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Abstract. We consider two-player partial-observation stochasticngm on
finite-state graphs where player 1 has partial observatidrptayer 2 has perfect
observation. The winning condition we study areegular conditions specified
as parity objectives. The qualitative-analysis problewegia partial-observation
stochastic game and a parity objective asks whether therstimtegy to ensure
that the objective is satisfied with probability 1 (resp.ipes probability). These
qualitative-analysis problems are known to be undecidabtavever in many
applications the relevant question is the existence ofefimiemory strategies,
and the qualitative-analysis problems under finite-mersttegies was recently
shown to be decidable in 2EXPTIME. We improve the compleaitgd show that
the qualitative-analysis problems for partial-obsenmtstochastic parity games
under finite-memory strategies are EXPTIME-complete; dad establish opti-
mal (exponential) memory bounds for finite-memory strasgequired for qual-
itative analysis.

1 Introduction

Games on graphsTwo-player stochastic games on finite graphs played for itefin
rounds is central in many areas of computer science as thesdera natural set-
ting to model nondeterminism and reactivity in the presesiceandomness. In par-
ticular, infinite-duration games with omega-regular objexs are a fundamental tool
in the analysis of many aspects of reactive systems such dslimg, verification, re-
finement, and synthesis [2, 16]. For example, the standgstbaph to the synthesis
problem for reactive systems reduces the problem to findiegMinning strategy of a
suitable game [22]. The most common approach to games assus®tting with per-
fect information, where both players have complete knogaeaf the state of the game.
In many settings, however, the assumption of perfect in&tion is not valid and it is
natural to allow an information asymmetry between the pisysuch as, controllers
with noisy sensors and software modules that expose pentigsfaces [23].

Partial-observation stochastic game®artial-observation stochastic games are played
between two players (player 1 and player 2) on a graph wittefgtate space. The game
is played for infinitely many rounds where in each round eithayer 1 chooses a move
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or player 2 chooses a move, and the successor state is deteriny a probabilistic

transition function. Player 1 has partial observation wehbe state space is partitioned
according to observations that she can observe i.e., gheeourrent state, the player
only views its observation (the partition the state belaysbut not the precise state.
Player 2 (adversary to player 1) has perfect observatiorobrdrves the precise state.

The class ofv-regular objectivesAn objective specifies the desired set of behaviors
(or paths) for player 1. In verification and control of stosti@systems an objective is
typically anw-regular set of paths. The classwiregular languages extends classical
regular languages to infinite strings, and provides a robpstification language to
express all commonly used specifications [24]. In a parifedive, every state of the
game is mapped to a non-negative integer priority and théigda ensure that the
minimum priority visited infinitely often is even. Parity @ttives are a canonical way
to define suclv-regular specifications. Thus partial-observation stetb@ames with
parity objective provide a general framework for analy$istochastic reactive systems.

Qualitative and quantitative analysi&iven a partial-observation stochastic game with
a parity objective and a start state, tipgalitative-analysigproblem asks whether the
objective can be ensured with probability dlriost-sure winningor positive proba-
bility (positive winning; whereas theuantitative-analysiproblem asks whether the
objective can be satisfied with probability at leadbr a given threshold € (0, 1).

Previous resultsThe quantitative analysis problem for partial-observastochastic
games with parity objectives is undecidable, even for thg gpecial case of proba-
bilistic automata with reachability objectives [21]. Thealjtative-analysis problems
for partial-observation stochastic games with parity otijes are also undecidable [3],
even for probabilistic automata. In many practical appiares, however, the more rel-
evant question is the existence of finite-memory stratedibe quantitative analysis
problem remains undecidable for finite-memory strategigen for probabilistic au-
tomata [21]. The qualitative-analysis problems for p&diaservation stochastic par-
ity games were shown to be decidable with 2EXPTIME compyebdit finite-memory
strategies [20]; and the exact complexity was open whichetttesin this work.

Our contributions.Our contributions are as follows: for the qualitative-atsé& prob-
lems for partial-observation stochastic parity games ufidige-memory strategies we
show that (i) the problems are EXPTIME-complete; and (ithére is a finite-memory
almost-sure (resp. positive) winning strategy, then thegestrategy that uses at most
exponential memory (matching the exponential lower bourahkn for the simpler case
of reachability and safety objectives). Thus we establisth loptimal computational
and strategy complexity results. Moreover, once a finiteaory strategy is fixed for
player 1, we obtain a finite-state perfect-information Marklecision process (MDP)
for player 2 where finite-memory is as powerful as infinitemaey [12]. Thus our
results apply to both cases where player 2 has infinite-mgimorestricted to finite-
memory strategies.

Technical contributionThe 2EXPTIME upper bound of [20] is achieved via a reduc-
tion to the emptiness problem of alternating parity tre@mnata. The reduction of [20]
to alternating tree automata is exponential as it requinesneration of the end com-
ponents and recurrent classes that can arise after fixiatpgies. We present a poly-
nomial reduction, which is achieved in two steps. The firgpss as follows: docal
gadget-basededuction (that transforms every probabilistic state to@al gadget of
deterministic states) for perfect-observation stochagtimes to perfect-observation de-



terministic games for parity objectives was presented In$]. This gadget, however,
requires perfect observation for both players. We exteisd#fduction and present a lo-
cal gadget-based polynomial reduction of partial-obd@matochastic games to three-
player partial-observation deterministic games, wheagga 1 has partial observation,
the other two players have perfect observation, and playeh8Ipful to player 1. The
crux of the proof is to show that the local reduction allowsrtfer properties about
recurrent classes and end components (which are globadiies). In the second step
we present a polynomial reduction of the three-player ggmaislem to the emptiness
problem of alternating tree automata. We also remark tleatélv model of three-player
games we introduce for the intermediate step of the reductiaybe also of indepen-
dent interest for modeling of other applications.

