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avoid failure,
ensure progress,
etc.



Synthesis problem

Solved as a game – system vs. environment

solution = winning strategy

This talk: quantitative games (resource-constrained systems) 
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Energy games
(staying alive)



play: (1,4) (4,1) (1,4) (4,1) …

weights: -1 +2 -1 +2 …

energy level: 1 0 2 1 3 2 4 3 …

Energy games (CdAHS03,BFLM08)

Maximizer

Minimizer

positive weight = reward
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Energy games (CdAHS03,BFL+08)

Maximizer

Minimizer

positive weight = reward

play: (1,4) (4,1) (1,4) (4,1) …

weights: -1 +2 -1 +2 …

energy level: 1 0 2 1 3 2 4 3 …

Initial credit



Energy games

Strategies:

Maximizer

Minimizer

play:

Infinite sequence of edges consistent with 
strategies    and 

outcome is winning if:

Energy level



Energy games

Decision problem:

Decide if there exist an initial credit c0

and a strategy of the maximizer to 
maintain the energy level always 
nonnegative.
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A memoryless strategy    is winning if all 
cycles are nonnegative when    is fixed.
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Algorithm for energy games

Initial credit is useful to survive          
before a cycle is formed

Q: #states
E:  #edges
W: maximal weight

Length(AcyclicPath) ≤ Q



Algorithm for energy games

Initial credit is useful to survive          
before a cycle is formed

Minimum initial credit is at most Q�W
Q: #states
E:  #edges
W: maximal weight

Length(AcyclicPath) ≤ Q



Algorithm for energy games

The minimum initial credit      is such that: 

in Maximizer state q: 

in Minimizer state q: 

Compute successive under-approximations of the 
minimum initial credit.



Algorithm for energy games

Fixpoint algorithm: 0

0 0

0

- start with 



Algorithm for energy games

Fixpoint algorithm: 

- start with 

0 1

0 1 0 0

0 2

- iterate 

at Maximizer states: 

at Minimizer states: 



Algorithm for energy games

0 1 2

0 1 1 0 0 0

0 2 2 Fixpoint algorithm: 

- start with 

- iterate 

at Maximizer states: 

at Minimizer states: 



Algorithm for energy games

0 1 2

0 1 1 0 0 0

0 2 2 Fixpoint algorithm: 

- start with 

- iterate 

at Maximizer states: 

at Minimizer states: 

Termination argument: monotonic operators, 

and finite codomain

Complexity: O(E�Q�W)



Mean-payoff games



Mean-payoff games (EM79)

Maximizer

Minimizer

positive weight = reward

play: (1,4) (4,1) (1,4) (4,1) …

weights: -1 +2 -1 +2 …

mean-payoff value: 
(limit of weight average)



Decision problem:

Note: we can assume                
e.g. by shifting all weights by   . 

Given a rational threshold   , decide 
if there exists a strategy of the 
maximizer to ensure mean-payoff 
value at least   .

Mean-payoff value: 

either                        or

Mean-payoff games (EM79)



Mean-payoff games

Decision problem:

Assuming

Given a rational threshold   , decide 
if there exists a strategy of the 
maximizer to ensure mean-payoff 
value at least   .

Mean-payoff value: 

either                        or

A memoryless strategy    is winning if all 
cycles are nonnegative when    is fixed.



Mean-payoff games

Decision problem:

Assuming

Given a rational threshold   , decide 
if there exists a strategy of the 
maximizer to ensure mean-payoff 
value at least   .

Mean-payoff value: 

either                        or

A memoryless strategy    is winning if all 
cycles are nonnegative when    is fixed.

log-space equivalent to 

energy games [BFL+08]



Complexity

Energy games Mean-payoff games

Decision problem O(E�Q�W)
O(E�Q�W) (this talk) 

O(E�Q2�W) [ZP96]

Deterministic Pseudo-polynomial algorithms



Outline

► Perfect information

• Mean-payoff games

• Energy games

• Algorithms

► Imperfect information

• Energy with fixed initial credit

• Energy with unknown initial credit

• Mean-payoff



Imperfect information
(staying alive in the dark)



Imperfect information – Why ?

