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Reactive Systems (e.g. servers, hardware,...)
* Interact with environment

* Non-terminating

* Finite data (or data abstractions)

e Control-oriented



Two-player games on graphs

e Games for synthesis

- Reactive system synthesis = finding a winning
strategy in a two-player game

- w-regular spec : safety, reactivity, ...
O=(g1 A g2), O(r — Qg), - ..
- quantitative spec : resource constraints

e Game played on a finite graph
- Infinite number of rounds
- Player’s moves determine successor state

- Outcome = infinite path in the graph
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Two-player games

e e Q Player 1 (good guy)

Player 2 (bad guy)

e Turn-based

e Infinite

Strategies = recipe to extend the play prefix
Player 1: o : Q" - Qo — Q
Player 2: = : Q™ - Qu — Q

outcome of two
strategies is a play
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Qualitative Quantitative
Parity games Energy games
w-regular specifications Resource-constrained
(reactivity, liveness,...) specifications
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Two-player games on graphs

Qualitative Quantitative
Parity games Energy games
w-regular specifications Resource-constrained

(reactivity, liveness,...) specifications

\ /

Mixed qualitative-quantitative

Energy parity games
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Energy game:

Positive and negative weights

Play: a,d, a, b, e, f,g9,d,a,c, ...

Energy level: 3, 3, 4, 4, 3, 2, 1,...

(sum of weights)




Energy games

Energy game:

Positive and negative weights

Play: a, d, a, b, ¢, f, g,d, a,c, ...

Energy IeveI:@B, 4,4, 3, 2, 1,...

Initial credit

A play is winning if the energy
level is always nonnegative.

“Never exhaust the resource (memory, battery, ...)"



Energy games
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Energy games

Initial credit problem:

Decide if there exist an initial
credit ¢, and a strategy of

player 1 to maintain the energy

level always nonnegative.

For energy games,
memoryless strategies suffice.

o.Qs— Q
T Qo — Q

Q Player 1 (good guy)



Energy games

@ o e Initial credit problem:

0
+1 1
0
Ox 20
+1
+1 —1
0 _




Energy games

Initial credit problem:

See [CAAHS03, BFLMSO0S8]




Energy games

c,=0 Co=3

Initial credit problem:

Minimum initial credit can be
—1 ¢,=1 computed inO(|E|-|Q|- W)
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Parity games

G @ Parity game:

integer priority on states

Play: a, d, a, b, e, f, g, d, a, c, ...
5 5,5,1,0,2,4,5,5, 3...

A play is winning if the least priority
visited infinitely often is even.

“Canonical representation of w-regular specifications ”
(e.g. all requests are eventually granted — G[r -> Fg])



Parity games

Decision problem:

L EmR

O Player 1 (good guy)



Parity games

Decision problem:

[

Q Player 1 (good guy)

Decide if there exists a winning
strategy of player 1 for parity
condition.

For parity games,
memoryless strategies suffice.

o.Qs— Q
T Qo — Q




Parity games

c Q Decision problem:

A




Parity games

e @ Decision problem:

() ‘

e.e See [EJ91]




Summary

Energy games - “never exhaust the resource”

Parity game — “always eventually do something useful”

Strategy Algorithmic
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Energy parity games

“never exhaust the resource”
Energy parity games: and
“always eventually do something usefu
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Energy parity games

“never exhaust the resource”
Energy parity games: and
“always eventually do something useful”

Decision problem:

Decide the existence of a finite
initial credit sufficient to win.

Energy games — a story of cycles
Parity games — a story of cycles

Energy parity games - ?
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A story of cycles

A good cycle ?

A bad cycle ?
- energy is (strictly) negative

- or, least priority is odd

Player 1 looses energy parity game iff the opponent
can force a bad cycle.

The opponent can force bad cycles without memory.



A story of cycles

Proof



A story of cycles

In energy parity games, memoryless strategies
are sufficient for Player 2.

Proof

Preliminary fact: under optimal strategy, energy in q is
always greater than on first visit to q.




A story of cycles

In energy parity games, memoryless strategies
are sufficient for Player 2. C,

Proof / \
€] €r

Assume player 1 looses with initial credit c,,
then show that player 1 looses also against one of the

“memoryless strategies in q”: C < C
q q

7N




A story of cycles

In energy parity games, memoryless strategies
are sufficient for Player 2.