Related works.The undecidability of the qualitative-analysis problenrt frartial-
observation stochastic parity games with infinite-memargtsgies follows from [3].
For partially observable Markov decision processes (POB)PFhich is a special case
of partial-observation stochastic games where player 2 doehave any choices, the
qualitative-analysis problem for parity objectives withifé-memory strategies was
shown to be EXPTIME-complete [6]. For partial-observatiginchastic games the
almost-sure winning problem was shown to be EXPTIME-coitepfer Bichi ob-
jectives (both for finite-memory and infinite-memory stoaés) [10, 7]. Finally, for
partial-observation stochastic parity games the almas-svinning problem under
finite-memory strategies was shown to be decidable in 2EXETih [20].

Summary and discussiofihe results for the qualitative analysis of various modéls o
partial-observation stochastic parity games with finitermory strategies for player 1
is summarized in Table 1. We explain the results of the tabihe results of the first
row follows from [6] and the results for the second row are ibgults of our contri-
butions. In the most general case both players have paktsadraation. If we consider
partial-observation stochastic games where both players partial observation, then
the results of the table are derived as follows: (a) If we @®rinfinite-memory strate-
gies for player 2, then the problem remains undecidable anplayer 1 is non-existent
we obtain POMDPs as a special case. The non-elementary werd follows from
the results of [7] where the lower bound was shown for reaitibabbjectives where
finite-memory strategies suffice for player 1 (against batftefiand infinite-memory
strategies for player 2). (b) If we consider finite-memomatggies for player 2, then
the decidability of the problem is open, but we obtain the-eamentary lower bound
on memory from the results of [7] for reachability objectve

| Game Models | Complexity | Memory bounds |

POMDPs EXPTIME-complete [6] Exponential [6]
Player 1 partial and player 2 perfect EXPTIME-complete Exponential
(finite- or infinite-memory for player 2

Both players partial Undecidable [3] Non-elementary [7
infinite-memory for player 2 (Lower bound)

Both players partial Open (??) Non-elementary [7
finite-memory for player 2 (Lower bound)

Table 1.Complexity and memory bounds for qualitative analysis afiphobservation stochastic
parity games with finite-memory strategies for player 1. mbe results are boldfaced.



2 Partial-observation Stochastic Parity Games

We consider partial-observation stochastic parity gantesrevplayer 1 has partial ob-
servation and player 2 has perfect observation. We conpaldty objectives, and for

almost-sure winning under finite-memory strategies foygtdl present a polynomial
reduction to sure winning in three-player parity games wtgayer 1 has partial ob-
servation, player 3 has perfect observation and is helpfudids player 1, and player 2
has perfect observation and is adversarial to player 1. Aaineduction also works for

positive winning. We then show in the following section hansblve the sure winning

problem for three-player games using alternating parég tutomata.

2.1 Basic definitions
We start with basic definitions related to partial-obsdorastochastic parity games.

Partial-observation stochastic gaméale consider slightly different notation (though
equivalent) to the classical definitions, but the slighifedent notation helps for more
elegant and explicit reduction. We consider partial-obeson stochastic games as a
tupleG = (51, S2, Sp, A1, 9, E, O, obs) as follows:S = S; US> USp is the state space
partitioned into player-1 state$y), player-2 statesY;), and probabilistic statesS¢);
andA; is afinite set of actions for player 1. Since player 2 has jpedbservation, she
chooses edges instead of actions. The transition functias follows: : S; x A; —

S, that given a player-1 state ifi; and an action in4; gives the next state i
(which belongs to player 2); and: Sp — D(S1) given a probabilistic state gives the
probability distribution over the set of player-1 statebeTset of edges is as follows:
E = {(s,t) | s € Sp,t € S1,0(s)(t) > 0} U E’, whereE’ C Sy x Sp. The
observation se®) and observation mappirgbs are standard, i.eobs : S — O. Note
that player 1 plays after every three steps (every move geplais followed by a move
of player 2, then a probabilistic choice). In other wordstfilayer 1 chooses an action,
then player 2 chooses an edge, and then there is a probatditibution over states
where player 1 again chooses and so on.

Three-player non-stochastic turn-based game®¥/e consider three-player
partial-observation (non-stochastic turn-based) games aa tuple G =
(S1, 52,55, 41,6, E,0,0bs) as follows: S is the state space partitioned into
player-1 statesy;), player-2 statesY,), and player-3 states§); and A, is a finite set
of actions for player 1. The transition function is as follw : S; x A; — S, that
given a player-1 state if; and an action imd; gives the next state (which belongs to
player 2). The set of edges is as follows:C (S, U S3) x S. Hence in these games
player 1 chooses an action, and the other players have pelfservation and choose
edges. We only consider the sub-class where player 1 plaehyk-steps, for a fixed
k. The observation s&P and observation mappirgs are again standard.

Plays and strategiesA play in a partial-observation stochastic game is an infinite se-
guence of statesys; s, . . . such that the following conditions hold for &ll> 0: (i) if

s; € Sp, then there exists; € A; suchthat; 1 = d(s;, a;); and (i) if s; € (S2USp),
then (s;,s;+1) € E. The functionobs is extended to sequencgs= sg...s, Of
states in the natural way, namelys(p) = obs(sy) . ..obs(s,). A strategy for a player

is a recipe to extend the prefix of a play. Formally, playetrategies are functions

o : 8*-S; — Aj; and player-2 (and analogously player-3 strategies) ametions:

7w : 8% .Sy — S such that for alw € S* ands € S, we have(s,7(w - s)) € E.

