
Laurent Doyen
LSV, ENS Cachan & CNRS

Krishnendu Chatterjee
IST Austria

GT Jeux
September 20th, 2012

&

Partial-Observation Stochastic Games: 
How to Win when Belief Fails



Outline

• Game model: example

• Challenges & Results: examples

• Solution insights: examples



Examples

• Poker

- partial-observation

- stochastic 



Examples

• Poker

- partial-observation

- stochastic 

• Bonneteau



Bonneteau

2 black card, 1 red card

Initially, all are face down

Goal: find the red card



Bonneteau

2 black card, 1 red card

Initially, all are face down

Goal: find the red card

Rules:

1. Player 1 points a card

2. Player 2 flips one remaining black card

3. Player 1 may change his mind, wins if pointed card is red



Bonneteau

2 black card, 1 red card

Initially, all are face down

Rules:

1. Player 1 points a card

2. Player 2 flips one remaining black card

3. Player 1 may change his mind, wins if pointed card is red

Goal: find the red card



Bonneteau

2 black card, 1 red card

Initially, all are face down

Rules:

1. Player 1 points a card

2. Player 2 flips one remaining black card

3. Player 1 may change his mind, wins if pointed card is red

Goal: find the red card



Bonneteau: Game Model



Bonneteau: Game Model



Game Model



Game Model



Game Model



Game Model



Game Model



Observations (for player 1)



Observations (for player 1)



Observations (for player 1)



Observations (for player 1)



Observations (for player 1)



Observation-based strategy

This strategy is observation-based, 
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Optimal ?

This strategy is winning with probability 2/3



Example

This game is:

• turn-based

• (almost) non-stochastic

• player 2 has perfect 
observation



Interaction

General case: concurrent & stochastic

Player 1’s move

Player 2’s move

Players choose their moves simultaneously and independently



General case: concurrent & stochastic

Player 1’s move

Player 2’s move

Probability distribution 
on successor state

Interaction



Special cases: 

• player-1 state

Turn-based games

• player-2 state

Interaction

Note: means
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or

Special case: 1-sided partial observation

Partial-observation

Observations: partitions induced by coloring

View of perfect-observation player



Strategies & objective

A strategy for Player    is a function
that maps histories (sequences of observations) to 
probability distribution over actions.



Strategies & objective

History-depedent randomized

A strategy for Player    is a function
that maps histories (sequences of observations) to 
probability distribution over actions.



Strategies & objective

Reachability objective: 

Winning probability of     :

A strategy for Player    is a function
that maps histories (sequences of observations) to 
probability distribution over actions.



Decide if there exists a strategy for player 1 
that is winning with probability at least ½.

Qualitative analysis

The following problem is undecidable:
(already for probabilistic automata [Paz71])

[Paz71] Paz. Introduction to Probabilistic Automata . Academic Press 1971 .



Decide if there exists a strategy for player 1 
that is winning with probability at least ½.

Qualitative analysis

The following problem is undecidable:

Qualitative analysis:

• Almost-sure: … winning with probability 1

• Positive: … winning with probability > 0

(already for probabilistic automata [Paz71])



Applications in verification

• Control with inaccurate digital sensors

• multi-process control with private variables

• multi-agent protocols 

• planning with uncertainty/unknown

control

tank

void main () {     
int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                got_lock++;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
6:           got_lock--;

} while (*);
}

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}
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Memory and Randomization

Player 1 wins with probability 1, and needs randomization

Player 1 partial, player 2 perfect

Belief-based randomized
strategies are sufficient



Example 2

Player 1 partial, player 2 perfect



Example 2

Player 1 partial, player 2 perfect

Randomized action-visible strategies:

To win with probability 1, player 1 needs to observe 
his own actions. (example from [CDH10]).
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Classes of strategies

rand. action-invisible

pure

rand. action-visible
Classification according to 
the power of strategies

Poly-time reduction from decision problem of rand. act.-vis. 
to rand. act.-inv. 

The model of rand. act.-inv. is more general



Classes of strategies

rand. action-invisible

pure

rand. action-visible
Classification according to 
the power of strategies

Computational complexity

(algorithms)

Strategy complexity

(memory)
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About beliefs

• Belief is sufficient.

• Randomized action invisible or visible almost same.

• The general case memory is similar (or in some cases 
exponential blow up) as compared to the one-sided case.

Three prevalent beliefs:



Pure Strategies

• Belief is sufficient.

Proofs
• Doubts.

