — a1—>q— -+

a ft‘ ‘f[]l.}

Simulator: @1— 42~




Language-inclusion game

Language inclusion

as a game
a,b
A g
b b :
Challenger: @1-—— @i—> @+ Discg(L,1,1,..) = 13 =4

(L / b

. b i —
Simulator: ¢1— ¢4 Discs (2,0,0,...) = 2.




Language-inclusion game

Language inclusion
as a game

Challenger wins since 4>2.

Challenger: 1= However, L (w) < Lg(w) for all w.

o I b—~|§:

rqh— p— -+ DICe(5,0,0, ] = Z.

- . /
Simulator: ¢ ; ;



Language-inclusion game

The game is blind if the Challenger cannot observe
the state of the Simulator.

Challenger has no winning strategy in the blind game
if and only if
L,(w) < Lg(w) for all words w.




Language-inclusion game

The game is blind if the Challenger cannot observe
the state of the Simulator.

Challenger has no winning strategy in the blind game
if and only if
L,(w) < Lg(w) for all words w.

When the game is not blind, we say that B simulates A
if the Challenger has no winning strategy.

Simulation implies language inclusion.




Simulation is decidable

Quant. L. Quant.

inclusion | simulation  (Reduction to)
Sup PSpace P (weak parity)
LimSup PSpace | NP N coNP (parity)
LimInf PSpace | NP N coNP (parity)
LimAvg ? NP N coNP  (mean payoff)
Disc ? NP N coNP (discounted sum)




Universality and Equivalence

Universality problem:

Givenv € Q , is L,(w) = v for all words w ?

Language equivalence problem:

Is Ly(w) = Lg(w) for all words w ?

Complexity/decidability: same situation as Language
inclusion.
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Reducibility

A class C of weighted automata can be reduced to a
class C’ of weighted automata if

forall A € C, thereis A" € C'such that L, = L,.



Reducibility

A class C of weighted automata can be reduced to a
class C’ of weighted automata if

for all A € C, thereis A" € C'such that L, = L,..

E.g. for boolean languages:
e Nondet. coBuchi can be reduced to nondet. Buchi
e Nondet. Blchi cannot be reduced to det. Buchi

(nondet. Blchi cannot be determinized)



Some easy facts

Discy and LimAvg can define quantitative languages
with infinite range, Sup, LimInf and LimSup cannot.

Discyand LimAvg cannot be reduced to Sup, Liminf
and LimSup.




Some easy facts

For discounted-sum, prefixes provide good
approximations of the value.

For LimSup, LimInf and LimAvg, suffixes determine
the value.

Discy cannot be reduced to LimInf, LimSup and LimAvg.

LimInf, LimSup and LimAvg cannot be reduced to Disc,.




Buchi does not reduce to LimAvg

b a
() a ()
M L1 =(X* - a)¥
N~ N\ ) '
b “infinitely many a ”

Deterministic Buchi automaton

Assume that L is definable by a LimAvg automaton A.

Then, all b-cycles in A have average weight <0.



Buchi does not reduce to LimAvg

b a
() a ()
M L1 =(X* - a)¥
N~ N\ ) ’
b “infinitely many a ”

Deterministic Buchi automaton

Hence, the maximal average weight of a run over any
word in X* - b" tends to (at most) 0 when n — oo.



Buchi does not reduce to LimAvg

b a
() a ()
M L1 =(X* - a)¥
N~ N\ ) ’
b “infinitely many a ”

Deterministic Buchi automaton

Let w, = (a-b")*  We have Li(w,) =1

w, =a-b---b-a-b---b--- Where v, < € for
~ sufficienly large n.

Un Un



Buchi does not reduce to LimAvg

b a
() a ()
M L1 =(X* - a)¥
N — N\ ) ’
b “infinitely many a”

Deterministic Buchi automaton

Let w, = (a-b")*  We have Li(w,) =1

—— Hence, LimAvg(w,,) = 0 # 1.

and A cannot exist !




(co)Buchi and LimAvg

det. Biichi cannot be reduced to LimAvg.

By analogous arguments,

det. coBiichi cannot be reduced to det. LimAvg.

a b
M
40 @ Ly = 2% - b
M
a “finitely many a ”

Deterministic coBuchi automaton



(co)Buchi and LimAvg

a , b Det. coBiichi automaton
M L — 3 e
M
a

L, is defined by the following
nondet. LimAvg automaton:

CL,b,O b,1 CL,b,O

a,b,0 ' a,( .




