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Abstract. We consider two-player partial-observation stochastic games on
finite-state graphs where player 1 has partial observation and player 2 has perfect
observation. The winning condition we study areω-regular conditions specified
as parity objectives. The qualitative-analysis problem given a partial-observation
stochastic game and a parity objective asks whether there isa strategy to ensure
that the objective is satisfied with probability 1 (resp. positive probability). These
qualitative-analysis problems are known to be undecidable. However in many
applications the relevant question is the existence of finite-memory strategies,
and the qualitative-analysis problems under finite-memorystrategies was recently
shown to be decidable in 2EXPTIME. We improve the complexityand show that
the qualitative-analysis problems for partial-observation stochastic parity games
under finite-memory strategies are EXPTIME-complete; and also establish opti-
mal (exponential) memory bounds for finite-memory strategies required for qual-
itative analysis.

1 Introduction

Games on graphs.Two-player stochastic games on finite graphs played for infinite
rounds is central in many areas of computer science as they provide a natural set-
ting to model nondeterminism and reactivity in the presenceof randomness. In par-
ticular, infinite-duration games with omega-regular objectives are a fundamental tool
in the analysis of many aspects of reactive systems such as modeling, verification, re-
finement, and synthesis [2, 16]. For example, the standard approach to the synthesis
problem for reactive systems reduces the problem to finding the winning strategy of a
suitable game [22]. The most common approach to games assumes a setting with per-
fect information, where both players have complete knowledge of the state of the game.
In many settings, however, the assumption of perfect information is not valid and it is
natural to allow an information asymmetry between the players, such as, controllers
with noisy sensors and software modules that expose partialinterfaces [23].

Partial-observation stochastic games.Partial-observation stochastic games are played
between two players (player 1 and player 2) on a graph with finite state space. The game
is played for infinitely many rounds where in each round either player 1 chooses a move
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or player 2 chooses a move, and the successor state is determined by a probabilistic
transition function. Player 1 has partial observation where the state space is partitioned
according to observations that she can observe i.e., given the current state, the player
only views its observation (the partition the state belongsto), but not the precise state.
Player 2 (adversary to player 1) has perfect observation andobserves the precise state.

The class ofω-regular objectives.An objective specifies the desired set of behaviors
(or paths) for player 1. In verification and control of stochastic systems an objective is
typically anω-regular set of paths. The class ofω-regular languages extends classical
regular languages to infinite strings, and provides a robustspecification language to
express all commonly used specifications [24]. In a parity objective, every state of the
game is mapped to a non-negative integer priority and the goal is to ensure that the
minimum priority visited infinitely often is even. Parity objectives are a canonical way
to define suchω-regular specifications. Thus partial-observation stochastic games with
parity objective provide a general framework for analysis of stochastic reactive systems.

Qualitative and quantitative analysis.Given a partial-observation stochastic game with
a parity objective and a start state, thequalitative-analysisproblem asks whether the
objective can be ensured with probability 1 (almost-sure winning) or positive proba-
bility (positive winning); whereas thequantitative-analysisproblem asks whether the
objective can be satisfied with probability at leastλ for a given thresholdλ ∈ (0, 1).

Previous results.The quantitative analysis problem for partial-observation stochastic
games with parity objectives is undecidable, even for the very special case of proba-
bilistic automata with reachability objectives [21]. The qualitative-analysis problems
for partial-observation stochastic games with parity objectives are also undecidable [3],
even for probabilistic automata. In many practical applications, however, the more rel-
evant question is the existence of finite-memory strategies. The quantitative analysis
problem remains undecidable for finite-memory strategies,even for probabilistic au-
tomata [21]. The qualitative-analysis problems for partial-observation stochastic par-
ity games were shown to be decidable with 2EXPTIME complexity for finite-memory
strategies [20]; and the exact complexity was open which we settle in this work.

Our contributions.Our contributions are as follows: for the qualitative-analysis prob-
lems for partial-observation stochastic parity games under finite-memory strategies we
show that (i) the problems are EXPTIME-complete; and (ii) ifthere is a finite-memory
almost-sure (resp. positive) winning strategy, then thereis a strategy that uses at most
exponential memory (matching the exponential lower bound known for the simpler case
of reachability and safety objectives). Thus we establish both optimal computational
and strategy complexity results. Moreover, once a finite-memory strategy is fixed for
player 1, we obtain a finite-state perfect-information Markov decision process (MDP)
for player 2 where finite-memory is as powerful as infinite-memory [12]. Thus our
results apply to both cases where player 2 has infinite-memory or restricted to finite-
memory strategies.

