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Abstract. The synthesis problem asks for the automatic construction
of a system from its specification. In the traditional setting, the sys-
tem is “constructed from scratch” rather than composed from reusable
components. However, this is rare in practice, and almost every non-
trivial software system relies heavily on the use of libraries of reusable
components. Recently, Lustig and Vardi introduced dataflow and con-
trolflow synthesis from libraries of reusable components. They proved
that dataflow synthesis is undecidable, while controlflow synthesis is de-
cidable. The problem of controlflow synthesis from libraries of probabilis-
tic components was considered by Nain, Lustig and Vardi, and was shown
to be decidable for qualitative analysis (that asks that the specification
be satisfied with probability 1). Our main contribution for controlflow
synthesis from probabilistic components is to establish better complexity
bounds for the qualitative analysis problem, and to show that the more
general quantitative problem is undecidable. For the qualitative analysis,
we show that the problem (i) is EXPTIME-complete when the specifi-
cation is given as a deterministic parity word automaton, improving the
previously known 2EXPTIME upper bound; and (ii) belongs to UP ∩
coUP and is parity-games hard, when the specification is given directly as
a parity condition on the components, improving the previously known
EXPTIME upper bound.

1 Introduction

Synthesis from existing components. Reactive systems (hardware or software)
are rarely built from scratch, but are mostly developed based on existing com-
ponents. A component might be used in the design of multiple systems, e.g.,
function libraries, web APIs, and ASICs. The construction of systems from ex-
isting reusable components is an active research direction, with several important
works, such as component-based construction [17], interface-based design [11].
The synthesis problem asks for the automated construction of a system given a
logical specification. For example, in LTL (linear-time temporal logic) synthesis,
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the specification is given in LTL and the reactive system to be constructed is a
finite-state transducer [16]. In the traditional LTL synthesis setting, the system is
“constructed from scratch” rather than “composed” from existing components.
Recently, Lustig and Vardi introduced the study of synthesis from reusable or
existing components [13].

The model and types of composition. The precise mathematical model for the
components and their composition is an important concern (and we refer the
reader to [13, 14] for a detailed discussion). As a basic model for a component,
following [13], we abstract away the precise details of the component and model
a component as a transducer, i.e., a finite-state machine with outputs. Trans-
ducers constitute a canonical model for reactive components, abstracting away
internal architecture and focusing on modeling input/output behavior. In [13],
two models of composition were studied, namely, dataflow composition, where
the output of one component becomes an input to another component, and con-
trolflow composition, where at every point of time the control resides within a
single component. The synthesis problem for dataflow composition was shown
to be undecidable, and the controlflow composition to be decidable [13].

Synthesis for probabilistic components. While [13] considered synthesis for non-
probabilistic components which was extended to non-probabilistic recursive state
components in [10], the study of synthesis for controlflow composition for prob-
abilistic components was considered in [14]. Probabilistic components are trans-
ducers with a probabilistic transition function, that corresponds to modeling
systems where there is probabilistic uncertainty about the effect of input ac-
tions. Thus the controlflow composition for probabilistic transducers aims at
the construction of reliable systems from unreliable components. There is a rich
literature about verification and analysis of such systems, cf. [18, 9, 19, 3, 12].

Qualitative and quantitative analysis. There are two probabilistic notions of cor-
rectness, namely, the qualitative criterion that requires the satisfaction of the
specification with probability 1, and the more general quantitative criterion that
requires the satisfaction of the specification with probability at least η, given
0 < η ≤ 1.