• Private variables/internal state

• Noisy sensors

Strategies should not rely on hidden information

System - Model Specification

Correctness 
relation

avoid failure,
ensure progress,
etc.



Imperfect information – How ?

• Coloring of the state space

observations = set of states with the same color

a

b



Imperfect information – How ?

Maximizer states only

a

a

a,b

b

a

b

Playing the game:

1. Maximizer chooses an action (a or b)

2. Minimizer chooses successor state 
(compatible with Maximizer’s action)

3. The color of the next state is visible to Maximizer



a,1

a,-1

a,b,0

b,2

Actions

Observations

Imperfect information – How ?



Observation-based strategies

Actions

Observations

Imperfect information – How ?

Goal: all outcomes have

- nonnegative energy level,

- or nonnegative mean-payoff value

a,1

a,-1

a,b,0

b,2



Complexity

Energy games Mean-payoff games

Perfect 
information

O(E�Q�W)
O(E�Q�W) (this talk) 

O(E�Q2�W) [ZP96]

Imperfect 
information

? ?



Two variants for Energy games:

- fixed initial credit

- unknown initial credit

Observation-based strategies

Goal: all outcomes have

- nonnegative energy level,

- or nonnegative mean-payoff value

Imperfect information

a

a

a,b

b



Fixed initial credit

Can you win with initial credit = 3 ?

Actions

Observations



Fixed initial credit

Can you win with initial credit = 3 ?

Keep track of 

- which can be the current state, and

- what is the worst-case energy level 

Initially: (3,⊥,⊥)



Example

(3,⊥,⊥)

(⊥,2,2)

a,b
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a
a b

b

a,b
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b

a,b

Stop search whenever

- negative value, or

- comparable ancestor 
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Initial credit = 3 is not sufficient !
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Example

(3,⊥,⊥)

(⊥,2,2)

(3,⊥,⊥) (⊥,2,1) (⊥,1,3) (3,⊥,⊥)

a
a b

b

(4,⊥,⊥) (⊥,1,0) (⊥,1,4) (2,⊥,⊥)

a a b
b

a,b

Search will terminate because      is 
well-quasi ordered.

Upper bound: non-primitive recursive

Lower bound: EXPSPACE-hard

Proof (not shown in this talk): reduction from 
the infinite execution problem of Petri Nets.



Complexity

Energy games
(unknown initial credit)

Mean-payoff games

Perfect 
information

O(E�Q�W)
O(E�Q�W) (this talk) 

O(E�Q2�W) [ZP96]

Imperfect 
information

r.e. ?



Memory requirement

Corollary: Finite-memory strategies suffice in energy games

With imperfect information:



Memory requirement

Corollary: Finite-memory strategies suffice in energy games

In mean-payoff games:

• infinite memory may be required

• limsup vs. liminf definition do not coincide

With imperfect information:



Memory requirement

Energy games Mean-payoff games

Perfect 
information

memoryless memoryless

Imperfect 
information

finite memory infinite memory



Unknown initial credit

The unknown initial credit problem 
for energy games is undecidable.

Theorem

Proof:

Using a reduction from the halting problem
of 2-counter machines.

(even for blind games)



2-counter machines

q1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 
else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3 

q6: halt

• 2 counters c1, c2

• increment, decrement, zero test
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Reduction

q1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 
else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3 

q6: halt

Reduction:

Given M, construct GM such that
M halts iff there exists a winning
strategy in GM (with some initial 
credit).

! • Deterministic machine
• Nonnegative counters

Given M and state qhalt, decide if 
qhalt is reachable (i.e., M halts).

Halting problem:



Reduction

q1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 
else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3 

q6: halt

• Blind game (unique observation)

• Initial nondeterministic jump to several gadgets

• Winning strategy = (#AcceptingRun)ω



Gadgets

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...

Gadget 1:

« First symbol is # »



Gadgets

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...

Gadget 2:

« Every σ1 is followed
by σ2 »



Gadgets

Gadget 3:

« Infinitely many # »

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...