We consider only observation-based strategies for playiez.1for two play prefixeg



andp’ if the corresponding observation sequences matb#(f) = obs(p’)), then the
strategy must choose the same actiefp] = o(p’)); and the other players have all
strategies. The notations for three-player games areagimil

Finite-memory strategie®\ player-1 strategy usdinite-memonyif it can be encoded
by a deterministic transducéM, mg, o,,, 0,,) whereM is a finite set (the memory of
the strategy)mo € M is the initial memory valuey, : M x O — M is the memory-
update function, and,, : M — A; is the next-move function. Th&zeof the strategy
is the numbetM| of memory values. If the current observatiorvisand the current
memory value isn, then the strategy chooses the next actigfin), and the memory
is updated t@r, (m, o). Formally,(M, mg, 0., 0,) defines the strategy such that(p -
s) = on(0,(mg,obs(p) - obs(s)) for all p € S* ands € S, wheres,, extendss,,
to sequences of observations as expected. This definitimm@s to infinite-memory
strategies by not restricting to be finite.

Parity objectivesAn objectivefor Playerl in G is a setp C S“ of infinite sequences
of states. A play satisfiesthe objectivep if p € ¢. For a playp = sgs; ... we de-
note bylnf(p) the set of states that occur infinitely oftengnthat is,Inf(p) = {s |
s; = s forinfinitely many;’'s}. Ford € N, letp : S — {0,1,...,d} be apriority
function which maps each state to a nonnegative integer prioritg. pirity objec-
tive Parity(p) requires that the minimum priority that occurs infinitelytesf be even.
Formally, Parity(p) = {p | min{p(s) | s € Inf(p)} is ever}. Parity objectives are a
canonical way to expressregular objectives [24].

Almost-sure winning and positive winningn eventis a measurable set of plays. For
a partial-observation stochastic game, given strategiesd r for the two players,
the probabilities of events are uniquely defined [25]. Forgtp objectiveParity(p),
we denote byP? ™ (Parity(p)) the probability thatParity(p) is satisfied by the play
obtained from the starting statevhen the strategiesandr are used. Thalmost-sure
(resp.positive winning problem under finite-memory strategies asks, meeartial-
observation stochastic game, a parity objeddisgty(p), and a starting state whether
there exists a finite-memory observation-based strategy player 1 such that against
all strategiesr for player 2 we hav@®?:" (Parity(p)) = 1 (resp.P2™ (Parity(p)) > 0).
The almost-sure and positive winning problems are alsanedeo as the qualitative-
analysis problems for stochastic games.

Sure winning in three-player games three-player games once the starting state
and strategies, 7, andr of the three players are fixed we obtain a unique play, which
we denote a®2™". In three-player games we consider the followswge winning
problem: given a parity objectivBarity(p), sure winning is ensured if there exists a
finite-memory observation-based strategyor player 1, such that in the two-player
perfect-observation game obtained after fixinglayer 3 can ensure the parity objec-
tive against all strategies of player 2. Formally, the suirewng problem asks whether
there exist a finite-memory observation-based stratefpyr player 1 and a strategy

for player 3, such that for all strategiesfor player 2 we have?™" € Parity(p).

Remark 1 (Equivalence with standard modéle remark that for the model of partial-
observation stochastic games studied in literature the players simultaneously
choose actions, and a probabilistic transition functiotexeine the probability dis-
tribution of the next state. In our model, the game is turadoband the probability
distribution is chosen only in probabilistic states. Hoeet follows from the results



of [8] that the models are equivalent: by the results of [&ti®a 3.1] the interaction of
the players and probability can be separated without loggenérality; and [8, Theo-
rem 4] shows that in presence of partial observation, caratigpames can be reduced
to turn-based games in polynomial time. Thus the turn-beasmael where the moves of
the players and stochastic interaction are separated igadept to the standard model.
Moreover, for a perfect-information player choosing anacis equivalent to choosing
an edge in a turn-based game. Thus the model we considers ko to the standard
partial-observation game models.

Remark 2 (Pure and randomized strategiéshis work we only consider pure strate-
gies. In partial-observation games, randomized stradegyie also relevant as they are
more powerful than pure strategies. However, for finite-ropnstrategies the almost-
sure and positive winning problem for randomized strategan be reduced in polyno-
mial time to the problem for finite-memory pure strategie2[J]. Hence without loss
of generality we only consider pure strategies.

2.2 Reduction of partial-observation stochastic games tditee-player games

In this section we present a polynomial-time reduction fog &lmost-sure winning
problem in partial-observation stochastic parity gamekéosure winning problem in
three-player parity games.

Reduction.Let us denote byd] the set{0,1,...,d}. Given a partial-observation
stochastic parity game gragh = (51, .52, Sp, 41,9, E, O, obs) with a parity objec-
tive defined by priority functiop : S — [d] we construct a three-player game graph
G = (51,852,853, 41,6, E,0, obs) together with priority functiors. The construction

is specified as follows.

1. For every nonprobabilistic statec S; U S, there is a corresponding states S
such that (is € S, if s € Sy, elses € Sy; (i) P(3) = p(s) andobs(3) = obs(s);

(iii) 6(3,a) = T wheret = §(s,a), for s € S; anda € A;; and (V) (3,%) € E iff
(s,t) € E,fors € Ss.