The synthesis questions and previous results. In the synthesis problem for con-
trolflow composition, the input is a library L of probabilistic components, and
we consider specifications given as parity conditions (that allow us to consider all
ω-regular properties, which can express all commonly used specifications in verifi-
cation). The qualitative (resp., quantitative) realizability and synthesis problems
ask whether there exists a finite system S built from the components in L, such
that, regardless of the input provided by the external environment, the traces
generated by the system S satisfy the specification with probability 1 (resp.,
probability at least η). Each component in the library can be instantiated an
arbitrary number of times in the construction and there is no a-priori bound on
the size of the system obtained. The way the specification is provided gives rise
to two different problems: (i) embedded parity realizability, where the specifica-
tion is given in the form of a parity index on the states of the components; and
(ii) DPW realizability, where the specification is given as a separate deterministic
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Qualitative Quantitative

Our Results Previous Results Our Results Previous Results

Embedded Parity UP ∩ coUP EXPTIME UP ∩ coUP Open
(Parity-games hard) (Parity-games hard)

DPW Specifications EXPTIME-c 2EXPTIME Undecidable Open

Table 1. Computational complexity of synthesis from probabilistic components.

parity word automaton (DPW). The results of [14] established the decidability
of the qualitative realizability problem, namely, in EXPTIME for the embedded
parity realizability problem and 2EXPTIME for the DPW realizability prob-
lem. The exact complexity of the qualitative problem and the decidability and
complexity of the quantitative problem were left open, which we solve.

Our contributions. Our main contributions are (summarized in Table 1):
1. We show that both the qualitative and quantitative realizability problems

for embedded parity lie in UP ∩ coUP, and even the qualitative problem is
at least parity-games hard.

2. We show that the qualitative realizability problem for DPW specifications is
EXPTIME-complete (an exponential improvement over the previous 2EX-
PTIME result). Finally, we show that the quantitative realizability problem
for DPW specifications is undecidable.

Technical contributions. Our two main technical contributions are as follows.
First, for the realizability of embedded parity specifications, while the most nat-
ural interpretation of the problem is as a partial-observation stochastic game (as
also considered in [14]), we show that the problem can be reduced in polyno-
mial time to a perfect-information stochastic game. Second, for the realizability
of DPW specifications, we consider partial-observation stochastic games where
the strategies correspond to a correct composition that defines, given an exit
state of a component, to which component the control should be transferred.
Since we aim at a finite-state system, we need to consider strategies with fi-
nite memory, and since the control flow is deterministic, we need to consider
pure (non-randomized) strategies. Moreover, since the composition must be in-
dependent of the internal executions of the components, we need to consider
strategies with stuttering invariance. We present polynomial-time reductions for
stutter-invariant strategies to games with standard observation-based strate-
gies. Our results establish optimal complexity results for qualitative analysis of
partial-observation stochastic games with finite-memory stutter-invariant strate-
gies, which are of independent interest. Finally, we present a polynomial reduc-
tion of the qualitative realizability for DPW specifications to partial-observation
stochastic games with stutter-invariant strategies and obtain the EXPTIME-
complete result. Detailed proofs are available in [6].

2 Definitions

Transducers. In this section we present the definitions of deterministic and
probabilistic transducers, and strategies for them.
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Deterministic transducers. A deterministic transducer is a tuple B =
〈ΣI , ΣO, Q, q0, δ, L〉, where: ΣI is a finite input alphabet, ΣO is a finite out-
put alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, L : Q → ΣO
is an output function labeling states with output letters, and δ : Q×ΣI → Q is
a transition function.

Probabilistic transducers. Let D(X) denote the set of all probability distributions
on set X. A probabilistic transducer is a tuple T = 〈ΣI , ΣO, Q, q0, δ, F, L〉, where:
ΣI is a finite input alphabet, ΣO is a finite output alphabet, Q is a finite set
of states, q0 ∈ Q is an initial state, δ : (Q \ F ) × ΣI → D(Q) is a probabilistic
transition function, F ⊆ Q is a set of exit states, and L : Q→ ΣO is an output
function labeling states with output letters. Note that there are no transitions out
of an exit state. If F is empty, we say T is a probabilistic transducer without
exits. Note that deterministic transducers can be viewed as a special case of
probabilistic transducers.

