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Synthesis problem

Specification

avoid failure,
ensure progress,

Correctness
relation



Synthesis problem

System - Model Specification

avoid failure,
ensure progress,

Correctness ¢ ”‘@

relation

Solved as a game — system vs. environment
m) solution = winning strategy

This talk: quantitative games (resource-constrained systems)






Energy JaMmeS (cdarsos,BrLmos)

Q Maximizer

Minimizer

positive weight = reward

1 (1,4) (4,1) (1,4) (4,1) ...

weights: -1 +2 -1 +2 ...

energy level: 10213243 ..



Energy games (caarsos srL+0s)

Q Maximizer

Minimizer

positive weight = reward

1 (1,4) (4,1) (1,4) (4.1) ...
weights: -1 +2 -1 +2 ...

energy Ievel:@o 213243 ..
Initial credit



Energy games

Strategies:

Maximizer o : Q" - Qo — Q

Minimizer 7 :Q" Qu— Q

outcome(q, o, )

Infinite sequence of edges consistent with
strategies o and 7

outcome is winning if:

Cregy e > o+ Sj=gwi > 0 for alln >0




Energy games

Decision problem:




Energy games

Decision problem:

For energy games,
memoryless strategies suffice.

o.Qn— Q
T Qo — Q




Energy games

Co=2 Co=2
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4 For energy games,
memoryvless strategies suffice.
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Decision problem:
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Energy games

Decision problem:

4 For energy games,
| 0 memoryless strategies suffice.







Algorithm for energy games

Initial credit is useful to survive
before a cycle is formed

+2
+2 -1 41 —2
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Length(AcyclicPath) < Q

Q: #states
E: #edges
W: maximal weight



Algorithm for energy games

Initial credit is useful to survive
before a cycle is formed

Length(AcyclicPath) < Q

Q: #states

E: #edges Minimum initial credit is at most Q"W

W: maximal weight



Algorithm for energy games

The minimum initial credit v(.)is such that:

-2 iIn Maximizer state Q:

v(q) +w(q,q") > v(qd’) for some (q,4) € E

iIn Minimizer state q:

v(q) +w(q,q") > v(d) for all (¢,¢') € E

‘ Compute successive under-approximations of the
minimum initial credit.



Algorithm for energy games

0 ., 0 Fixpoint algorithm:

;) : - start withv(¢) =0
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Algorithm for energy games
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Fixpoint algorithm:

- start withv(¢) =0

- iterate

at Maximizer states:

v(q) — min{v(¢") —w(q,q) | (¢,¢) € E}

at Minimizer states:

v(q) — max{v(q") —w(q,q") | (¢,¢") € E}



Algorithm for energy games

012 022
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Fixpoint algorithm:

- start withv(¢) =0

- iterate

at Maximizer states:

v(q) — min{v(¢") —w(q,q) | (¢,¢) € E}

at Minimizer states:

v(q) — max{v(q") —w(q,q") | (¢,¢") € E}



Algorithm for energy games

012 022  Fixpoint algorithm:

2 2 - start with v(¢) =0
+2 -1 41 —2
m - iterate
: ) at Maximizer states:
011 000

v(q) — min{v(q) —w(q,q) | (¢,4) € E}
at Minimizer states:
v(q) — max{v(q) —w(q,q") | (¢,4') € E}
Termination argument: monotonic operators,
and finite codomain»(q) € {0,1,...,Q - W}
Complexity: O(E-Q W)






Mean-payoff games ews

Q Maximizer

Minimizer

positive weight = reward

1 (14) (4,1) (1,4) (4.1) ...
weights: -1 +2 -1 +2 ...

1
mean-payoff value: =
(limit of weight average) 2



Mean-payoff games ews

Mean-payoff value:

either Ilmlnf— Z w; OF limsup =~ - Z w;
1=0 e =0

Decision problem:

Note: we can assume v = 0O
e.g. by shifting all weights by v.