Belief 



Pure Strategies

• Belief is sufficient.

Proofs
• Doubts.

Lesson: 
Doubt your belief and believe in your doubts !! See the 
unexpected.

Belief 
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When belief fails (1/2)

Belief-based-only pure strategies are not sufficient, both for 
positive and for almost-sure winning

player 1 partial

player 2 perfect

This strategy is almost-sure winning !
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Using the trick of “repeated actions” we construct an 
example where belief-only randomized action-invisible
strategies are not sufficient (for almost-sure winning)

When belief fails (2/2)

player 1 partial

player 2 perfect

Almost-sure winning requires to play pure strategy, 
with more-than-belief memory ! 
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Positive Player 1 wins from more states, 
but needs more memory !



Player 1 perfect, player 2 partial

• lower bound: simulation of counter systems with
increment and division by 2

• upper bound:
positive: non-elementary counters simulate 

randomized strategies
almost-sure: reduction to iterated positive

Memory of non-elementary size for pure strategies

Counter systems with {+1,÷2} require non-
elementary counter value for reachability



Player 1 perfect, player 2 partial

• Win from more places.

• Winning strategy is very hard to implement.

Information is useful, but ignorance is bliss ☺ !

More information:
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Pure ≡ randomized-invisible

Equivalence of the decision problems for almost-sure reach
with pure strategies and rand. act.-inv. strategies

• Reduction of rand. act.-inv. to pure 
choice of a subset of actions (support of prob. dist.)

• Reduction of pure to rand. act.-inv.  
repeated-action trick (holds for almost-sure only)

It follows that the memory requirements for 
pure hold for rand. act.-inv. as well !
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Beliefs

• Belief is sufficient.

• Randomized action invisible or visible almost same.

• The general case memory is similar (or in some cases 
exponential blow up) as compared to the one-sided case.

Three prevalent beliefs:

Belief fails !



Summary of our results

• player 1 partial: exponential memory, belief not sufficient

• player 1 perfect: non-elementary memory (complete)

• 2-sided: finite, at least non-elementary memory
(as compared to previously claimed exponential upper bound)

Pure strategies (for almost-sure and positive):

• player 1 partial: exponential memory, belief not sufficient

• 2-sided: finite, at least non-elementary memory

Randomized action-invisible strategies (for almost-sure) :



More results & open questions

• Player 1 partial: reduction to Büchi game, EXPTIME-complete

Open questions:

• Player 2 partial: non-elementary complexity
(note: almost-sure Büchi is poly-time equivalent to almost-sure reachability,

positive Büchi is undecidable [BBG08])

Computational complexity for 1-sided:

• Whether non-elementary size memory is sufficient in 2-sided

• Exact computational complexity



Details

Details can be found in:

[CD11] Chatterjee, Doyen. Partial-Observation Stochastic Games: How to 
Win when Belief Fails . CoRR abs/1107.2141, July 2011 .

Extended abstract @ LICS’12:

[CD12] Chatterjee, Doyen. Partial-Observation Stochastic Games: How to 
Win when Belief Fails . LICS’12, pp. 175-184, IEEE Press .
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obligation

Empty obligation set 

⇔
All obligations fulfilled 

Positive reachability: ensure empty 
obligation once

Reachability condition

Almost-sure reachability: ensure 
empty obligation infinitely often
(and recharge when empty)

Büchi condition
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Player 1 perfect, player 2 partial

Flavor of a counter system with: 

• increment, 

• division by 2 (size of alphabet)



Player 1 perfect, player 2 partial

Show that:

1. games can simulate increment and division by 2

2. Such counter systems require non-elementary 
counter value for reachability
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Counter system with {+1,÷2}

non-elementary growth !



Player 1 perfect, player 2 partial

Show that:

1. games can simulate increment and division by 2

2. Such counter systems require non-elementary 
counter value for reachability
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Game that simulates 3 
counters…



Pl1 Perfect, Pl 2 Partial:  
Stochastic, Pure. 
Non-elementary lower bound

Pure Strategies: Player 1 Perfect, Player 2 Partial



Player 1 perfect, player 2 partial

• lower bound: simulation of counter systems with
increment and division by 2

• upper bound:
positive: non-elementary counters simulate 

randomized strategies
almost-sure: reduction to iterated positive

Memory of non-elementary size for pure strategies

Counter systems with {+1,÷2} require non-
elementary counter value for reachability
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► Proof







Thank you !

Questions ?


