Staying alive in the dark

Laurent Doyen LSV, ENS Cachan & CNRS

joint work with

Aldric Degorre¹, Raffaella Gentilini¹, Jean-François Raskin¹, Szymon Torunczyk²

¹Uni. Brussels, Belgium ²ENS Cachan, France

Synthesis problem

Synthesis problem

Solved as a game – system vs. environment

This talk: quantitative games (resource-constrained systems)

Energy games (CdAHS03,BFLM08)

positive weight = reward

play: (1,4) (4,1) (1,4) (4,1) ...

weights: -1 +2 -1 +2 ...

energy level: **1** 0 2 1 3 2 4 3 ...

Energy games (CdAHS03,BFL+08)

positive weight = reward

play: (1,4) (4,1) (1,4) (4,1) ...

weights: -1 +2 -1 +2 ...

Strategies:

Maximizer $\sigma : Q^* \cdot Q_\circ \to Q$

Minimizer $\pi: Q^* \cdot Q_{\Box} \to Q$

play: outcome
$$(q, \sigma, \pi)$$

Infinite sequence of edges consistent with strategies σ and π

outcome is winning if:

Energy level
$$c_0 + \sum_{i=0}^{n-1} w_i \ge 0$$
 for all $n \ge 0$

Decision problem:

Decide if there exist an initial credit c_0 and a strategy of the maximizer to maintain the energy level always nonnegative.

Decision problem:

Decide if there exist an initial credit c_0 and a strategy of the maximizer to maintain the energy level always nonnegative.

For energy games, memoryless strategies suffice.

$$\sigma: Q_{\Box} \to Q$$

 $\pi: Q_{\circ} \to Q$

Decision problem:

Decide if there exist an initial credit c_0 and a strategy of the maximizer to maintain the energy level always nonnegative.

For energy games, memoryless strategies suffice.

A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

For energy games, memoryless strategies suffice.

A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

Initial credit is useful to survive before a cycle is formed

Length(AcyclicPath) $\leq Q$

- Q: #states
- E: #edges
- W: maximal weight

Initial credit is useful to survive before a cycle is formed

Length(AcyclicPath) $\leq Q$

- Q: #states
- E: #edges
- W: maximal weight

Minimum initial credit is at most Q·W

The minimum initial credit $v(\cdot)$ is such that: in Maximizer state q: $v(q) + w(q,q') \ge v(q')$ for some $(q,q') \in E$

in Minimizer state q:

 $v(q) + w(q,q') \ge v(q')$ for all $(q,q') \in E$

Compute successive under-approximations of the minimum initial credit.

Fixpoint algorithm:

- start with v(q) = 0

Fixpoint algorithm:

- start with v(q) = 0
- iterate
 - at Maximizer states:

 $v(q) \leftarrow \min\{v(q') - w(q,q') \mid (q,q') \in E\}$

at Minimizer states:

 $v(q) \leftarrow \max\{v(q') - w(q,q') \mid (q,q') \in E\}$

Fixpoint algorithm:

- start with v(q) = 0
- iterate
 - at Maximizer states:

 $v(q) \leftarrow \min\{v(q') - w(q,q') \mid (q,q') \in E\}$

at Minimizer states:

 $v(q) \leftarrow \max\{v(q') - w(q,q') \mid (q,q') \in E\}$

Fixpoint algorithm:

- start with v(q) = 0
- iterate
 - at Maximizer states:

 $v(q) \leftarrow \min\{v(q') - w(q,q') \mid (q,q') \in E\}$

at Minimizer states:

 $v(q) \leftarrow \max\{v(q') - w(q,q') \mid (q,q') \in E\}$

Termination argument: monotonic operators,

and finite codomain $v(q) \in \{0, 1, \dots, Q \cdot W\}$

Complexity: O(E'Q'W)

Mean-payoff games (EM79)

positive weight = reward

play: (1,4) (4,1) (1,4) (4,1) ...

weights: -1 +2 -1 +2 ...

Mean-payoff games (EM79)

Mean-payoff value:

either $\liminf_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w_i$ or $\limsup_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w_i$

Decision problem:

Given a rational threshold ν , decide if there exists a strategy of the maximizer to ensure mean-payoff value at least ν .

Note: we can assume $\nu = 0$ e.g. by shifting all weights by ν .

Mean-payoff games

Mean-payoff value:

either $\liminf_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w_i$ or $\limsup_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w_i$

Decision problem:

Given a rational threshold ν , decide if there exists a strategy of the maximizer to ensure mean-payoff value at least ν .