Technical contribution.The 2EXPTIME upper bound of [20] is achieved via a reduc-
tion to the emptiness problem of alternating parity tree automata. The reduction of [20]
to alternating tree automata is exponential as it requires enumeration of the end com-
ponents and recurrent classes that can arise after fixing strategies. We present a poly-
nomial reduction, which is achieved in two steps. The first step is as follows: alocal
gadget-basedreduction (that transforms every probabilistic state to a local gadget of
deterministic states) for perfect-observation stochastic games to perfect-observation de-
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terministic games for parity objectives was presented in [11, 5]. This gadget, however,
requires perfect observation for both players. We extend this reduction and present a lo-
cal gadget-based polynomial reduction of partial-observation stochastic games to three-
player partial-observation deterministic games, where player 1 has partial observation,
the other two players have perfect observation, and player 3is helpful to player 1. The
crux of the proof is to show that the local reduction allows toinfer properties about
recurrent classes and end components (which are global properties). In the second step
we present a polynomial reduction of the three-player gamesproblem to the emptiness
problem of alternating tree automata. We also remark that the new model of three-player
games we introduce for the intermediate step of the reduction maybe also of indepen-
dent interest for modeling of other applications.
Related works.The undecidability of the qualitative-analysis problem for partial-
observation stochastic parity games with infinite-memory strategies follows from [3].
For partially observable Markov decision processes (POMDPs), which is a special case
of partial-observation stochastic games where player 2 does not have any choices, the
qualitative-analysis problem for parity objectives with finite-memory strategies was
shown to be EXPTIME-complete [6]. For partial-observationstochastic games the
almost-sure winning problem was shown to be EXPTIME-complete for Büchi ob-
jectives (both for finite-memory and infinite-memory strategies) [10, 7]. Finally, for
partial-observation stochastic parity games the almost-sure winning problem under
finite-memory strategies was shown to be decidable in 2EXPTIME in [20].
Summary and discussion.The results for the qualitative analysis of various models of
partial-observation stochastic parity games with finite-memory strategies for player 1
is summarized in Table 1. We explain the results of the table.The results of the first
row follows from [6] and the results for the second row are theresults of our contri-
butions. In the most general case both players have partial observation. If we consider
partial-observation stochastic games where both players have partial observation, then
the results of the table are derived as follows: (a) If we consider infinite-memory strate-
gies for player 2, then the problem remains undecidable as when player 1 is non-existent
we obtain POMDPs as a special case. The non-elementary lowerbound follows from
the results of [7] where the lower bound was shown for reachability objectives where
finite-memory strategies suffice for player 1 (against both finite and infinite-memory
strategies for player 2). (b) If we consider finite-memory strategies for player 2, then
the decidability of the problem is open, but we obtain the non-elementary lower bound
on memory from the results of [7] for reachability objectives.

Game Models Complexity Memory bounds

POMDPs EXPTIME-complete [6] Exponential [6]
Player 1 partial and player 2 perfect EXPTIME-complete Exponential

(finite- or infinite-memory for player 2)
Both players partial Undecidable [3] Non-elementary [7]

infinite-memory for player 2 (Lower bound)
Both players partial Open (??) Non-elementary [7]

finite-memory for player 2 (Lower bound)

Table 1.Complexity and memory bounds for qualitative analysis of partial-observation stochastic
parity games with finite-memory strategies for player 1. Thenew results are boldfaced.
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2 Partial-observation Stochastic Parity Games

We consider partial-observation stochastic parity games where player 1 has partial ob-
servation and player 2 has perfect observation. We considerparity objectives, and for
almost-sure winning under finite-memory strategies for player 1 present a polynomial
reduction to sure winning in three-player parity games where player 1 has partial ob-
servation, player 3 has perfect observation and is helpful towards player 1, and player 2
has perfect observation and is adversarial to player 1. A similar reduction also works for
positive winning. We then show in the following section how to solve the sure winning
problem for three-player games using alternating parity tree automata.