(co)Buchi and LimAvg

a , b Det. coBlichi automaton
M Ly = o% - b
M
a

L, is defined by the following
nondet. LimAvg automaton:

a,b,0 b, 1 a,b,0

Q a,b,0 Q a,( Q
_— e

4’1 Hence, LimAvg cannot be determinized.




Reducibility relations

NBW

R CW



Reducibility relations

,© NBW

| Iy
quantitative

boolean T TTTTTTTTTTTTUOC oW



Reducibility relations

N-LIMAvVG N-LiMSup

D—LIMAVG LIMINF D- LIMSUP/ NBW

'

\\\{J\P /I\DB/VG

quantitative
boolean




Reducibility relations

N-LIMAvVG N-LiMSup

SN \

D—LIMAVG LIMINF D- LIMSUP/ NBW

1
N/
\ \\ SUP .~ DBW
quantitative \< /
boolean CW

What about Discounted Sum ?



Last result

Discy cannot be determinized.

A=3/4



Disc, cannot be determinized

Value of a word w :

Max(va(w), vp(w))

w| ,
va(w)= Y A" disc. sum of a’s

t|lw;=a

w| B
%b(’UJ): > X disc. sum of b's

i|w;=b



Disc, cannot be determinized

ol ol
va(w) = > XN vp(w) = > X
ilw;=a t|w;=b
Let diff (w) = va(w) — up(w)

|||||

aaabbabbb
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Disc, cannot be determinized

ol u
va(w) = > XN vp(w) = > N
i|lw;=a t|w;=b
Let diff (w) = va(w) — u(w)

|||||||||||

aa,a,bbabbb




Disc, cannot be determinized

wl |wl

va(w) = > X vp(w) = ) X

ilw;=a t|w;=b




Disc, cannot be determinized




Disc, cannot be determinized

ol u
va(w) = > XN vp(w) = > N
i|lw;=a t|w;=b
Let diff (w) = va(w) — u(w)

L ] L L




Disc, cannot be determinized

Wl w
va(w) = > XN vp(w) = > N
t|lw;=a i|w;=b

Let diff (w) = 22— ()




Disc, cannot be determinized

lw|
va(w) = Z A

t|lw;=a

|wl

vp(w) = Y X

i|wi=b

Let diff (w) = L) — ()

AWl

T

aabbbbb

bbaaba---

.




Disc, cannot be determinized

lw| w
— \ ( \ '
va(w)= 3 A plw)= Y N
z|'wz-=a i|wi=b
Let diff (w) = va(w) — vp(w)
m Al
If diff(w) = s
’dbﬁf(w a) = va (W) A vy (w) sl
A NCEE! = X
then 1
diff (w-b) = Calw)=vplw) A s—1
o g w1t A




Disc, cannot be determinized

o u
va(w) = > XN vp(w) = > N
ilw;=a t|w;=b

Let diff (w) = valw) — vpw)
Al

If diff (w) = s
diff (w-a) = $1
then 1 1
diff (w-b) = 5=




Disc, cannot be determinized
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Disc, cannot be determinized

Nz

1ff (w) =

How many different values can diff (w) take ?

T

aabbbbbbbaaba---

1




Disc, cannot be determinized

Nz

1ff (w) =

How many different values can diff (w) take ?

| Ii infinitely many if diff (w1) # diff (w>)
| for all wy # wo.

aabbbbbbbaaba---

1




Disc, cannot be determinized

Nz

iff (w) =
How many different values can diff (w) take ?

infinitely many if diff (w1) # diff (wo)

for all wy # wo.

By a careful analysis of the shape of the family of
equations,

it can be proven that no rational X\ e]— 1[ can bea
solution.



Last result

Discy cannot be determinized.

A=3/4



Reducibility relations

N-DI1scCy N-LIMAVG N-LIMSUP -
A A X Y YN ,7
| A N I
\&%SUP R DBVJ
quantitative ______________ > v ow —

boolean



Conclusion

e Quantitative generalization of languages to model
programs/systems more accurately.

e LimAvg and Disc,: deciding language inclusion is
open;

e Simulation is a decidable over-approximation.

e Expressive power classification:
e DBW and LimAvg are incomparable;

e LimAvg and Disc, cannot be determinized.
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Thank you !

% Questions ?
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