Mean-payoff games

Mean-payoff value:

either Ilmlnf— Z w; Or limsup=- Z w;
1=0 e =0

Decision problem:

Assumingrv = 0




Mean-payoff games

Mean-payoff value:
] 1 n—1 n—1
either I[rbrrl)grg)f;~ > w; Or limsup=- Z w;

n—oo n

1=0 1=0

Decision problem:

Assumingrv = 0




Complexity

Energy games Mean-payoff games

O(E*Q*W) (this talk)
Decision problem O(E'Q'W)
O(E-Q%W) [ZP96]

Deterministic Pseudo-polynomial algorithms



Outline

» Perfect information
* Mean-payoff games
* Energy games

e Algorithms

» Imperfect information
e Energy with fixed initial credit
e Energy with unknown initial credit

* Mean-payoff






Imperfect information — Why ?

System - Model Specification
E avoid failure,
N ensure progress,
; — ( {w‘ etc.
:I Correctness “”
relation

* Private variables/internal state

* NOISy sensors

- Strategies should not rely on hidden information



Imperfect information — How ?

<,

» Coloring of the state space

observations = set of states with the same color



Imperfect information — How ?

gq

Playing the game:

Maximizer states only

1. Maximizer chooses an action (a or b)

2. Minimizer chooses successor state
(compatible with Maximizer’s action)

3. The color of the next state is visible to Maximizer



Imperfect information — How ?

Actions > ={a,b}

Observations Obs = {{q1,92,493},{q4,95}}



Imperfect information — How ?

Observation-based strategies

o:Obst — X

Goal: all outcomes have

- nonnegative energy level,

- Or nonnegative mean-payoff value

Actions > ={a,b}

Observations Obs = {{q1,92,493},{q4,95}}



Complexity

Energy games

Mean-payoff games

O(E*Q"W) (this talk)

Perfect
information EQW) O(E*Q2'W) [ZP96]
Imperfect 5 5

information




Imperfect information

Observation-based strategies

o:Obst — X

Goal: all outcomes have

- nonnegative energy level,

- Or nonnegative mean-payoff value




Fixed initial credit

a,b,0
b1 2
ﬂe Can you win with initial credit = 3 ?
@ )
a, 1l '
a,b, 1
Actions > = {a,b}

Observations Obs = {{1},{2,3}}



Fixed initial credit

a,b,0

Can you win with initial credit = 3 ?

Keep track of

, 1 - which can be the current state, and

- what is the worst-case energy level

Initially: 3,0,0)



Example

[
=2
4. N |

(3,0,0)

lq,b

v(q) < min{v(q") +w(d,q) | v(¢') # L}



Example

a,b,0
(3,6,0)
b, 1 lo,b
e (0,2,2)
a b
a b

“=h Gon @20 G13) GO0

[
U
b

v(q) < min{v(q") +w(d,q) | v(¢') # L}



Example

a,b,0
(3,0,00)

b, 1 lq,b

e (0,2,2)
a b
a b
G 3,00 ([G,21) (G41,3) (3,0,0)

S

Stop search whenever

1 - negative value, or

- comparable ancestor

v(q) — min{v(q¢") + w(d,q) | v(d) # L}



(3,0,0)

la,b

(0,2,2)

b
b

(3,0,0) (0,2,1) (0,1,3) (3,0,0)
) %\
(4,0,0) (0,1,0) (0,1,4) (2,0,0)

© & O 6




Example

a,b,0

3,00 (%)
lq,b

(0,2,2)

TR

(3,0,00) (D 2.1) (D 1,3) (3,0,0)

PN

(4,0,00) (510) (0,1,4) (ZDD)

Nyt

a, 1 '
b

a,b, 1

Initial credit = 3 is not sufficient !



Example

a,b,0
(3,0,00)

b, 1 lq,b

a b
a b

° @ .00 G21) (G1,3) G000

(4I|:|I|:|) (Dlllo) (Dlll4) (ZIDID)

- @ @

Search will terminate because N¢ s
well-quasi ordered.