2. Every probabilistic state € Sp is replaced by the gadget shown in Figure 1 for
illustration. In the figure, square-shaped states are plagtates (irf,), and circle-
shaped (or ellipsoid-shaped) states are player-3 state% )i Formally, from the
states with priority p(s) and observationbs(s) (i.e.,p(3) = p(s) andobs(3) =
obs(s)) the players play the following three-step gamein

— In states player 2 chooses a succes§ar2k), for 2k € {0,1,...,p(s) + 1}.
— For every statés, 2k), we havep((s,2k)) = p(s) andobs((3, 2k)) = obs(s).
For k > 1, in state(s, 2k) player 3 chooses between two successors: state
(5,2k — 1) with priority 2k — 1 and same observation asor state(s, 2k)
with priority 2k and same observation as(i.e.,p((s,2k — 1)) = 2k — 1,
P((8,2k)) = 2k, andobs((5,2k — 1)) = obs((5, 2k)) = obs(s)). The state
(5,0) has only one success@#,0), with 5((5,0)) = 0 andobs((5,0)) =
obs(s).
— Finally, in each stat€s, k) the choice is between all statesuch that(s,t) €
E, and it belongs to player 3 (i.e., B%) if k is odd, and to player 2 (i.e., i)
if kis even. Note that every state in the gadget has the samevatearass.
We denote byG = Tr,(G) the three-player game, where player 1 has partial-
observation, and both player 2 and player 3 have perfearglton, obtained from



a partial-observation stochastic game. Observe thét there are exactly four steps
between two player 1 moves.

Observation sequence mappimdpte that since in our partial-observation games first
player 1 plays, then player 2, followed by probabilisticteta repeated ad infinitum,
wlog, we can assume that for every observation © we have either (ipbs~'(0) C
St; or (i) obs_l(o) C So; or (i) obs_l(o) C Sp. Thus we partition the observations as
01, O3, andOp. Given an observation sequence- 0y010s . . . 0, in G corresponding
to a finite prefix of a play, we inductively define the sequemee h(x) in G as follows:

(i) h(0g) = 0g if 09 € O1 U Os, elseogoyoy; (i) h(0go; . ..0n) = h(0go1 . ..0n_1)0n

if 0, € O1 U Oy, elseh(ogo; . ..0,_1)0,0,0,. Intuitively the mapping takes care of
the two extra steps of the gadgets introduced for probéibiBsates. The mapping is a
bijection, and hence given an observation sequamafea play prefix inG' we consider
the inverse play prefix = 7 (%) such thafi(x) = 7.

Strategy mappingGiven an observation-based stratégin G we consider a strategy
o = Tr,s(o) as follows: for an observation sequenceorresponding to a play pre-
fix in G we haves(x) = 7(h(x)). The strategy is observation-based (sineeis
observation-based). The inverse mapging, ' of strategies fronG to G is analo-
gous. Note that fot in G we haveTraS(Tras‘l(a)) = o. Let be a finite-memory
strategy with memory for player 1 in the gamé’. The strategy can be considered
as a memoryless strategy, denote@as= MemlLess(7), in G x M (the synchronous
product ofG with M). Given a strategy (pure memorylessior player 2 in the2-player
gameG x M, a strategyr = Tr,(7) in the partial-observation stochastic gaGiex M

is defined asr((s,m)) = (t,m’), if and only if 7((5,m)) = (t,m’); forall s € S,.

End componentssiven an MDP, a sel/ is an end component in the MDP if the sub-
graph induced by’ is strongly connected, and for all probabilistic state#’iall out-
going edges end up i@ (i.e., U is closed for probabilistic states). They property
about MDPs that is used in our proofs is a result establislydd 2 13] that given an
MDP, for all strategies, with probability 1 the set of statésited infinitely often is an
end component. The key property allows us to analyze end eoergs of MDPs and
from properties of the end component conclude propertieatad! strategies.

The key lemmale now present our main lemma that establishes the corsecti¢he
reduction. Since the proof of the lemma is long we split theopinto two parts.

Lemma 1. Given a partial-observation stochastic parity gadevith parity objective
Parity(p), letG = Tr.s(G) be the three-player game with the modified parity objective
Parity(p) obtained by our reduction. Consider a finite-memory strategvith memory

M for player 1 inG. Let us denote byis the perfect-observation two-player game
played ovelG x M by player 2 and player 3 after fixing the strategyor player 1. Let

U. ={(3,m) € SxM | player 3 has a sure winning strategy arity(5) from (3, m) in G=};

andletl’; = (SxM)\T; be the set of sure winning states for player Zig. Consider

the strategyy = Tr.s(7), and the setd/7 = {(s,m) € S x M | (5,m) € Uf}; and
Ug = (S x M)\ UY. The following assertions hold.
1. Forall(s,m) € U7, for all strategiesr of player 2 we hav®7:" . (Parity(p)) = 1.

(s,m)
2. For all (s,m) € Ug, there exists a strategyr of player 2 such that
P ) (Parity(p)) <1.

(s;m
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We first present the proof for part 1 and then for part 2.

0

Fig. 1. Reduction gadget whep(s) is even.

Proof (of Lemma 1: part 1)Consider a finite-memory strate@y for player 1 with
memoryM in the game?. Once the strategy is fixed we obtain the two-player finite-
state perfect-observation gafig (between player 3 and the adversary player 2). Recall
the sure winning sef§; for player 3, and/; = (5xM)\U, for player 2, respectively,

in G5. Let o = Tr, () be the corresponding strategy @ We denote bys* =
MemLess(z) ando™ the corresponding memoryless strategies af G x M ando in

G x M, respectively. We show that all statedifi are almost-sure winning, i.e., given
forall (s,m) € U7, for all strategies for player 2 inG we haveP:” . (Parity(p)) =1

(s,m)
(recallUg = {(s,m) € S x M | (3,m) € U7 }). We also consider explicitly the MDP
(G x M | UY),~ to analyze strategies of player 2 on the synchronous prpdeigtwe
consider the player-2 MDP obtained after fixing the memaykrategy™ in G x M,
and then restrict the MDP to the 9éf .