Strategies for transducers, and probability measure. Given a probabilistic trans-
ducer M = 〈ΣI , ΣO, Q, q0, δ, F, L〉, a strategy for M is a function f : Q+ →
D(ΣI) that probabilistically chooses an input for each finite sequence of states.
We denote by F the set of all strategies. A strategy is memoryless if the choice
depends only on the last state in the sequence. A memoryless strategy can be
written as a function g : Q → D(ΣI). A strategy is pure if the choice is deter-
ministic. A pure strategy is a function h : Q+ → ΣI , and a memoryless and
pure strategy is a function h : Q→ ΣI . A strategy f along with a probabilistic
transducer M , with set of states Q, induces a probability distribution on Qω,
denoted µf (see [6] for detailed definition).

Library of components. A library is a finite set of probabilistic transducers
that share the same input and output alphabets. Each transducer in the library
is called a component type. Given a finite set of directions D, we say a library L
has width D, if each component type in the library has exactly |D| exit states.
Since we can always add dummy unreachable exit states to any component, we
assume, w.l.o.g., that all libraries have an associated width, usually denoted D.
In the context of a particular component type, we often refer to elements of D
as exits, and subsets of D as sets of exits.

Controlflow composition from libraries. We first informally describe the
notion of controlflow composition of components from a library as defined in [14].
The components in the composition take turns interacting with the environment,
and at each point in time, exactly one component is active. When the active
component reaches an exit state, control is transferred to some other component.
Thus, to define a controlflow composition, it suffices to name the components
used and describe how control should be transferred between them. We use a
deterministic transducer to define the transfer of control. Each library component
can be used multiple times in a composition, and we treat these occurrences as
distinct component instances. We emphasize that the composition can contain
potentially arbitrarily many instances of each component type inside it. Thus,
the size of the composition, a priori, is not bounded. Note that our notion of
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composition is static, where the components called are determined before run
time, rather than dynamic, where the calls are determined during run time.

Let L be a library of widthD. A composer over L is a deterministic transducer
C = 〈D,L,M,M0, ∆, λ〉. Here M is an arbitrary finite set of states. There
is no bound on the size of M. Each Mi ∈ M is a component from L and
λ(Mi) ∈ L is the type of Mi. We use the following notational convention for
component instances and names: the upright letter M always denotes component
names (i.e., states of a composer) and the italicized letter M always denotes the
corresponding component instances (i.e., elements of L). Further, for notational
convenience we often write Mi directly instead of λ(Mi). Note that while each
Mi is distinct, the corresponding components Mi need not be distinct. Each
composer defines a unique composition over components from L. The current
state of the composer corresponds to the component that is in control. The
transition function ∆ describes how to transfer control between components:
∆(M, i) = M′ denotes that when the composition is in the ith final state of
component M it moves to the start state of component M ′. A composer can be
viewed as an implicit representation of a composition. An explicit definition is
presented in the full version of the paper. Note that the composition, denoted
TC , is a probabilistic transducer without exits. When the composition TC is in a
state 〈q, i〉 corresponding to a non-exit state q of component Mi, it behaves like
Mi. When the composition is in a state 〈qf , i〉 corresponding to an exit state qf of
component Mi, the control is transferred to the start state of another component
as determined by the transition function of the composer. Thus, at each point
in time, only one component is active and interacting with the environment.

Parity objectives and values. An index function for a transducer is a function that
assigns a natural number, called a priority index, to each state of the transducer.
An index function α defines a parity objective Φα that is the subset of Qω

consisting of the set of infinite sequence of states such that the largest priority
that is visited infinitely often is even. Given a probabilistic transducer T and
a parity objective Φ, the value of the probabilistic transducer for the objective,
denoted as val(T , Φ), is inff∈F µf (Φ), i.e., it is the minimal probability with
which the parity objective is satisfied over all strategies in the transducer.

The synthesis questions. We consider two types of synthesis questions for
controlflow composition. In the first problem (synthesis for embedded parity)
the parity objective is specified directly on the state space of the library compo-
nents, and in the second problem (synthesis from DPW specifications) the parity
objective is specified by a separate deterministic parity automaton.

Synthesis for embedded parity. We first consider an index function that
associates to each state of the components in the library a priority, and a speci-
fication defined as a parity condition over the sequence of visited states.