Proof

Fix winning strategy of Player 2,

all outcomes are loosing for Player 1:

[ r [ r

do q——d q q

A



A story of cycles

In energy parity games, memoryless strategies
are sufficient for Player 2. C

Proof d

Fix winning strategy of Player 2, el/ kpf

all outcomes are loosing for Player 1:

;R PR Sy R Sy R VS P

l

Energy < 0°?

qo

g—"-q since ¢q——q—L g

Then also in ¢

A>0



A story of cycles

In energy parity games, memoryless strategies
are sufficient for Player 2.

Proof

Fix winning strategy of Player 2,

all outcomes are loosing for Player 1:

[ r [ r [

do q——q q q q q—

Least oco-visited priority is odd ?

Thenalsoin | g | or | ¢

7N




Complexity

Strategy Algorithmic

Player 1 Player 2 complexity

Energy games | memoryless| memoryless NP n coNP
Parity games | memoryless| memoryless NP n coNP
SNEIEY LN memoryless coNP

games




A story of cycles

A good cycle ?

C@C@

A one-player energy Blchi game



A story of cycles

A good cycle ?

—-W

~O_ 0

-W

good for parity

C@C@

good for energy



A story of cycles

20O C@C@

Winning strategy:

1. reach and repeat positive cycle to increase energy;
2. Visit priority O;
3. goto 1;



A story of cycles

O G C@C@

Winning strategy:

1. reach and repeat O(2nW) times the positive cycle;
2. Visit priority O;
3. goto 1;

‘ requires exponential memory !



Complexity

Strategy Algorithmic

Player 1 Player 2 complexity

Energy games | memoryless| memoryless NP n coNP
Parity games | memoryless| memoryless NP n coNP
SNEIEY LN exponential | memoryless NP n coNP

games




Note

RO BOW C@C@

Energy-winning and parity-winning # EnergyParity-winning
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(optimal) energy-winning parity-winning
>0 & min.pr. 1 <0 & min.pr. 2



Structure of strategies

energy-winning parity-winning
>0 & least priority is even if =0 <0 & min.pr. 2



Good-for-energy strategies

A good-for-energy strategy is a winning strategy
in the following cycle-forming game:

Cycle-forming game: play the game until a cycle is formed

Player 1 wins if energy of the cycle is positive,
or energy is 0 and least priority is even,

If Player wins in an energy parity game, then a
memoryless good-for-energy strategy exists.

(not iff)



Good-for-energy strategies

Good-for-energy and parity-winning strategies
are necessary to win...

Winning strategy = alternate good-for-energy strategy
and parity-winning strategy ?

+1
—-W —-W -W —W ( )
-W -W -W -W

good-for-energy and parity-winning # EnergyParity-
winning



Structure of strategies

e

o If least priority is O Attr, (0) | O

Win

1. Play good-for-energy.
Either energy stabilizes and then least priority is even,

or energy (strictly) increases.
2. When energy is high enough (+2nW):

2a. If (and while) game is in Q \ Attr(0), play a winning
strategy in subgame defined by Q \ Attr(0).

2b. Whenever game is in Attr(0), reach 0 and start over.



Structure of strategies

o If least priority is 1

Win

Attr,(1)




Structure of strategies

Wi

o If least priority is 1

1. Game can be partitionned into winning regions and
their attractor.

2. Winning strategy combines subgame winning stragies
and reachability strategies.



Structure of strategies

W, g Attr,(W,)

e If least priority is 1 W, g Attr,(W,)

W, § Attr, (W)

1. Game can be partitionned into winning regions and
their attractor.

2. Winning strategy combines subgame winning stragies
and reachability strategies.

Corollary: memoryless strategies are sufficient in
coBuchi energy games.




An NP solution

Assume NP-algorithm for d-1 priorities

least priority O

NP-algorithm for d priorities:
- guess the winning set and good-for-energy strategy

- compute 0-attractor, and solve subgame in NP

Attr,(0) |0 Cy(n) = p(n) + Cy4(n)




An NP solution

Assume NP-algorithm for d-1 priorities

least priority 1

NP-algorithm for d priorities:
- guess the winning set and partition

- compute 1-attractor, and solve subgames in NP

Wi g Attr, (W) Cq(n) = p(n) + Cyy(ny) + ... + Cyy(Ny)

< p(n) + C;.{(ny+ ... + n.)