Two key component$he proof has two key components. First, we argue that all end
components in the MDP restricted & are winning for player 1 (have min priority
even). Second we argue that given the starting $tate) is in U{, almost-surely the
set of states visited infinitely often is an end componeriffnagainst all strategies of
player 2. These two key components establish the desiratl.res

Winning end component®ur first goal is to show that every end compon€énih the
player-2 MDP(G x M | UY),~ is winning for player 1 for the parity objective, i.e., the
minimum priority ofC is even. We argue that if there is an end compog&nt(GxM |
UY).+ that is winning for player 2 for the parity objective (i.e.immum priority of C

is odd), then against any memoryless player-3 strateigyG, player 2 can construct
a cycle in the gaméG x M | Uf)g* that is winning for player 2 (i.e., minimum
priority of the cycle is odd) (note that given the strategys fixed, we have finite-
state perfect-observation parity games, and hence in fheged game we can restrict



ourselves to memoryless strategies for player 3). Thissgaveontradiction because

player 3 has a sure winning strategy from the@%tin the 2-player parity gamé’.
Towards contradiction, let’ be an end component {i&@ x M | UY),~ that is winning
for player 2, and let its minimum odd priority I# — 1, for somer € N. Then there
is a memoryless strategy for player 2 in the MDRG x M | UY),- such thaC is a
bottom scc (or a terminal scc) in the Markov chain grapftok M | U7 ),« . LetT be
a memoryless for player 3 i{G' x M | UT);*. GivenT for player 3 and strategy’ for
player 2 inG' x M, we construct a strateg@yfor player 2 in the gaméG x M | Uf)g*
as follows. For a player-2 state @, the strategyr follows the strategyr’, i.e., for a
state(s,m) € C with s € Sy we haver((s,m)) = (¢, m’) where(t,m’) = 7'((s,m)).
For a probabilistic state i6’ we define the strategy as follows (i.e., we now consider a
state(s,m) € C with s € Sp):
— if for some successor stat€s, 2¢), m’) of (s, m), the player-3 strategy chooses
a successof(s, 2¢ — 1),m"”) € C at the statd(s, 2¢), m’), for ¢ < r, then the
strategym chooses at stai@, m) the successd((s, 2¢), m’); and
— otherwise the strategy chooses at stat@, m) the successdi(s, 2r), m'), and at
((8,2r), m") it chooses a successor shortening the distance (i.e.,ehaagicces-
sor with smaller breadth-first-search distance) to a fixate$s*, m*) of priority
2r — 1 of C (such a statés*, m*) exists inC sinceC is strongly connected and
has minimum priority2r — 1); and for the fixed state of priorit — 1 the strategy
chooses a success@; m') such tha(s,m’) € C.
Consider an arbitrary cycle in the subgrafgh x M | C)z =~ whereC is the set of
states in the gadgets of states(in There are two cases. (Case 1): If there is at least
one state((s, 2¢ — 1), m), with £ < r on the cycle, then the minimum priority on the
cycle is odd, as even priorities smaller thiianare not visited by the construction &s
does not contain states of even priorities smaller than(Case 2): Otherwise, in all
states choices shortening the distance to the state withitgr2r — 1 are taken and
hence the cycle must contain a priorty — 1 state and all other priorities on the cycle
are> 2r — 1, so2r — 1 is the minimum priority on the cycle. Hence a winning end
component for player 2 in the MDP contradicts that player8aaure winning strategy

in Gz from U'f. Thus it follows that all end components are winning for glag in
(G xM [ U7)px.

Almost-sure reachability to winning end-componeFigally, we consider the proba-
bility of staying in U{. For every probabilistic statés,m) € (Sp x M) n U7, all
of its successors must be I7. Otherwise, player 2 in the sta(g, m) of the game
G5 can choose the succesg@r0) and then a successor to its winning B_égt._This

again contradicts the assumption tli&tm) belong to the sure winning sta@sf for
player 3 inG5. Similarly, for every statés, m) € (So x M) N U{ we must have all its
successors are iy . For all stategs, m) € (S1 x M) N U7, the strategy chooses
a successor ilVY. Hence for all strategies of player 2, for all stategs, m) € UY,
the objectiveSafe(Uy) (which requires that only states U are visited) is ensured
almost-surely (in fact surely), and hence with probabilitihe set of states visited in-
finitely often is an end component i (by key property of MDPs). Since every end
componentinG x M | UY),~ has even minimum priority, it follows that the strategy
o is an almost-sure winning strategy for the parity objeckusty(p) for player 1 from
all stategs,m) € U7 . This concludes the proof for first part of the lemma. |



Proof (of Lemma 1:part2)Consider a memoryless sure winning stratedgr player 2

in G& from the seflJ ; Let us consider the strategies= Tr.s(c) andn = Tr.s(7),
and consider the Markov chad#, .. Our proof shows the following two properties to
establish the claim: (1) in the Markov chaif, . all bottom sccs (the recurrent classes)
in US have odd minimum priority; and (2) from all stateslif some recurrent class in
UY is reached with positive probability. This establishesdésired result of the lemma.