Exit control relation. Given a library L of width D, an exit control relation is a
set R ⊆ D × L. We say that a composer C = 〈D,L,M,M0, ∆, λ〉 is compatible
with R, if the following holds: for all M,M′ ∈ M and i ∈ D, if ∆(M, i) = M′

then 〈i,M ′〉 ∈ R. Thus, each element of R can be viewed as a constraint on how
the composer is allowed to connect components. An exit control relation is non-

5



blocking if for every i ∈ D there exists a component M ∈ L such that 〈i,M〉 ∈ R
(i.e., every exit has at least one possible component for the next choice). For
technical convenience we only consider non-blocking exit control relations.

Definition 1 (Embedded parity realizability and synthesis). Consider a
library L of width D, an exit control relation R for L, and an index function α for
the components in L that defines the parity objective Φα. The qualitative (resp.,
quantitative) realizability problem for controlflow composition with embedded
parity is to decide whether there exists a composer C over L, such that C is
compatible with R, and val(TC , Φα) = 1 (resp., val(TC , Φα) ≥ η, given rational
η ∈ (0, 1)). A witness composer for the qualitative (resp., quantitative) problem is
called an almost-sure (resp., η-optimal) composer. The corresponding embedded
parity synthesis problems are to find such a composer C if it exists.

Synthesis for DPW specifications. A deterministic parity word automaton
(DPW) is a deterministic transducer where the labeling function is an index
function that defines a parity objective. Given a DPW A, every word (infinite
sequence of input letters) induces a run of the automaton, which is an infinite
sequence of states, and the word is accepted if the run satisfies the parity ob-
jective. The language LA of a DPW A is the set of words accepted by A. Let
A be a deterministic parity automaton (DPW), M be a probabilistic transducer
and L be a library of components. We say A is a monitor for M (resp. L) if
the input alphabet of A is the same as the output alphabet of M (resp. L). Let
A be a monitor for M and let LA be the language accepted by A. The value
of M for A, denoted as val(M,A), is inff∈F µf (λ−1(LA)). The compatibility of
the composer with an exit control relation can be encoded in the DPW (w.l.o.g.,
two distinct exit states do not have the same output).

Definition 2 (DPW realizability and synthesis). Consider a library L and
a DPW A that is a monitor for L. The qualitative (resp., quantitative) realiz-
ability problem for controlflow composition with DPW specifications is to de-
cide whether there exists a composer C over L, such that val(TC , A) = 1 (resp.,
val(TC , A) ≥ η, given rational η ∈ (0, 1)). A witness composer for the quali-
tative (resp., quantitative) problem is called an almost-sure (resp., η-optimal)
composer. The corresponding DPW probabilistic synthesis problems are to find
such a composer C if it exists.

Remark 1. The realizability problem for libraries with components can be
viewed as a 2-player partial-observation stochastic parity game [14]. Informally,
the game can be described as follows: the two players are the composer C and
the environment E. The C player chooses components and the E player chooses
sequence of inputs in the components chosen by C. However, C cannot see the
inputs of E or even the length of the time inside a component. At the start C
chooses a component M from the library L. The turn passes to E, who chooses a
sequence of inputs, inducing a probability distribution over paths in M from its
start state to some exit x in D. The turn then passes to C, which must choose
some component M ′ in L and pass the turn to E and so on. As C cannot see
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the moves made by E inside M , the choice of C cannot be based on the run in
M , but only on the exit induced by the inputs selected by E and previous moves
made by C. So C must choose the same next component M ′ for different runs
that reach the same exit of M .

3 Realizability with Embedded Parity

We establish the results for the complexity of realizability with embedded parity.
While the natural interpretation of the embedded parity problem is a partial-
observation game, we show how the problem can be interpreted as a perfect-
information stochastic game.