Assuming $\nu = 0$

A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

Mean-payoff games

Mean-payoff value:

either $\liminf_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w_i$ or $\limsup_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w_i$

Decision problem:

Assuming $\nu = 0$

A memoryless strategy σ is winning if all cycles are nonnegative when σ is fixed.

Complexity

	Energy games	Mean-payoff games
Decision problem	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q ² ·W) [ZP96]

Deterministic Pseudo-polynomial algorithms

Outline

- Perfect information
 - Mean-payoff games
 - Energy games
 - Algorithms
- Imperfect information
 - Energy with fixed initial credit
 - Energy with unknown initial credit
 - Mean-payoff

Imperfect information (staying alive in the dark)

Imperfect information – Why ?

- Private variables/internal state
- Noisy sensors

Strategies should not rely on hidden information

• Coloring of the state space

observations = set of states with the same color

Maximizer states only

Playing the game:

- 1. Maximizer chooses an action (a or b)
- 2. Minimizer chooses successor state (compatible with Maximizer's action)
- 3. The color of the next state is visible to Maximizer

Observation-based strategies

 $\sigma: \mathsf{Obs}^+ \to \Sigma$

Goal: all outcomes have

- nonnegative energy level,
- or nonnegative mean-payoff value

Actions $\Sigma = \{a, b\}$ Observations Obs = $\{\{q_1, q_2, q_3\}, \{q_4, q_5\}\}$

Complexity

	Energy games	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q ² ·W) [ZP96]
Imperfect information	?	?

Imperfect information

Observation-based strategies

 $\sigma: \mathsf{Obs}^+ \to \Sigma$

Goal: all outcomes have

- nonnegative energy level,
- or nonnegative mean-payoff value

Two variants for Energy games: - fixed initial credit - unknown initial credit

Fixed initial credit

Can you win with initial credit = 3?

Actions $\Sigma = \{a, b\}$ ObservationsObs = $\{\{1\}, \{2, 3\}\}$

Fixed initial credit

Initially: (3,⊥,⊥)

$v(q) \leftarrow \min\{v(q') + w(q',q) \mid v(q') \neq \bot\}$

 $v(q) \leftarrow \min\{v(q') + w(q',q) \mid v(q') \neq \bot\}$

Stop search whenever

- negative value, or
- comparable ancestor

$$v(q) \leftarrow \min\{v(q') + w(q',q) \mid v(q') \neq \bot\}$$

Initial credit = 3 is not sufficient !

Search will terminate because \mathbb{N}^d is well-quasi ordered.

Search will terminate because \mathbb{N}^d is well-quasi ordered.

Complexity

	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q ² ·W) [ZP96]
Imperfect information	r.e.	?

Memory requirement

With imperfect information:

Corollary: Finite-memory strategies suffice in energy games

Memory requirement

With imperfect information:

Corollary: Finite-memory strategies suffice in energy games

Memory requirement

	Energy games	Mean-payoff games
Perfect information	memoryless	memoryless
Imperfect information	finite memory	infinite memory

Unknown initial credit

Theorem

The unknown initial credit problem for energy games is undecidable.

(even for blind games)

Proof:

Using a reduction from the halting problem of 2-counter machines.

2-counter machines

- 2 counters c₁, c₂
- increment, decrement, zero test

q1: inc c ₁ goto q2
q2: inc c ₁ goto q3
q3: if $c_1 == 0$ goto q6 else dec c_1 goto q4
q4: inc c ₂ goto q5
q5: inc c ₂ goto q3
q6: halt

2-counter machines

- 2 counters c₁, c₂
- increment, decrement, zero test

q1: inc c ₁ goto q2
q2: inc c ₁ goto q3
q3: if $c_1 == 0$ goto q6 else dec c_1 goto q4
q4: inc c ₂ goto q5
q5: inc c ₂ goto q3
q6: halt

$$q: \text{ inc } c \text{ goto } q'$$

$$q: \text{ if } c = 0 \text{ then goto } q' \text{ else } \text{dec } c \text{ goto } q''.$$

$$(q, inc, c, q')$$

 $(q,0?,c,q^\prime)$ and $(q,dec,c,q^{\prime\prime})$

$$\begin{pmatrix} q_1 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{(q_1, inc, c_1, q_2)} \begin{pmatrix} q_2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{(q_2, inc, c_1, q_3)} \begin{pmatrix} q_3 \\ 2 \\ 0 \end{pmatrix} \xrightarrow{(q_3, dec, c_1, q_4)} \begin{pmatrix} q_4 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{(q_4, inc, c_2, q_5)} \begin{pmatrix} q_5 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\dots}$$

Reduction

Halting problem:

Given M and state q_{halt} , decide if q_{halt} is reachable (i.e., M halts).

q1:	inc c ₁ goto q2
q2:	inc c ₁ goto q3
q3:	if $c_1 == 0$ goto q6
	else dec c ₁ goto q4
q4:	inc c ₂ goto q5
q5:	inc c ₂ goto q3
q6:	halt

Reduction:

Given M, construct G_M such that M halts iff there exists a winning strategy in G_M (with some initial credit).