No winning bottom scc for player 1 iry. Assume towards contradiction that there
is a bottom sc” contained inUg in the Markov chain, . such that the minimum
priority in C'is even. FronC' we construct a winning cycle (minimum priority is even)

in U, for player 3 in the gamé&z given the strategy. This contradicts that is a sure

winning strategy for player 2 frorﬁg in G. Let the minimum priority ofC' be 2r for
somer € N. The idea is similar to the construction of part 1. Givérand the strategies
@ and7, we construct a strategyfor player 3 inG as follows: For a probabilistic state
(s,m)inC:

— if T chooses a statgs, 2¢ — 2),m’), with ¢ < r, thenT chooses the successor
((5,2¢—=2),m’);

— otherwisef > r (i.e., 7 chooses a stalgs, 2¢ — 2), m’) for £ > r), thenT chooses
the state((s,2¢ — 1), m'), and then a successor to shorten the distance to a fixed
state with priority2r (such a state exists ifl); and for the fixed state of priori¥r,
the strategyr chooses a successordh

Similar to the proof of part 1, we argue that we obtain a cyciéh wninimum even
priority in the graph(G' x M | U;)gﬁ;. Consider an arbitrary cycle in the subgraph
(GxM | C)z==whereC is the set of states in the gadgets of stateS.ifihere are two
cases. (Case 1): If there is at least one gt@te2¢—2), m), with £ < r on the cycle, then
the minimum priority on the cycle is even, as odd prioritiggely smaller thar2r + 1
are not visited by the construction @sdoes not contain states of odd priorities strictly
smaller thar2r + 1. (Case 2): Otherwise, in all states choices shortening igiarte

to the state with priority2r are taken and hence the cycle must contain a pri@rity
state and all other priorities on the cycle a&e&r, so2r is the minimum priority on the
cycle. Thus we obtain cycles winning for player 3, and thistcadicts thafr is a sure

winning strategy for player 2 frorﬁg. Thus it follows that all recurrent classesliy
in the Markov chain,, . are winning for player 2.

Not almost-sure reachability t&'¢. We now argue that givesa andr there exists no
state inU$ such thalyy is reached almost-surely. This would ensure that from aest

in U$ some recurrent class i is reached with positive probability and establish the
desired claim since we have already shown that all recuctesses iU are winning
for player 2. Givers andm, let X C UJ be the set of states such that the B¢tis
reached almost-surely frofd, and assume towards contradiction tais non-empty.
This implies that from every state i, in the Markov chainG,, ., there is a path to
the setUy, and from all states iX the successors are . We construct a strategy
7 in the three-player gam@s against strategyr exactly as the strategy constructed
for winning bottom scc, with the following difference: ilesid of shortening distance
the a fixed state of prioritgr (as for winning bottom scc’s), in this case the strategy

T shortens distance tﬁi’_ Formally, givenX, the strategie and7, we construct a
strategyr for player 3inG as follows: For a probabilistic stafe, m) in X:
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— if 7 chooses a statgs, 2¢), m’), with £ > 1, thenT choose§ the statés, 2¢ —
1), m’), and then a successor to shorten the distance to tii& ssuch a successor
exists since from all states ik the sell/; is reachable).

Against the strategy of player 3 i@ either (i)U’f is reached in finitely many steps,
or (ii) else player 2 infinitely often chooses successoestaft the form(s, 0) with pri-
ority O (the minimum even priority), i.e., there is a cycletlwa statg(s, 0) which has
priority 0. If priority O is visited infinitely often, then # parity objective is satisfied.
This ensures that it/5 player 3 can ensure either to red?ﬁ in finitely many steps

from some state iﬁg againstr, or the parity objective is satisfied without reachﬁ(é.
In either case this implies that agaimsplayer 3 can ensure to satisfy the parity objec-

tive (by reaching7(f in finitely many steps and then playing a sure winning strateg
from Uf, or satisfying the parity objective without reachiﬁg by visiting priority O
infinitely often) from some state iﬁg, contradicting thafr is a sure winning strategy
for player 2 fromUZ. Thus we have a contradiction, and obtain the desired resulk

Lemma 1 establishes the desired correctness result asvéolid) If 7 is a finite-
memory strategy such that @5 player 3 has a sure winning strategy, then by part 1
of Lemma 1 we obtain that = Tr,(7) is almost-sure winning. (2) Converselyaf

is a finite-memory almost-sure winning strategy, then atersa strategy such that

0 = Tr.(d) (i.e.,@ = Tras~ '(0)). By part 2 of Lemma 1, given the finite-memory
strategya, player 3 must have a sure winning strategydg, otherwise we have a
contradiction that is almost-sure winning. Thus we have the following theorem.

Theorem 1 (Polynomial reduction). Given a partial-observation stochastic game
graph G with a parity objectiveParity(p) for player 1, we construct a three-player
gameG = Tr,s(G) with a parity objectiveParity(p), where player 1 has partial-
observation and the other two players have perfect-obsiemwgn timeO((n+m) - d),
wheren is the number of states of the gamejs the number of transitions, anfithe
number of priorities of the priority functiop, such that the following assertion holds:
there is a finite-memory almost-sure winning stratedgr player 1 inG iff there exists

a finite-memory strategy for player 1 inG such that in the gamé’; obtained given
@, player 3 has a sure winning strategy fBarity(p). The game grapHTr,s(G) has
O(n - d) statesO(m - d) transitions, and has at most/ + 1 priorities.

Remark 3 (Positive winningyVe have presented the details of the reduction for almost-
sure winning, and a very similar reduction works for positivinning (see [1]).

3 Solving Sure Winning for Three-player Parity Games

In this section we present the solution for sure winning ie#player non-stochastic
parity games. We start with the basic definitions.

3.1 Basic definitions

We first present a model of partial-observation concurrerge-player games, where
player1 has partial observation, and playziand player3 have perfect observation.
Playerl and player3 have the same objective and they play against play&hree-
player turn-based games model (of Section 2) can be treatadspecial case of this
model (see [1, Remark 3] for details).
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Partial-observation three-player concurrent gameésven alphabetsl; of actions for
playeri (i = 1,2,3), a partial-observation three-player concurrent gamel{fevity,
three-player gamen sequel) is a tupl& = (S, s, 4, O, obs) where: (i) S is a finite set
of states and, € S is the initial state; (iip : S x A; x Ay x A3 — S is a deterministic
transition function that, given a current stateand actions; € A, as € Az, a3z € As
of the players, gives the successor state: (s, a1, a2, a3) of s; and (iii) O is a finite
set of observations anubs is the observation mapping (as in Section 2).