3.1 Perfect-information Stochastic Parity Games

Perfect-information stochastic games. A perfect-information stochastic
game consists of a tuple G = 〈S, S1, S2, A1, A2, δ

G〉, where S is a finite set of
states partitioned into player-1 states (namely, S1) and player-2 states (namely
S2), A1 (resp., A2) is the set of actions for player 1 (resp., player 2), and
δG : (S1 × A1) ∪ (S2 × A2) → D(S) is a probabilistic transition function that
given a player-1 state and player-1 action, or a player-2 state and a player-2
action gives a probability distribution over the successor states. If the transition
function is deterministic (that is the codomain of δG is S instead of D(S)), then
the game is a perfect-information deterministic game.

Plays and strategies. A play is an infinite sequence of state-action pairs
〈s0a0s1a1 . . .〉 such that for all j ≥ 0 we have that if sj ∈ Si for i ∈ {1, 2}, then
aj ∈ Ai and δG(sj , aj)(sj+1) > 0. A strategy is a recipe for a player to choose
actions to extend finite prefixes of plays. Formally, a strategy π for player 1 is a
function π : S∗ · S1 → D(A1) that given a finite sequence of visited states gives
a probability distribution over the actions (to be chosen next). A pure strategy
chooses a deterministic action, i.e., is a function π : S∗ ·S1 → A1. A pure memo-
ryless strategy is a pure strategy that does not depend on the finite prefix of the
play but only on the current state, i.e., is a function π : S1 → A1. The definitions
for player-2 strategies τ are analogous. We denote by Π (resp., ΠPM ) the set of
all (resp., all pure memoryless) strategies for player 1, and analogously Γ (resp.,
ΓPM for player 2). Given strategies π ∈ Π and τ ∈ Γ , and a starting state s,
there is a unique probability measure over events (i.e., measurable subsets of
Sω), denoted by Pπ,τs (·).
Finite-memory strategies. A pure player-1 strategy uses finite-memory if it can
be encoded by a transducer 〈M,m0, πu, πn〉 where M is a finite set (the memory
of the strategy), m0 ∈ M is the initial memory value, πu : M × S → M is the
memory-update function, and πn : M → A1 is the next-action function. Note
that a finite-memory strategy is a deterministic transducer with input alphabet
S, output alphabet A1, where πu is the deterministic transition function, and πn
is the output labeling function. Formally, 〈M,m0, πu, πn〉 defines the strategy π
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such that π(ρ) = πn(π̂u(m0, ρ)) for all ρ ∈ S+, where π̂u extends πu to sequences
of states as expected.

Parity objectives, almost-sure, and value problem. Given a perfect-
information stochastic game, a parity objective is defined by an index function
α on the state space. Given a strategy π, the value of the strategy in a state s
of the game G with parity objective Φα, denoted by valG(π, Φα)(s), is the in-
fimum of the probabilities among all player-2 strategies, i.e., valG(π, Φα)(s) =
infτ∈Γ Pπ,τs (Φα). The value of the game is valG(Φα)(s) = supπ∈Π valG(π, Φα)(s).

A strategy π is almost-sure winning from s if valG(π, Φα)(s) = 1. Theorem 1
summarizes results about perfect-information games.

Theorem 1. The following assertions hold [8, 4, 7, 1]: (1) (Complexity). The
quantitative decision problem (of whether valG(Φα) ≥ η, given rational η ∈ (0, 1])
for perfect-information stochastic parity games lies in UP ∩ coUP. (2) (Mem-
oryless determinacy). We have valG(Φα)(s) = supπ∈ΠPM infτ∈Γ Pπ,τs (Φα) =
infτ∈ΓPM supπ∈Π Pπ,τs (Φα) (i.e., the quantification over the strategies can be re-
stricted to π ∈ ΠPM and τ ∈ ΓPM ).