2.1 Basic definitions
We start with basic definitions related to partial-observation stochastic parity games.

Partial-observation stochastic games.We consider slightly different notation (though
equivalent) to the classical definitions, but the slightly different notation helps for more
elegant and explicit reduction. We consider partial-observation stochastic games as a
tupleG = (S1, S2, SP , A1, δ, E,O, obs) as follows:S = S1∪S2∪SP is the state space
partitioned into player-1 states (S1), player-2 states (S2), and probabilistic states (SP );
andA1 is a finite set of actions for player 1. Since player 2 has perfect observation, she
chooses edges instead of actions. The transition function is as follows:δ : S1 × A1 →
S2 that given a player-1 state inS1 and an action inA1 gives the next state inS2

(which belongs to player 2); andδ : SP → D(S1) given a probabilistic state gives the
probability distribution over the set of player-1 states. The set of edges is as follows:
E = {(s, t) | s ∈ SP , t ∈ S1, δ(s)(t) > 0} ∪ E′, whereE′ ⊆ S2 × SP . The
observation setO and observation mappingobs are standard, i.e.,obs : S → O. Note
that player 1 plays after every three steps (every move of player 1 is followed by a move
of player 2, then a probabilistic choice). In other words, first player 1 chooses an action,
then player 2 chooses an edge, and then there is a probabilitydistribution over states
where player 1 again chooses and so on.

Three-player non-stochastic turn-based games.We consider three-player
partial-observation (non-stochastic turn-based) games as a tuple G =
(S1, S2, S3, A1, δ, E,O, obs) as follows: S is the state space partitioned into
player-1 states (S1), player-2 states (S2), and player-3 states (S3); andA1 is a finite set
of actions for player 1. The transition function is as follows: δ : S1 × A1 → S2 that
given a player-1 state inS1 and an action inA1 gives the next state (which belongs to
player 2). The set of edges is as follows:E ⊆ (S2 ∪ S3) × S. Hence in these games
player 1 chooses an action, and the other players have perfect observation and choose
edges. We only consider the sub-class where player 1 plays ineveryk-steps, for a fixed
k. The observation setO and observation mappingobs are again standard.

Plays and strategies.A play in a partial-observation stochastic game is an infinite se-
quence of statess0s1s2 . . . such that the following conditions hold for alli ≥ 0: (i) if
si ∈ S1, then there existsai ∈ A1 such thatsi+1 = δ(si, ai); and (ii) if si ∈ (S2∪SP ),
then (si, si+1) ∈ E. The functionobs is extended to sequencesρ = s0 . . . sn of
states in the natural way, namelyobs(ρ) = obs(s0) . . . obs(sn). A strategy for a player
is a recipe to extend the prefix of a play. Formally, player-1 strategies are functions
σ : S∗ · S1 → A1; and player-2 (and analogously player-3 strategies) are functions:
π : S∗ · S2 → S such that for allw ∈ S∗ ands ∈ S2 we have(s, π(w · s)) ∈ E.
We consider only observation-based strategies for player 1, i.e., for two play prefixesρ
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andρ′ if the corresponding observation sequences match (obs(ρ) = obs(ρ′)), then the
strategy must choose the same action (σ(ρ) = σ(ρ′)); and the other players have all
strategies. The notations for three-player games are similar.

Finite-memory strategies.A player-1 strategy usesfinite-memoryif it can be encoded
by a deterministic transducer〈M,m0, σu, σn〉 whereM is a finite set (the memory of
the strategy),m0 ∈ M is the initial memory value,σu : M × O → M is the memory-
update function, andσn : M → A1 is the next-move function. Thesizeof the strategy
is the number|M| of memory values. If the current observation iso, and the current
memory value ism, then the strategy chooses the next actionσn(m), and the memory
is updated toσu(m, o). Formally,〈M,m0, σu, σn〉 defines the strategyσ such thatσ(ρ ·
s) = σn(σ̂u(m0, obs(ρ) · obs(s)) for all ρ ∈ S∗ ands ∈ S1, whereσ̂u extendsσu

to sequences of observations as expected. This definition extends to infinite-memory
strategies by not restrictingM to be finite.

Parity objectives.An objectivefor Player1 in G is a setϕ ⊆ Sω of infinite sequences
of states. A playρ satisfiesthe objectiveϕ if ρ ∈ ϕ. For a playρ = s0s1 . . . we de-
note byInf(ρ) the set of states that occur infinitely often inρ, that is,Inf(ρ) = {s |
sj = s for infinitely manyj’s}. For d ∈ N, let p : S → {0, 1, . . . , d} be apriority
function, which maps each state to a nonnegative integer priority. The parity objec-
tive Parity(p) requires that the minimum priority that occurs infinitely often be even.
Formally,Parity(p) = {ρ | min{p(s) | s ∈ Inf(ρ)} is even}. Parity objectives are a
canonical way to expressω-regular objectives [24].