StrategiesDefine the set” of strategiess : Ot — A; of player1 that, given a
sequence of past observations, return an action for playeguivalently, we sometimes
view a strategy of player as a functionr : ST — A; satisfyingo(p) = o(p’) for all
p, P’ € ST such thabbs(p) = obs(p’), and say that is observation-based\ strategy
of player2 (resp, playeB) is a functionr : ST — A, (resp.,;7 : ST — As) withoutany
restriction. We denote b/ (resp.l”) the set of strategies of play2i(resp. playeB).
Sure winningGiven strategies, «, 7 of the three players it7, theoutcome playrom
so is the infinite sequencel;™” = sgs1 ... such that for allj > 0, we haves;,; =
0(sj,aj,b5,¢;) wherea; = o(so...s;5),b; = m(so...s;5), andc; = 7(sg...sj).
Given a game~ = (S, sg, 9, O, obs) and a parity objectives C S, the sure winning
problem asks to decide ffo € X' - 37 € I'-Vm € I : pJ™" € . It will follow
from our result that if the answer to the sure winning probigyes, then there exists a
witness finite-memory strategyfor player 1.

3.2 Alternating Tree Automata

In this section we recall the definitions of alternating teedomata, and present the
solution of the sure winning problem for three-player gamiéls parity objectives by a
reduction to the emptiness problem of alternating parég ttutomata.

Trees.Given an alphabef?, an 2-labeled treg(T, V) consists of a prefix-closed set
T C N* (e, ifx-d € Twithz € N*andd € N, thenz € T), and a mapping
V . T — (2 that assigns to each nodeBfa letter in{2. Givenz € N* andd € N such
thatx - d € T, we callz - d thesuccessoin directiond of . The node: is theroot of
the tree. Aninfinite pathin T is an infinite sequence = d;ds . .. of directionsd; € N
such that every finite prefix of is a node inl".

Alternating tree automataGiven a parameter € N \ {0}, we consider input trees of
rankk, i.e. trees in which every node has at mosticcessors. Lék] = {0,...,k—1},
and given a finite sdt, let B (U) be the set of positive Boolean formulas ov&ri.e.
formulas built from elements ity U {true, false} using the Boolean connectivesand

V. An alternating tree automatoover alphabef? is a tupleA = (S, so, ) where: (i).S

is a finite set of states and € S is the initial state; and (iiy : S x 2 — BT (S x [k]) is

a transition function. Intuitively, the automaton is exextifrom the initial state, and
reads the input tree in a top-down fashion starting from tlega. In states, if a € 2 is
the letter that labels the current nagef the input tree, the behavior of the automaton
is given by the formulag = J(s, a). The automaton choosessatisfying assignment
of ¢, i.e. aset) C S x [k] such that the formulg is satisfied when the elements of
Q are replaced byrue, and the elements ¢ x [k]) \ Q are replaced b¥alse. Then,
for each(sy,d;) € @ a copy of the automaton is spawned in stateand proceeds
to the nodex - d; of the input tree. In particular, it requires that d; belongs to the
input tree. For example, &(s,a) = ((s1,0) A (s2,0)) V ({s3,0) A (s4,1) A (s5,1)),
then the automaton should either spawn two copies that gsdbe successor afin
direction0 (i.e., the noder - 0) and that enter the respective state®nds,, or spawn
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three copies of which one processes) and enters statg;, and the other two process
x - 1 and enter the stateg ands; respectively.

Runs.A run of A over anf2-labeled input treéT", V) is a tree(T;., ) labeled by el-
ements ofl" x S, where a node of;. labeled by(z, s) corresponds to a copy of the
automaton proceeding the nod®f the input tree in state. Formally, arun of A over
an input treg(T, V) is a(T x S)-labeled tredT;., ) such that(s) = (&, so) and for
ally € T, if r(y) = (x,s), thenthe se{(s’,d') | dd e N: r(y-d) = (z-d,s)}
is a satisfying assignment fé(s, V' (x)). Hence we require that, given a nogén T,
labeled by(z, s), there is a satisfying assignmeftC S x [k] for the formulad(s, a)
wherea = V(x) is the letter labeling the current nodeof the input tree, and for all
states(s’, d’) € @ there is a (successor) noged in T, labeled by(x - d’, s').

Given an accepting conditiop C S“, we say that a ru(T,, ) is acceptingf for
all infinite pathsd; ds ... of T, the sequence, s, ... such that(d;) = (-, s;) for all
i > 0isin¢. Thelanguageof A is the setl;(.A) of all input trees of rank over which
there exists an accepting run.df The emptiness problem for alternating tree automata
is to decide, giverd and parametet, whetherL;(A) = 0.

3.3 Solution of the Sure Winning Problem for Three-player Ganes

Theorem 2. Given a three-player gamé = (S, so, d, O, obs) and a parity objective
¢, the problem of deciding whethélr € X' - 37 € I'-Vm € I : p{™" € s
EXPTIME-complete.

