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Markov decision process (MDP)

y Q= QoUQo

6@ (") Nondeterministic (player 1)
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Strategy (policy) = recipe to extend the play prefix \ ’
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Objective

Fix a strategy - (infinite) Markov chain

Strategy is almost-sure winning, if with probability 1:
- Blchi: visit accepting states infinitely often.

- Parity: least priority visited infinitely often is even.
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Qualitative Quantitative
Parity condition Energy condition
w-regular specifications Resource-constrained
(reactivity, liveness,...) specifications
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Energy objective
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1 /2
Positive and negative weights

Energy Ievel:, 21,11, 1, 2,...
S)

(sum of weight
Initial credit

A play is winning if the energy
level is always nonnegative.

“Never exhaust the resource (memory, battery, ...)"”
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Decision problem

Given a weighted MDP, decide whether there exist an
initial credit c, and an almost-sure winning strategy
to maintain the energy level always nonnegative.

Equivalent to a two-player game:

player 2 state
= D
1 /2

0 0

If player 2 can force a negative energy level on a path,
then the path is finite and has positive probability in MDP
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Energy parity MDP

Strategy is almost-sure winning with initial credit c,,
if with probability 1:

energy condition and parity condition hold

“never exhaust the resource”
and
“always eventually do something usefu

III
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For parity, probabilistic player is my friend
For energy, probabilistic player is my opponent

@f Replace each probabilistic state by the gadget:
q q

v/ 2\ 0 \<
| | (q,L) (4,R)
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Algorithm for Energy Buchi MDP

Reduction of energy Blichi MDP to energy Blichi game

Reduction of energy parity MDP to energy Blchi MDP

};@? Player 1 can guess an even priority 2i,

and win in the energy Buchi MDP where:
e Blichi states are 2i-states, and

e transitions to states with priority <2i are disallowed
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with a memoryless strategy.
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Mean-payoff games

- Mean-payoff games with threshold 0
are equivalent to energy games.




Mean-payoff games

- Mean-payoff games with threckss
are equivalent to energy




Mean-payoff vs. Energy

Energy Mean-Payoff

Games | . NP n coNP (&2 NP n coNP

MDP {}NP n coNP PTIME




Mean-payoff parity MDPs

Find a strategy which ensures with probability 1:

- parity condition, and

- mean-payoff value > v .

e Gadget reduction does not work: 1/ (\\1

OBE
ol 0 0
(Do 0

Player 1 almost-
surely wins (v = 0)

Player 1 loses



Algorithm for mean-payoff parity

e End-component analysis

e almost-surely all states of end-component
can be visited infinitely often

strongly
o optimal expected mean-payoff value of all connected

states in end-component is same

End-component is good if
- least priority is even
- expected mean-payoff value > v

Almost-sure reachability to good end-component in PTIME



Algorithm for mean-payoff parity

/\

Z

e End-component analysis

e almost-surely all states of end-compon
can be visited infinitely often

strongly
o optimal expected mean-payoff value of all connected

states in end-component is same

End-component is good if
- least priority is even
- expected mean-payoff value > v

Almost-sure reachability to even end-component in PTIME
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Summary

Algorithmic
complexity Energy parity Mean-Payoff parity
Games NP n coNP NP n coNP
MDP NP n coNP PTIME
Strategy
complexity Energy parity Mean-Payoff parity
Games nd-W infinite
MDP 2'n"W infinite
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Energy parity

Algorithm 1: SolveEnergyParityGame
Input : An energy parity game (G, p,w) with state space Q.
Output: The set of winning states in (G, p,w) for player 1.
begin
1 if Q = @ then return @ ;
2 Let k* be the minimal priority in G. Assume w.l.o.g. that k* € {0,1}
3 Let G be the game G ;
4 103
5 if k* =0 then
6 Ay < @  /* over-approximation of Player-1 winning
states */ ;
repeat
A}« SolveEnergyGame(G;,w’) (where w’ is defined in
Lemma ?7) ;
9 X; «— Attri (A, Np=1(0)) ;
10 Let G} be the subgraph of G; induced by A} \ X; ;
11 Z; +— (AL\ X;) \ SolveEnergyParityGame(G%, p, w) ;
12 Ai—i—l — A; \ Atth(ZZ‘) N
13 Let G;41 be the subgraph of G; induced by A;11 ;
14 t—1+1;
until Ai = Ai—l;
15 | return A;;
16 if k* =1 then
17 By < @ /% over-approximation of Player-2 winning
states */ ;
18 repeat
19 Y; « Attro(B; Np~ (1)) ;
20 Let G;41 be the subgraph of G; induced by B; \'Y; ;
21 Bit1 < B; \ Attri(SolveEnergyParityGame(Gi41,p, w)) ;
22 t—1i1+1;
until Bz = Bi—l;
23 | return @\ B;;
end