- Deterministic machine
- Nonnegative counters

Reduction

- Blind game (unique observation)
- Initial nondeterministic jump to several gadgets
- Winning strategy = $(#AcceptingRun)^{\omega}$

Gadget 1:

« First symbol is # »

E.g., $\sigma_1 = (q, \cdot, \cdot, q')$ and $\sigma_2 = (q', \cdot, \cdot, q'')$

Correctness

• If M halts, then $(#AcceptingRun)^{\omega}$ is a winning strategy with initial credit Length(AcceptingRun).

• If there exists a winning strategy with finite initial credit, then # occurs infinitely often, and finitely many cheats occur. Hence, M has an accepting run.

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not co-r.e.).

(even blind games)

Proof:

Using a reduction from the halting problem of 2-counter machines.

Nota: the proof works for both limsup and liminf, but only for strict mean-payoff objective (i.e., MP > ν)

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not co-r.e.).

(even blind games)

Proof:

Using a reduction from the halting problem of 2-counter machines.

Reduction:

Given M, construct G_M such that M halts iff there exists a strategy to ensure strictly positive mean-payoff value.

Gadget 1:

« First symbol is # »

E.g., $\sigma_1 = (q, \cdot, \cdot, q')$ and $\sigma_2 = (q', \cdot, \cdot, q'')$

Complexity

	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q ² ·W) [ZP96]
Imperfect information	r.e. not co-r.e.	? not co-r.e.

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not r.e.).

(for games with at least 2 observations)

Proof:

Using a reduction from the non-halting problem of 2-counter machines.

Nota: the proof works only for limsup and non-strict mean-payoff objective (i.e., MP $\geq \nu$)

Mean-payoff games

Theorem

Mean-payoff games are undecidable (not r.e.).

(for games with at least 2 observations)

Proof:

Using a reduction from the non-halting problem of 2-counter machines.

Reduction:

Given M, construct G_M such that M **does not halt** iff there exists a strategy to ensure strictly nonnegative mean-payoff value.

Reduction

- 2-observation game
- Initial nondeterministic jump to several gadgets (+ back-edges)
- Winning strategy = Non-terminatingRun

Gadget 3:

« avoid halting state »

Reminder: Winning strategy = Non-terminatingRun

Check non-zero test on c

Gadget 5 and 6: « Counter correctness »

Gadget 5 and 6: « Counter correctness »

Check zero tests on c
Correctness

• If M does not halt, then Non-terminatingRun is a winning strategy.

• If M halts, then Maximizer has to cheat within L steps where L = Size(AcceptingRun), or reaches halting state, thus he ensures mean-payoff at most -1/L.

Complexity

	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk) O(E·Q ² ·W) [ZP96]
Imperfect information	r.e. not co-r.e.	not r.e. not co-r.e.

Nota: whether there exists a finite-memory winning strategy in mean-payoff games is also undecidable.

Decidability result

Energy and mean-payoff games with **visible** weights are decidable (EXPTIME-complete).

Weights are **visible** if

Weighted subset construction is finite

Complexity

	Energy games (unknown initial credit)	Mean-payoff games
Perfect information	O(E·Q·W)	O(E·Q·W) (this talk)
		O(E'Q ² 'W) [ZP96]
Imperfect information	r.e. not co-r.e.	not r.e. not co-r.e.
Visible weights	EXPTIME-complete	EXPTIME-complete

Conclusion

- Quantitative games with imperfect information
 - Undecidable in general
 - Energy with fixed initial credit decidable
 - Visible weights decidable
- Open questions
 - Strict vs. non-strict mean-payoff
 - Liminf vs. Limsup
 - Blind mean-payoff games
- Related work
 - Incorporate liveness conditions (e.g. parity)

Thank you !

Questions ?

References

[CdAHS03] A.Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. **Resource interfaces**, Proc. of EMSOFT: Embedded Software, LNCS 2855, Springer, pp.117-133, 2003

- [EM79] A. Ehrenfeucht, and J. Mycielski, Positional Strategies for Mean-Payoff Games, International Journal of Game Theory, vol. 8, pp. 109-113, 1979
- [BFL+08] P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, and J. Srba, Infinite Runs in Weighted Timed Automata with Energy Constraints, Proc. of FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS 5215, Springer, pp. 33-47, 2008