Almost-sure winning and positive winning.An eventis a measurable set of plays. For
a partial-observation stochastic game, given strategiesσ andπ for the two players,
the probabilities of events are uniquely defined [25]. For a parity objectiveParity(p),
we denote byPσ,π

s (Parity(p)) the probability thatParity(p) is satisfied by the play
obtained from the starting states when the strategiesσ andπ are used. Thealmost-sure
(resp.positive) winning problem under finite-memory strategies asks, given a partial-
observation stochastic game, a parity objectiveParity(p), and a starting states, whether
there exists a finite-memory observation-based strategyσ for player 1 such that against
all strategiesπ for player 2 we havePσ,π

s (Parity(p)) = 1 (resp.Pσ,π
s (Parity(p)) > 0).

The almost-sure and positive winning problems are also referred to as the qualitative-
analysis problems for stochastic games.

Sure winning in three-player games.In three-player games once the starting states
and strategiesσ, π, andτ of the three players are fixed we obtain a unique play, which
we denote asρσ,π,τ

s . In three-player games we consider the followingsure winning
problem: given a parity objectiveParity(p), sure winning is ensured if there exists a
finite-memory observation-based strategyσ for player 1, such that in the two-player
perfect-observation game obtained after fixingσ, player 3 can ensure the parity objec-
tive against all strategies of player 2. Formally, the sure winning problem asks whether
there exist a finite-memory observation-based strategyσ for player 1 and a strategyτ
for player 3, such that for all strategiesπ for player 2 we haveρσ,π,τ

s ∈ Parity(p).

Remark 1 (Equivalence with standard model).We remark that for the model of partial-
observation stochastic games studied in literature the twoplayers simultaneously
choose actions, and a probabilistic transition function determine the probability dis-
tribution of the next state. In our model, the game is turn-based and the probability
distribution is chosen only in probabilistic states. However, it follows from the results
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of [8] that the models are equivalent: by the results of [8, Section 3.1] the interaction of
the players and probability can be separated without loss ofgenerality; and [8, Theo-
rem 4] shows that in presence of partial observation, concurrent games can be reduced
to turn-based games in polynomial time. Thus the turn-basedmodel where the moves of
the players and stochastic interaction are separated is equivalent to the standard model.
Moreover, for a perfect-information player choosing an action is equivalent to choosing
an edge in a turn-based game. Thus the model we consider is equivalent to the standard
partial-observation game models.

Remark 2 (Pure and randomized strategies).In this work we only consider pure strate-
gies. In partial-observation games, randomized strategies are also relevant as they are
more powerful than pure strategies. However, for finite-memory strategies the almost-
sure and positive winning problem for randomized strategies can be reduced in polyno-
mial time to the problem for finite-memory pure strategies [7, 20]. Hence without loss
of generality we only consider pure strategies.

2.2 Reduction of partial-observation stochastic games to three-player games

In this section we present a polynomial-time reduction for the almost-sure winning
problem in partial-observation stochastic parity games tothe sure winning problem in
three-player parity games.

Reduction.Let us denote by[d] the set{0, 1, . . . , d}. Given a partial-observation
stochastic parity game graphG = (S1, S2, SP , A1, δ, E,O, obs) with a parity objec-
tive defined by priority functionp : S → [d] we construct a three-player game graph
G = (S1, S2, S3, A1, δ, E,O, obs) together with priority functionp. The construction
is specified as follows.
1. For every nonprobabilistic states ∈ S1 ∪ S2, there is a corresponding states ∈ S

such that (i)s ∈ S1 if s ∈ S1, elses ∈ S2; (ii) p(s) = p(s) andobs(s) = obs(s);
(iii) δ(s, a) = t wheret = δ(s, a), for s ∈ S1 anda ∈ A1; and (iv)(s, t) ∈ E iff
(s, t) ∈ E, for s ∈ S2.

2. Every probabilistic states ∈ SP is replaced by the gadget shown in Figure 1 for
illustration. In the figure, square-shaped states are player-2 states (inS2), and circle-
shaped (or ellipsoid-shaped) states are player-3 states (in S3). Formally, from the
states with priority p(s) and observationobs(s) (i.e., p(s) = p(s) andobs(s) =
obs(s)) the players play the following three-step game inG.

– In states player 2 chooses a successor(s̃, 2k), for 2k ∈ {0, 1, . . . , p(s) + 1}.
– For every state(s̃, 2k), we havep((s̃, 2k)) = p(s) andobs((s̃, 2k)) = obs(s).