W A W
: § ) < p(n) + Cg(n-1)

W, § Attr; (W)




Complexity

Strategy Algorithmic

Player 1 Player 2 complexity

Energy games | memoryless| memoryless NP n coNP
Parity games | memoryless| memoryless NP n coNP
SNEIEY LN exponential | memoryless NP n coNP

games




Algorithm

Algorithm for solving energy parity games ?

Determine good-for-energy winning states — a story of cycles

Good-for-energy:

All cycles are either >0, or =0 and even

Reduction to (pure) energy games with modified weights:

cycles =0 and even > >0
cycles =0 and odd > <0
other cycles remain >0 or <0



Algorithm

Aenergy
1/n|

Positive increment for
transitions from even states

Negative increment for

transitions from odd states 0/

A2 priority

Reduction to energy games with modified weights:

cycles =0 and even > >0
cycles =0 and odd > <0
other cycles remain >0 or <0



Algorithm

Aenergy
1/n|

Positive increment for
transitions from even states

Negative increment for
transitions from odd states

-1/n2

Y
A(q) ~ (nk;i)_l

priority

Increment is exponential (in nb. of priorities)




Algorithm

Algorithm for solving energy parity games ?
Determine good-for-energy winning states

by solving modified-energy game in O(E.Q4+2,W)

Recursive fixpoint algorithm, flavour of McNaughton-Zielonka

Note: a reduction to parity games (making energy explicit)
would give complexity O(E.(Q2W)9).






Two-player games on graphs

Qualitative

Parity games

Quantitative

Energy games

Mean-payoff games

Mixed qualitative-quantitative

Energy parity games

Mean-payoff parity games




Mean-payoff

Mean-payoff value of a play = | n-1
limit-average of the visited weights M = ) w;
1=0

Optimal mean-payoff value can be achieved
with a memoryless strategy.

Decision problem:

Given a rational threshold v, decide if

there exists a strategy for player 1 to
ensure mean-payoff value at least v.




Mean-payoff

- Mean-payoff games with threshold 0
are equivalent to energy games.




Mean-payoff parity

Mean-payoff parity games [CHJ05]
Objective:
- satisfy parity condition

- maximize mean-payoff

Infinite memory may be necessary !

However, finite-memory e-optimal strategies exist.



Mean-payoff parity

Mean-payoff parity games are polynomially equivalent to
energy parity games.

Reduction idea:

from MPP game, construct EP game
by incrementing all weights by e=1/(n+1)

If Player 1 wins MPP =0, then finite-memory g-optimal
strategy exists, which is winning in EP game.

If Player 1 wins EP game, then he wins MPP > -€ and then
also MPP =0 since the value in MPP has denomiantor <n.



Complexity

Strategy Algorithmic

Player 1 Player 2 complexity

Energy memoryless | memoryless NP n coNP

Parity memoryless | memoryless NP n coNP

Energy parity | exponential | memoryless NP n coNP

IR nrinite memoryless| NP n coNP
parity

By-product: a conceptually simple algorithm for

mean-payoff parity games.



The end

Thank you !

o)

% Questions ?
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Energy parity

Algorithm 1: SolveEnergyParityGame
Input : An energy parity game (G, p,w) with state space Q.
Output: The set of winning states in (G, p,w) for player 1.
begin
1 if Q = @ then return @ ;
2 Let k* be the minimal priority in G. Assume w.l.o.g. that k* € {0,1}
3 Let G be the game G ;
4 103
5 if k* =0 then
6 Ay < @  /* over-approximation of Player-1 winning
states */ ;
repeat
A}« SolveEnergyGame(G;,w’) (where w’ is defined in
Lemma ?7) ;
9 X; «— Attri (A, Np=1(0)) ;
10 Let G} be the subgraph of G; induced by A} \ X; ;
11 Z; +— (AL\ X;) \ SolveEnergyParityGame(G%, p, w) ;
12 Ai—i—l — A; \ Atth(ZZ‘) N
13 Let G;41 be the subgraph of G; induced by A;11 ;
14 t—1+1;
until Ai = Ai—l;
15 | return A;;
16 if k* =1 then
17 By < @ /% over-approximation of Player-2 winning
states */ ;
18 repeat
19 Y; « Attro(B; Np~ (1)) ;
20 Let G;41 be the subgraph of G; induced by B; \'Y; ;
21 Bit1 < B; \ Attri(SolveEnergyParityGame(Gi41,p, w)) ;
22 t—1i1+1;
until Bz = Bi—l;
23 | return @\ B;;
end