Example

Upper bound: non-primitive recursive (3,0,0)

lq,b
Lower bound: EXPSPACE-hard (0.2,2)
Proof (not shown in this talk): reduction from a b
the infinite execution problem of Petri Nets. a b

.00 @21) (4,1,3) G,00)

(4I|:|I|:|) (Dlllo) (Dlll4) (ZIDID)

@ @

Search will terminate because N is
well-quasi ordered.




Complexity

Energy games

(unknown initial credit) Mean-payoff games

O(E*Q"W) (this talk)

Perfect
information EQW) O(E*Q2'W) [ZP96]
Imperfect e )

information




Memory requirement

With imperfect information:




Memory requirement

With imperfect information:

Corollary: Finite-memory strategies suffice in energy games

In mean-payoff games:

 infinite memory may be required

e limsup vs. liminf definition do not coincide



Memory requirement

Energy games

Mean-payoff games

Perfect
information

memoryless

memoryless

Imperfect
information

finite memory

infinite memory



Unknown initial credit

Theorem

The unknown initial credit problem
for energy games is undecidable.

(even for blind games)

Proof:

Using a reduction from the halting problem
of 2-counter machines.



2-counter machines

e 2 counters ¢y, G,

e increment, decrement, zero test

gl:inc c, goto g2
g2: inc ¢, goto g3

q3: if ¢, == 0 goto g6
else dec c, goto g4

g4: inc ¢, goto g5
g5: inc ¢, goto g3
g6: halt




2-counter machines

e 2 counters ¢y, G,

e increment, decrement, zero test

g : inc ¢ goto ¢’

ql:inc c, goto g2 g : if ¢ = 0 then goto ¢’ else dec ¢ goto ¢”.
g2: inc ¢, goto g3

q3: if ¢, == 0 goto g6
else dec c, goto g4

g4: inc ¢, goto g5
gs5: inc ¢, goto g3
g6: halt

(g,inc, ¢, q')

(¢,0?,¢,q") and (g, dec, c,q")

qol (q1,inc,c1,q92) qf (q2,inc,c1,q93) q23 (q3,dec,c1,q4) q14 (qa,inc,cs,qs) (]15 o



Reduction

: inc ¢, goto g2
: inc ¢, goto g3
:if ¢, == 0 goto g6

else dec c, goto g4

:inc ¢, goto g5
> inc ¢, goto g3
. halt

Halting problem:

e Deterministic machine
e Nonnegative counters



Reduction

> inc ¢, goto g2
: inc ¢, goto g3
. if ¢, == 0 goto g6

> inc ¢, goto g5
> inc ¢, goto g3
. halt

else dec c, goto g4

e Blind game (unique observation)
e Initial nondeterministic jump to several gadgets

e Winning strategy = (#AcceptingRun)®




Gadget 1:

« First symbol is # »

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...



E.g., g1 = (q, " ‘,q/) and 02 = (q/7 "y '7q//)

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...



' Gadget 3:
,0 8 ,0
6 # # - I
« Infinitely many # »

(and a bit more...)

Guess: this is the last #

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...



Gadgets

('7 O?a C, ')7 0

1 if o = (-, dec,c,

)

-1 ifo = (-,inc,c,-)
0-7

0 otherwise

Check zero tests on ¢

Gadget 4:

« Counter correctness »




Gadgets

1 if o= (-, dec,c,-)

(0 % #) {—1 if o0 = (-,inc,c, )

0 otherwise

Check zero tests on ¢

#0 Y0

Gadget 4:

« Counter correctness »




Gadgets

1 if o = (-, dec,c,)

(o £ #) { -1 if o = (+,inc,c, )

0 otherwise

Check zero tests on ¢

#0 3.0

5

Gadget 4:

« Counter correctness »

1 if o =(-inc,c,-)

o, { 1 ifo = (-, dec,c,) |Check non-zero test

0 otherwise on C




Correctness

gl: inc c, goto g2
g2: inc ¢, goto g3

q3: if ¢, == 0 goto g6
else dec c, goto g4

g4: inc ¢, goto g5

g5: inc ¢, goto g3
g6: halt

e If M halts, then (#AcceptingRun)® is a winning strategy with
initial credit Length(AcceptingRun).

o If there exists a winning strategy with finite initial credit,
then # occurs infinitely often, and finitely many cheats occur.
Hence, M has an accepting run.