3.2 Complexity Results

The upper-bound reduction. Consider a library L of width D, an exit con-
trol relation R for L, and an index function α for L that defines the par-
ity objective Φα. Let the number of components be k + 1, and let Mi =
〈ΣI , ΣO, Qi, qi0, δi, Fi, Li〉 for 0 ≤ i ≤ k, where Fi = {qix : x ∈ D}. Let
[k] = {0, 1, 2, . . . , k}. We define a perfect-information stochastic game GL =

〈S, S1, S2, A1, A2, δ
G
L 〉 with an index function αG as follows: S =

⋃k
i=0(Qi ×

{i})∪{⊥}, S1 =
⋃k
i=0(Fi×{i}), S2 = S \S1, A1 = [k], and A2 = ΣI . The state

⊥ is a losing absorbing state (i.e., a state with self-loop as the only outgoing
transition and assigned odd priority by the index function αG), and the other
transitions defined by the function δGL are as follows: (i) for s = 〈q, i〉 ∈ S2, and
σ ∈ A2, we have δGL (〈q, i〉, σ)(〈q′, j〉) = δi(q, σ)(q′) if i = j, and 0 otherwise;
and (ii) for s = 〈qix, i〉 ∈ S1 and j ∈ [k], we have that if 〈x,Mj〉 ∈ R, then

δGL (〈qix, i〉, j)(〈q
j
0, j〉) = 1, else δGL (〈qix, i〉, j)(⊥) = 1. The intuitive description of

the transitions is as follows: (1) given a player-2 state that is a non-exit state
q in a component Mi, and an action for player 2 that is an input letter, the
transition function δGL mimics the transition δi of Mi; and (2) given a player-1
state that is an exit state qix in component i, and an action for player 1 that is
the choice of a component j, if 〈x,Mj〉 is allowed by R, then the next state is the
starting state of component j, and if the choice 〈x,Mj〉 is invalid (not allowed
by R), then the next state is the losing absorbing state ⊥. For all 〈q, i〉 ∈ S \{⊥}
define αG(〈q, i〉) = α(q), and let ΦαG be the parity objective in GL.

Lemma 1. Consider a library L of width D, an exit control relation R for L,
and an index function α for L that defines the parity objective Φα. Let GL be
the corresponding perfect-information stochastic game with parity objective ΦαG .
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There exists an almost-sure composer if and only if there exists an almost-sure
winning strategy in GL from 〈q0

0 , 0〉, and there exists an η-optimal composer if
and only if the value in GL at 〈q0

0 , 0〉 is at least η.

Proof sketch. There are two steps to establish correctness of the reduction. The
first step is given a composer over L to construct a finite-memory strategy for
player 1 in GL. Intuitively, this is simple as a composer represents a strategy for
a partial-observation game (Remark 1), whereas in GL we have perfect informa-
tion. However, not every strategy in GL can be converted to a composer. But we
show that a pure memoryless strategy in GL can be converted to a composer.

Valid pure memoryless strategies in GL. A pure memoryless strategy π in GL is
valid if the following condition holds: for all states 〈qix, i〉 ∈ S1 if π(〈qix, i〉) = j,
then 〈x,Mj〉 ∈ R, i.e., the choices of the pure memoryless strategies respect the
exit control relation.

Valid pure memoryless strategies to composers. Given a valid pure memoryless
strategy π in GL we define a composer Cπ = 〈D,L,M,M0, ∆, λ〉 as follows:
M = [k], M0 = 0, λ(i) = Mi, and for 0 ≤ i ≤ k and x ∈ D we have that
∆(i, x) = j where π(〈qix, i〉) = j for qix ∈ Fi. In other words, for the composer
there is a state for every component, and given a component and an exit state, the
composer plays as the pure memoryless strategy. Since π is valid, the composer
obtained from π is compatible with the relation R. Note that the composer
mimics the pure memoryless strategy, and there is a one-to-one correspondence
between strategies of player 2 in GL and strategies of the environment in TCπ .

Theorem 2 (Complexity of embedded parity realizability). The qual-
itative and quantitative realizability problems for controlflow composition with
embedded parity belong to UP ∩ coUP, and are at least as hard as the (almost-
sure) decision problem for perfect-information deterministic parity games.

4 Realizability with DPW Specifications

In this section we present three results. First, we present a new result for partial-
observation stochastic parity games. Second, we show that the qualitative real-
izability problem for DPW specifications can be reduced to our solution for
partial-observation stochastic games yielding an EXPTIME-complete result for
the problem. Finally, we show that the quantitative realizability problem for
DPW specifications is undecidable.