Mean-pa

voff parity

Algorithm 1 ComputeLeastValueClass
Input: a mean-payoff parity game MP = (G.p, r} such that p—'(0) £ @

and the game is parity winning for player 1.
Output: a nonempty 1-closed subset of £V, and MP(v) forallv € LV,
1. F = Attri(p~*(0).G).
LH=V\FandH=G[H.
. MeanPayoffParitySelve(H) (Algorithm 3).
. Construct the mean-payoff game § as described in Subsection 3.1 and Solve
. Let L’.Vg be the least value class in gan(l 1 be the least value.
LY =LV NV, and MP(v) =Tforallv € LV.

. return (£V, 1),

1

-
s

= L

Subroutine SeiFalues(.J;, j;)

. g=max{ Val(w) :w € Wyand Jv € J;NV;. (v,w) € E}.
1if g > j; then
22Ty ={ve JinVy: 3w e Wy Val(w) = g and (v, w)
2.3 Forevery vertex v € UnivReach(T), set Val(v) = g.
2.4 goto Step 6.3. of MeanPavoffParitySolve.
A =min{ Val(w) : we Wy and Jv e J, NV, (v, w) € B}
il < j; then
42T, ={ve J;NVy: 3w € Wy. Val(w) =land (v,w) € £}; and W = Wg U UnivReach(ls).
4.3 Forevery vertex v € UnivReach(Ty), set Val(v) = 1.
4.4 goto Step 6.3. of MeanPavoffParitvSolve.

E}; and Wy = Wy U UnivReach(Ty)

1

€

Algorithm 2 ComputeGreatestValueClass

Input: a mean-payoff parity game MP = (G.p, r} such that p—'(0) = @ and p~ (1) # 0,

and the game is paritv winnine for plaver |

Output: a nonempty

I F = Attra(p~1(1 Algorithm 3 MeanPayoffParitySolve

%' H=V\Fand H Input: a mean-payoff party game MP. Output: the value function MF .

= :\"Ie“?}‘,"‘-mﬂ? it 1. Compute W5 and W5 by any algorithm for solving parity games.

4. Let GV be the gr 2. For every vertex v € Wy, set Val(v) = —o00. 3. Wy = 0. 4. Go = G | W and VO = Wy. 5. i =0.
5. GV = GVy, and 6. repeat

6. return (GV, §).

6.1, while (p~t(0)Up Y (1))NV,=0do setp=p—2

6.2.a. it Wi + () then

2.a.3. Wy = Wy U UnivReach(Ty).
goto Step. 6.3.
6.2.b. else

6.2.b.1.a. Subroutine SetValues(L;, ;)

6.2.b.2. else (G, g;) = ComputeGreatestValueCla
6.2.b.2.a. Subroutine SetValues(G;, g;)
6.3. Vit =Vi\Wand G; =
64 1=1i+1.
until V; = ¢ (end repeat)
7. MP, = Val.

GV

6.2. Let (W], W) be the partition of the parity winning sets in G;.

6.2.a.1. g = max{ Val(w) : w € Wy and v € Wi nVy. (v,w) € E
6.222. Ty ={vel;NV;:Jwe Wy Val(w) =gand (v,w) € E

6.2.a.4. Forevery vertex v € UnivReach(T}), set Val(v) = g.

6.2.b.1.if p=(0) NV, == 0 then let (L;,1;) = ComputeLeastValueClass(G,).

6.2.b.1.b. Wy = Wi U L;, and forevery vertex v € Ly, set Val(v) = L.

6.2.b.2.b. Wy = Wy U G, and for every vertex v € Gy, set Val(v) = g..

. end while

}.
b

$8(Gi ).




Complexity

Strategy Algorithmic

Player 1 Player 2 complexity

Energy memoryless | memoryless NP n coNP

Parity memoryless | memoryless NP n coNP

Energy parity | exponential | memoryless NP n coNP

Mean-payoff |memoryless| memoryless NP n coNP

B rinite memoryless| NP n coNP
parity