Proof. The EXPTIME-hardness follows from EXPTIME-hardness of iplayer
partial-observation games with reachability objectivg][2
We prove membership in EXPTIME by a reduction to the empsm@eblem for
alternating tree automata, which is solvable in EXPTIME farity objectives [17-
19]. The reduction is as follows. Given a gamie = (S, sg,d, O, obs) over alpha-
bet of actionsA; (i = 1,2,3), we construct the alternating tree automatén=
(5, s5,0") over alphabet? and parametek = |O| (we assume tha® = [k])
where: (i)S" = S, ands = so; (i) 2 = A;q; and (iii) ¢’ is defined byd'(s,a1) =
Vasens Nagen, (0(s,a1,a2,a3),0bs((s, a1, az,a3))) forall s € S anda; € 2. The
acceptance conditiop of the automaton is the same as the objective of the gdme
We prove thalo € X - 37 € I' - Vr € II : p7™7 € if and only if Li(A) # 0.
We use the following notation. Given a noge= dids...d, in a (T x S)-labeled
tree(T,,r), consider the prefixeg = ¢, andy; = dids ...d; (fori = 1,...,n). Let
T2(y) = sos1...s, Wherer(y;) = (,s;) for 0 < i < n, denote the corresponding
state sequence gf
1. Sure winning implies non-emptineB#st, assume that for someec X' andr € I,
we havevr € I : pZ™7 € . Fromo, we define an input tre€l’, V') where
T = [k]* andV (vy) = o(obs(sg) - v) for all v € T (we viewo as a function
[k]T — £, since[k] = O and(? = A;). Fromr, we define 7 x S)-labeled tree
(T, r) such that(¢) = (g, sp) and for ally € T.., if (y) = (z,s) and72(y) = p,
then fora; = o(obs(sg) - ) = V(z), for az = 7(so - p), for everys’ in the set
Q = {s | Jaz € Az : s’ = 4(s,a1,a2,a3)}, there is a successgr- d of y in
T, labeled byr(y - d) = (z - obs(s’),s’). Note that{(s’,obs(s")) | s’ € Q}isa
satisfying assignment f@¥' (s, a1 ) anda; = V(x), hencgT,., r) is a run of 4 over
(T, V). For every infinite pathy in (T, r), consider a strategy € II consistent
with p. Thenp = pZ™7, hencep € ¢ and the runT;.,r) is accepting, showing
that L (A) # 0.
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2. Non-emptiness implies sure winnin8econd, assume thdi,(A) # 0. Let
(T,V) € Lx(A) and (T, r) be an accepting run ofl over (T, V). From(T,V),
define a strategy of playerl such that (s - p) = V(obs(p)) for all p € S*. Note
thato is indeed observation-based. Frgf, ), we know that for all nodeg € T,
with 7(y) = (z,s) and7a(y) = p, the setQ) = {(s',d’) | Idd € N: r(y -d) =
(x-d',s")} is a satisfying assignment 6f(s, V(z)), hence there existg; € Aj;
such that for ally, € A,, there is a successor gflabeled by(z - obs(s’), s") with
s’ = 0(s,a1,as,a3) anda; = o(sg - p). Then definer(so - p) = as. Now, for all
strategiesr € I the outcomep;™" is a path in(7..,r), and hence™" € .
Thereforedo € X - 3r € I'-Vr € I : p;™7 € . |

The nonemptiness problem for an alternating tree automdtasith parity condi-
tion can be solved by constructing an equivalent nondetestig parity tree automaton
N (such thatL,(A) = Lg(N)), and then checking emptiness .&f. The construc-
tion proceeds as follows [19]. The nondeterministic autima/ guess a labeling of
the input tree with a memoryless strategy for the altergadintomatonA. As A has
n States and: directions, there arék™) possible strategies. A nondeterministic par-
ity word automaton withn states and/ priorities can check that the strategy works
along every branch of the tree. An equivalent determinfsigty word automaton can
be constructed witlin™) states and)(d - n) priorities [4]. Thus,N' can guess the
strategy labeling and check the strategies Witk - n)") states and)(d - n) prior-
ities. The nonemptiness @ can then be checked by considering it as a (two-player
perfect-information deterministic) parity game with((k - n)™) states and)(d - n)

priorities [15]. This games can be solved in tié(k - n)d'”Q) [14]. Moreover, since
memoryless strategies exist for parity games [14], if thedederministic parity tree au-
tomaton is nonempty, then it accepts a regular tree that e@mboded by a transducer
with ((k - n)™) states. Thus, the nonemptiness problem for alternatiegatséomaton
with parity condition can be decided in exponential time] #mere exists a transducer
to witness nonemptiness that has exponentially many states

Theorem 3. Given a three-player gam@ = (S, so, d, O, obs) with n states (and <
n observations for playet) and parity objectiver defined by priorities, the problem
of deciding whethetlo € X' - 37 € I' - V& € II : p7;™" € ¢ can be solved in time
exponential time. Moreover, memory of exponential sizaffscgent for playerl.

Remark 4.By our reduction to alternating parity tree automata andfsice that if an
alternating parity tree automaton is non-empty, there Bgalar witness tree for non-
emptiness it follows that strategies for player 1 can beigtst to finite-memory with-
out loss of generality. This ensures that we can solve thblgmo of the existence
of finite-memory almost-sure winning (resp. positive wimgli strategies in partial-
observation stochastic parity games (by Theorem 1 of Se@&jalso in EXPTIME,
and EXPTIME-completeness of the problem follows since ttedblem is EXPTIME-
hard even for reachability objectives for almost-sure wigrj10] and safety objectives
for positive winning [9].

Theorem 4. Given a partial-observation stochastic game and a parityeotive ¢
defined byd priorities, the problem of deciding whether there existsnitdimemory
almost-sure (resp. positive) winning strategy for playés EXPTIME-complete. More-
over, if there is an almost-sure (resp. positive) winningtegy, then there exists one
that uses memory of at most exponential size.
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Remark 5.As mentioned in Remark 2 the EXPTIME upper bound for qualitednaly-
sis of partial-observation stochastic parity games wititfimemory randomized strate-
gies follows from Theorem 4. The EXPTIME lower bound and tRpanential lower
bound on memory requirement for finite-memory randomizeategies follows from
the results of [10, 9] for reachability and safety objectiyeven for POMDPS).
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