4.1 Partial-observation Stochastic Parity Games

We consider partial-observation games with restrictions on strategies that corre-
spond to the qualitative realizability problem, and present a new result to solve
such games.

Partial-observation stochastic games. In a stochastic game with partial
observation, some states are not distinguishable for player 1. We say that they
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have the same observation for player 1. Formally, a partial-observation stochastic
game consists of a stochastic game G = 〈S, S1, S2, A1, A2, δ

G〉, a finite set O of
observations, and a mapping obs : S → O that assigns to each state s of the
game an observation obs(s) for player 1.

Observational equivalence and strategies. The observation mapping in-
duces indistinguishability of play prefixes for player 1, and therefore we need
to consider only the player-1 strategies that play in the same way after two
indistinguishable play prefixes. We consider two classes of strategies depending
on the indistinguishability of play prefixes for player 1 and they are as follows:
(i) the play prefixes have the same observation sequence; and (ii) the play pre-
fixes have the same sequence of distinct observations, that is they have the same
observation sequence up to repetition (stuttering).

Classes of strategies. The observation sequence of a sequence ρ = s0s1 . . . sn
is the sequence obs(ρ) = obs(s0) . . . obs(sn) of state observations; the collapsed
stuttering of ρ is the sequence obs(ρ) = o0o1o2 . . . of distinct observations defined
as follows: o0 = obs(s0) and for all i ≥ 1 we have oi = obs(si) if obs(si) 6=
obs(si−1), and oi = ε otherwise (where ε is the empty sequence). We consider
two types of strategies. A strategy π for player 1 is
– observation-based if for all sequences ρ, ρ′ ∈ S+ such that last(ρ) ∈ S1 and

last(ρ′) ∈ S1, if obs(ρ) = obs(ρ′) then π(ρ) = π(ρ′);
– collapsed-stutter-invariant if for all sequences ρ, ρ′ ∈ S+ such that last(ρ) ∈
S1 and last(ρ′) ∈ S1, if obs(ρ) = obs(ρ′), then π(ρ) = π(ρ′).
We now present a polynomial-time reduction for deciding the existence

of finite-memory almost-sure winning collapsed-stutter-invariant strategies to
observation-based strategies, which is EXPTIME-complete [5].

Reduction of collapsed-stutter-invariant problem to observation-based
problem. There are two main ideas of the reduction. (1) First, whenever player 1
plays an action a, the action a is stored in the state space as long as the obser-
vation of the state remains the same. This allows to check that player 1 plays
always the same action along a sequence of identical observations. (2) Second,
whenever a transition is executed, player 2 is allowed to loop arbitrarily many
times through the new state. This ensures that player 1 cannot rely on the
number of times he sees an observation, thus that player 1 is collapsed-stutter-
invariant. However, it should be forbidden for player 2 to loop forever in a state,
which can be ensured by assigning priority 0 to the loop. Hence player 1 wins the
parity objective if the loop is taken forever by player 2, and otherwise, visiting
priority 0 infinitely often does not change the winner of the game.

The formal reduction. Given a partial-observation stochastic game G =
〈S, S1, S2, A1, A2, δ

G〉 with observation mapping obs : S → O, we construct
a game G′ = 〈S′, S′1, S′2, A1, A

′
2, δ

G′〉 as follows:
– S′ = S × (A1 ∪ A1 ∪ {0, 0}) ∪ {⊥} where A1 = {a | a ∈ A1}, assuming that

0 6∈ A1. The states 〈s, 0〉 are a copy of the state space of the original game,
and in the states 〈s, a〉 with s ∈ S1 and a ∈ A1, player 1 is required to play
action a; in the states 〈s, 0〉 and 〈s, a〉, player 2 can stay for arbitrarily many
steps. The state ⊥ is absorbing and losing for player 1.
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– S′1 = S1 × (A1 ∪ {0}) ∪ {⊥}; S′2 = S′ \ S′1; and A′2 = A2 ∪ {]}, assuming
] 6∈ A2.