For k ≥ 1, in state(s̃, 2k) player 3 chooses between two successors: state
(ŝ, 2k − 1) with priority 2k − 1 and same observation ass, or state(ŝ, 2k)
with priority 2k and same observation ass, (i.e., p((ŝ, 2k − 1)) = 2k − 1,
p((ŝ, 2k)) = 2k, andobs((ŝ, 2k − 1)) = obs((ŝ, 2k)) = obs(s)). The state
(s̃, 0) has only one successor(ŝ, 0), with p((ŝ, 0)) = 0 and obs((ŝ, 0)) =
obs(s).

– Finally, in each state(ŝ, k) the choice is between all statest such that(s, t) ∈
E, and it belongs to player 3 (i.e., inS3) if k is odd, and to player 2 (i.e., inS2)
if k is even. Note that every state in the gadget has the same observation ass.

We denote byG = Tras(G) the three-player game, where player 1 has partial-
observation, and both player 2 and player 3 have perfect-observation, obtained from
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a partial-observation stochastic game. Observe that inG there are exactly four steps
between two player 1 moves.
Observation sequence mapping.Note that since in our partial-observation games first
player 1 plays, then player 2, followed by probabilistic states, repeated ad infinitum,
wlog, we can assume that for every observationo ∈ O we have either (i)obs−1(o) ⊆
S1; or (ii) obs−1(o) ⊆ S2; or (i) obs−1(o) ⊆ SP . Thus we partition the observations as
O1,O2, andOP . Given an observation sequenceκ = o0o1o2 . . . on inG corresponding
to a finite prefix of a play, we inductively define the sequenceκ = h(κ) inG as follows:
(i) h(o0) = o0 if o0 ∈ O1 ∪ O2, elseo0o0o0; (ii) h(o0o1 . . . on) = h(o0o1 . . . on−1)on

if on ∈ O1 ∪ O2, elseh(o0o1 . . . on−1)ononon. Intuitively the mapping takes care of
the two extra steps of the gadgets introduced for probabilistic states. The mapping is a
bijection, and hence given an observation sequenceκ of a play prefix inG we consider

the inverse play prefixκ = h
−1

(κ) such thath(κ) = κ.
Strategy mapping.Given an observation-based strategyσ in G we consider a strategy
σ = Tras(σ) as follows: for an observation sequenceκ corresponding to a play pre-
fix in G we haveσ(κ) = σ(h(κ)). The strategyσ is observation-based (sinceσ is
observation-based). The inverse mappingTras

−1 of strategies fromG to G is analo-
gous. Note that forσ in G we haveTras(Tras

−1(σ)) = σ. Let σ be a finite-memory
strategy with memoryM for player 1 in the gameG. The strategyσ can be considered
as a memoryless strategy, denoted asσ∗ = MemLess(σ), in G × M (the synchronous
product ofGwith M). Given a strategy (pure memoryless)π for player 2 in the2-player
gameG×M, a strategyπ = Tras(π) in the partial-observation stochastic gameG×M
is defined as:π((s,m)) = (t,m′), if and only if π((s,m)) = (t,m′); for all s ∈ S2.

End components.Given an MDP, a setU is an end component in the MDP if the sub-
graph induced byU is strongly connected, and for all probabilistic states inU all out-
going edges end up inU (i.e.,U is closed for probabilistic states). Thekey property
about MDPs that is used in our proofs is a result established by [12, 13] that given an
MDP, for all strategies, with probability 1 the set of statesvisited infinitely often is an
end component. The key property allows us to analyze end components of MDPs and
from properties of the end component conclude properties about all strategies.
The key lemma.We now present our main lemma that establishes the correctness of the
reduction. Since the proof of the lemma is long we split the proof into two parts.

Lemma 1. Given a partial-observation stochastic parity gameG with parity objective
Parity(p), letG = Tras(G) be the three-player game with the modified parity objective
Parity(p) obtained by our reduction. Consider a finite-memory strategy σ with memory
M for player 1 inG. Let us denote byGσ the perfect-observation two-player game
played overG×M by player 2 and player 3 after fixing the strategyσ for player 1. Let

U
σ

1 ={(s,m) ∈ S×M | player 3 has a sure winning strategy forParity(p) from (s,m) in Gσ};

and letU
σ

2 = (S×M)\U
σ

1 be the set of sure winning states for player 2 inGσ. Consider

the strategyσ = Tras(σ), and the setsUσ
1 = {(s,m) ∈ S × M | (s,m) ∈ U

σ

1}; and
Uσ

2 = (S × M) \ Uσ
1 . The following assertions hold.