Mean-payoff games

Theorem

Mean-payoff games are undecidable (not co-r.e.).

(even blind games)

Proof:

Using a reduction from the halting problem
of 2-counter machines.

Nota: the proof works for both limsup and liminf, but only for strict
mean-payoff objective (i.e., MP > 1))



Mean-payoff games

Theorem

(even blind games)

Proof:

Using a reduction from the halting problem
of 2-counter machines.




Gadget 1:

« First symbol is # »

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...



E.g., g1 = (q, " ‘,q/) and 02 = (q/7 "y '7q//)

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...



' Gadget 3:
1 1
6 7 “ - i
« Infinitely many # »

Guess: this is the last #

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...



Gadgets

1 if o = (-, dec,c,)

(0 £ #) { -1 if o = (-,inc,c, )

0 otherwise
Check zero tests on ¢

#1 1

5

Gadget 4:

« Counter correctness »

1 if o =(-,incc,-)

7,4 -1 if o= (-, dec,c,-) Check non-zero test
0 otherwise on C




Complexity

Energy games

(unknown initial credit) Mean-payoff games

O(E*Q*W) (this talk)
| Perfec_t O(E-Q'W)
information O(E-Q2W) [ZP96]

Imperfect r.e. ?
information not co-r.e. not co-r.e.




Mean-payoff games

Theorem

Mean-payoff games are undecidable (not r.e.).

(for games with at least 2 observations)

Proof:

Using a reduction from the non-halting
problem of 2-counter machines.

Nota: the proof works only for limsup and non-strict mean-payoff
objective (i.e., MP > 1)



Mean-payoff games

Theorem

(for games with at least 2 observations)

Proof:

Using a reduction from the non-halting
problem of 2-counter machines.




Reduction

e 2-observation game

e Initial nondeterministic jump to several gadgets
(+ back-edges)

e Winning strategy = Non-terminatingRun



Gadgets

Z\ qr, 7'

Gadget 3:
(g755°) « avoid halting state »

Reminder: Winning strategy = Non-terminatingRun



Gadgets

-1 if o = (-, dec, ¢, )

g,

{ 1 if o= (,inc,c,-)

0 otherwise
@ (odecie, )1 oo Check non-zero test on c




Gadgets

-1 if o = (+,inc,c, )
o, 1 ifo=(,dec,c,-)

0O otherwise

Gadget 5 and 6:

« Counter correctness »

Check zero tests on ¢




Correctness

e If M does not halt, then Non-terminatingRun is a winning
strategy.

o If M halts, then Maximizer has to cheat within L steps where
L = Size(AcceptingRun), or reaches halting state, thus he
ensures mean-payoff at most -1/L.



Complexity

Energy games
(unknown initial credit)

Mean-payoff games

O(E-Q-W) (this talk)

| PerfecF O(E-Q'W)

information O(E-Q2'W) [ZP96]
Imperfect r.e. not r.e.

information not co-r.e. not co-r.e.

Nota: whether there exists a finite-memory winning strategy
in mean-payoff games is also undecidable.



Decidability result

Energy and mean-payoff games with visible
weights are decidable (EXPTIME-complete).

Weights are visible if

a, w ~

> impliesw = w’

Weighted subset construction is finite




Complexity

Energy games

(unknown initial credit) Mean-payoff games

Perfect O(E*Q'W) (this talk)

. . O(E'Q"W)

information O(E-Q2'W) [ZP96]
Imperfect r.e. not r.e.

information not co-r.e. not co-r.e.

Visible weights EXPTIME-complete EXPTIME-complete




Conclusion

« Quantitative games with imperfect information
e Undecidable in general
e Energy with fixed initial credit

e Visible weights

e Open guestions
e Strict vs. non-strict mean-payoff
e Liminf vs. Limsup

e Blind mean-payoff games

e Related work

e Incorporate liveness conditions (e.g. parity)



The end

Thank you !

o)

% Questions ?
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