Mean-pa

voff parity

Algorithm 1 ComputeLeastValueClass
Input: a mean-payoff parity game MP = (G.p, r} such that p—'(0) £ @

and the game is parity winning for player 1.
Output: a nonempty 1-closed subset of £V, and MP(v) forallv € LV,
1. F = Attri(p~*(0).G).
LH=V\FandH=G[H.
. MeanPayoffParitySelve(H) (Algorithm 3).
. Construct the mean-payoff game § as described in Subsection 3.1 and Solve
. Let L’.Vg be the least value class in gan(l 1 be the least value.
LY =LV NV, and MP(v) =Tforallv € LV.

. return (£V, 1),

1

-
s

= L

Subroutine SeiFalues(.J;, j;)

. g=max{ Val(w) :w € Wyand Jv € J;NV;. (v,w) € E}.
1if g > j; then
22Ty ={ve JinVy: 3w e Wy Val(w) = g and (v, w)
2.3 Forevery vertex v € UnivReach(T), set Val(v) = g.
2.4 goto Step 6.3. of MeanPavoffParitySolve.
A =min{ Val(w) : we Wy and Jv e J, NV, (v, w) € B}
il < j; then
42T, ={ve J;NVy: 3w € Wy. Val(w) =land (v,w) € £}; and W = Wg U UnivReach(ls).
4.3 Forevery vertex v € UnivReach(Ty), set Val(v) = 1.
4.4 goto Step 6.3. of MeanPavoffParitvSolve.

E}; and Wy = Wy U UnivReach(Ty)

1

€

Algorithm 2 ComputeGreatestValueClass

Input: a mean-payoff parity game MP = (G.p, r} such that p—'(0) = @ and p~ (1) # 0,

and the game is paritv winnine for plaver |

Output: a nonempty

I F = Attra(p~1(1 Algorithm 3 MeanPayoffParitySolve

%' H=V\Fand H Input: a mean-payoff party game MP. Output: the value function MF .

= :\"Ie“?}‘,"‘-mﬂ? it 1. Compute W5 and W5 by any algorithm for solving parity games.

4. Let GV be the gr 2. For every vertex v € Wy, set Val(v) = —o00. 3. Wy = 0. 4. Go = G | W and VO = Wy. 5. i =0.
5. GV = GVy, and 6. repeat

6. return (GV, §).

6.1, while (p~t(0)Up Y (1))NV,=0do setp=p—2

6.2.a. it Wi + () then

2.a.3. Wy = Wy U UnivReach(Ty).
goto Step. 6.3.
6.2.b. else

6.2.b.1.a. Subroutine SetValues(L;, ;)

6.2.b.2. else (G, g;) = ComputeGreatestValueCla
6.2.b.2.a. Subroutine SetValues(G;, g;)
6.3. Vit =Vi\Wand G; =
64 1=1i+1.
until V; = ¢ (end repeat)
7. MP, = Val.

GV

6.2. Let (W], W) be the partition of the parity winning sets in G;.

6.2.a.1. g = max{ Val(w) : w € Wy and v € Wi nVy. (v,w) € E
6.222. Ty ={vel;NV;:Jwe Wy Val(w) =gand (v,w) € E

6.2.a.4. Forevery vertex v € UnivReach(T}), set Val(v) = g.

6.2.b.1.if p=(0) NV, == 0 then let (L;,1;) = ComputeLeastValueClass(G,).

6.2.b.1.b. Wy = Wi U L;, and forevery vertex v € Ly, set Val(v) = L.

6.2.b.2.b. Wy = Wy U G, and for every vertex v € Gy, set Val(v) = g..

. end while

}.
b

$8(Gi ).




Complexity

Strategy Algorithmic

Player 1 Player 2 complexity

Energy memoryless | memoryless NP n coNP

Parity memoryless | memoryless NP n coNP

Energy parity | exponential | memoryless NP n coNP

Mean-payoff |memoryless| memoryless NP n coNP

B rinite memoryless| NP n coNP
parity