Guess: this is the last #

(and a bit more…)



Gadgets

Gadget 4:

« Counter correctness »

Check zero tests on c
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Check zero tests on c



Gadgets

Gadget 4:

« Counter correctness »

Check zero tests on c

Check non-zero test 
on c



Correctness

q1: inc c1 goto q2

q2: inc c1 goto q3

q3: if c1 == 0 goto q6 
else dec c1 goto q4

q4: inc c2 goto q5

q5: inc c2 goto q3 

q6: halt

• If M halts, then (#AcceptingRun)ω is a winning strategy with
initial credit Length(AcceptingRun).

• If there exists a winning strategy with finite initial credit, 
then # occurs infinitely often, and finitely many cheats occur.
Hence, M has an accepting run.



Mean-payoff games

Theorem

Proof:

Using a reduction from the halting problem
of 2-counter machines.

(even blind games)

Nota: the proof works for both limsup and liminf, but only for strict 
mean-payoff objective (i.e., MP >   ) 

Mean-payoff games are undecidable (not co-r.e.).



Reduction:

Given M, construct GM such that M halts iff
there exists a strategy to ensure strictly
positive mean-payoff value.

Mean-payoff games

Mean-payoff games are undecidable (not co-r.e.).

Theorem

Proof:

Using a reduction from the halting problem
of 2-counter machines.

(even blind games)
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Gadget 3:

« Infinitely many # »

Reminder: Winning strategy = #AcceptingRun#AcceptingRun#...

Guess: this is the last #



Gadgets

Gadget 4:

« Counter correctness »

Check zero tests on c

Check non-zero test 
on c



Complexity

Energy games
(unknown initial credit)

Mean-payoff games

Perfect 
information

O(E�Q�W)
O(E�Q�W) (this talk) 

O(E�Q2�W) [ZP96]

Imperfect 
information

r.e.
not co-r.e.

?
not co-r.e.



Mean-payoff games

Mean-payoff games are undecidable (not r.e.).

Theorem

Proof:

Using a reduction from the non-halting
problem of 2-counter machines.

(for games with at least 2 observations)

Nota: the proof works only for limsup and non-strict mean-payoff
objective (i.e., MP ≥ ) 



Reduction:

Given M, construct GM such that M does
not halt iff there exists a strategy to ensure
strictly nonnegative mean-payoff value.

Mean-payoff games

Mean-payoff games are undecidable (not r.e.).

Theorem

Proof:

Using a reduction from the non-halting
problem of 2-counter machines.

(for games with at least 2 observations)



Reduction

• 2-observation game

• Initial nondeterministic jump to several gadgets            
. (+ back-edges)

• Winning strategy = Non-terminatingRun



Gadgets

Gadget 3:

« avoid halting state »

Reminder: Winning strategy = Non-terminatingRun



Gadgets

Gadget 5 and 6:

« Counter correctness »

Check non-zero test on c



Gadgets

Gadget 5 and 6:

« Counter correctness »

Check zero tests on c



Correctness

• If M does not halt, then Non-terminatingRun is a winning
strategy.

• If M halts, then Maximizer has to cheat within L steps where
L = Size(AcceptingRun), or reaches halting state, thus he
ensures mean-payoff at most -1/L.



Complexity

Energy games
(unknown initial credit)

Mean-payoff games

Perfect 
information

O(E�Q�W)
O(E�Q�W) (this talk) 

O(E�Q2�W) [ZP96]

Imperfect 
information

r.e.
not co-r.e.

not r.e.
not co-r.e.

Nota: whether there exists a finite-memory winning strategy 
in mean-payoff games is also undecidable.



Decidability result

Energy and mean-payoff games with visible
weights are decidable (EXPTIME-complete).

Weights are visible if 

implies

Weighted subset construction is finite



Complexity

not r.e.
not co-r.e.

r.e.
not co-r.e.

Imperfect 
information

EXPTIME-completeEXPTIME-completeVisible weights

Energy games
(unknown initial credit)

Mean-payoff games

Perfect 
information

O(E�Q�W)
O(E�Q�W) (this talk) 

O(E�Q2�W) [ZP96]



• Quantitative games with imperfect information

• Undecidable in general

• Energy with fixed initial credit decidable

• Visible weights decidable

• Open questions

• Strict vs. non-strict mean-payoff

• Liminf vs. Limsup

• Blind mean-payoff games

• Related work

• Incorporate liveness conditions (e.g. parity)

Conclusion



Thank you !

Questions ?

The end
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