– The probabilistic transition function δG
′

is defined as follows: for all player-1
states 〈s, x〉 ∈ S′1 and actions a ∈ A1:
• if x ∈ A1 \ {a}, then let δG

′
(〈s, x〉, a))(⊥) = 1, that is player 1 loses the

game if he does not play the stored action;
• if x = a or x = 0, then for all s′ ∈ S let
δG

′
(〈s, x〉, a))(〈s′, a〉) = δG(s, a)(s′) if obs(s′) = obs(s), and let

δG
′
(〈s, x〉, a))(〈s′, 0〉) = δG(s, a)(s′) if obs(s′) 6= obs(s); thus we store the

action a as long as the state observation does not change;
• All other probabilities δG

′
(〈s, x〉, a))(·) are set to 0, for example

δG
′
(〈s, 0〉, a))(〈s′, y〉) = 0 for all y 6= a;

and for all player-2 states 〈s, x〉 ∈ S′2, and actions a ∈ A2:
• if x ∈ A1 ∪ {0}, then for all s′ ∈ S let
δG

′
(〈s, x〉, a))(〈s′, x〉) = δG(s, a)(s′) if obs(s′) = obs(s), and let

δG
′
(〈s, x〉, a))(〈s′, 0〉) = δG(s, a)(s′) if obs(s′) 6= obs(s); thus all actions

are available to player 2 as in the original game, and the stored action x
of player 1 is maintained if the state observation does not change;

• if x = b for some b ∈ A1 ∪ {0}, then let
δG

′
(〈s, b〉, ]))(〈s, b〉) = 1, and

δG
′
(〈s, b〉, a))(〈s, b〉) = 1 if a 6= ]; thus player 2 can decide to stay arbi-

trarily long in 〈s, b〉 before going back to 〈s, b〉;
• All other probabilities δG

′
(〈s, x〉, a))(·) and δG

′
(〈s, x〉, ]))(·) are set to 0.

The observation mapping obs′ is defined according to the first component of
the state: obs′(〈s, x〉) = obs(s). Given an index function α for G, define the index
function α′ for G′ as follows: α′(〈s, x〉) = α(s) and α′(〈s, x〉) = 0 for all s ∈ S
and x ∈ A1 ∪ {0}, and α′(⊥) = 1. Hence, the state ⊥ is losing for player 1, and
the player-2 states 〈s, x〉 are winning for player 1 if player 2 stays there forever.

Lemma 2. Given a partial-observation stochastic game G with observation
mapping obs and parity objective Φα defined by the index function α, a game
G′ with observation mapping obs′ and parity objective Φα′ defined by the in-
dex function α′ can be constructed in polynomial time such that the following
statements are equivalent:
– there exists a finite-memory almost-sure winning collapsed-stutter-invariant

strategy π for player 1 in G from s0 for the parity objective Φα;
– there exists a finite-memory almost-sure winning observation-based strategy
π′ for player 1 in G′ from 〈s0, 0〉 for the parity objective Φα′ .

Theorem 3. The qualitative problem of deciding the existence of a finite-
memory almost-sure winning collapsed-stutter-invariant strategy in partial-
observation stochastic games with parity objectives is EXPTIME-complete.

4.2 Qualitative and Quantitative Realizability

We present a polynomial reduction for the qualitative realizability problem with
DPW specifications to the existence of finite-memory collapsed-stutter-invariant
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almost-sure winning strategies, and thus show that the problem can be solved
in EXPTIME. An EXPTIME lower bound is known for this problem [2].

Theorem 4. The qualitative realizability problem for controlflow composition
with DPW specifications is EXPTIME-complete.

Finally, we establish undecidability of the quantitative realizability problem
by a reduction from the quantitative decision problem for probabilistic automata
(which is undecidable [15]).

Theorem 5. The quantitative realizability problem for controlflow composition
with DPW specifications is undecidable.
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