1. For all (s,m) ∈ Uσ
1 , for all strategiesπ of player 2 we havePσ,π

(s,m)(Parity(p)) = 1.
2. For all (s,m) ∈ Uσ

2 , there exists a strategyπ of player 2 such that
P

σ,π

(s,m)(Parity(p))<1.
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· ·
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· ·
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· ·

E(s)
· ·

E(s)

Fig. 1. Reduction gadget whenp(s) is even.

We first present the proof for part 1 and then for part 2.

Proof (of Lemma 1: part 1).Consider a finite-memory strategyσ for player 1 with
memoryM in the gameG. Once the strategyσ is fixed we obtain the two-player finite-
state perfect-observation gameGσ (between player 3 and the adversary player 2). Recall

the sure winning setsU
σ

1 for player 3, andU
σ

2 = (S×M)\U
σ

1 for player 2, respectively,
in Gσ. Let σ = Tras(σ) be the corresponding strategy inG. We denote byσ∗ =
MemLess(σ) andσ∗ the corresponding memoryless strategies ofσ in G × M andσ in
G×M, respectively. We show that all states inUσ

1 are almost-sure winning, i.e., givenσ,
for all (s,m) ∈ Uσ

1 , for all strategiesπ for player 2 inGwe havePσ,π

(s,m)(Parity(p)) = 1

(recallUσ
1 = {(s,m) ∈ S × M | (s,m) ∈ U

σ

1}). We also consider explicitly the MDP
(G × M ↾ Uσ

1 )σ∗ to analyze strategies of player 2 on the synchronous product, i.e., we
consider the player-2 MDP obtained after fixing the memoryless strategyσ∗ in G×M,
and then restrict the MDP to the setUσ

1 .
Two key components.The proof has two key components. First, we argue that all end
components in the MDP restricted toUσ

1 are winning for player 1 (have min priority
even). Second we argue that given the starting state(s,m) is in Uσ

1 , almost-surely the
set of states visited infinitely often is an end component inUσ

1 against all strategies of
player 2. These two key components establish the desired result.
Winning end components.Our first goal is to show that every end componentC in the
player-2 MDP(G×M ↾ Uσ

1 )σ∗ is winning for player 1 for the parity objective, i.e., the
minimum priority ofC is even. We argue that if there is an end componentC in (G×M ↾

Uσ
1 )σ∗ that is winning for player 2 for the parity objective (i.e., minimum priority ofC

is odd), then against any memoryless player-3 strategyτ in Gσ, player 2 can construct

a cycle in the game(G × M ↾ U
σ

1 )σ∗ that is winning for player 2 (i.e., minimum
priority of the cycle is odd) (note that given the strategyσ is fixed, we have finite-
state perfect-observation parity games, and hence in the enlarged game we can restrict
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ourselves to memoryless strategies for player 3). This gives a contradiction because

player 3 has a sure winning strategy from the setU
σ

1 in the 2-player parity gameGσ.
Towards contradiction, letC be an end component in(G × M ↾ Uσ

1 )σ∗ that is winning
for player 2, and let its minimum odd priority be2r − 1, for somer ∈ N. Then there
is a memoryless strategyπ′ for player 2 in the MDP(G × M ↾ Uσ

1 )σ∗ such thatC is a
bottom scc (or a terminal scc) in the Markov chain graph of(G×M ↾ Uσ

1 )σ∗,π′ . Letτ be

a memoryless for player 3 in(G×M ↾ U
σ

1 )σ∗ . Givenτ for player 3 and strategyπ′ for

player 2 inG×M, we construct a strategyπ for player 2 in the game(G×M ↾ U
σ

1 )σ∗

as follows. For a player-2 state inC, the strategyπ follows the strategyπ′, i.e., for a
state(s,m) ∈ C with s ∈ S2 we haveπ((s,m)) = (t,m′) where(t,m′) = π′((s,m)).
For a probabilistic state inC we define the strategy as follows (i.e., we now consider a
state(s,m) ∈ C with s ∈ SP ):

– if for some successor state((s̃, 2ℓ),m′) of (s,m), the player-3 strategyτ chooses
a successor((ŝ, 2ℓ − 1),m′′) ∈ C at the state((s̃, 2ℓ),m′), for ℓ < r, then the
strategyπ chooses at state(s,m) the successor((s̃, 2ℓ),m′); and

– otherwise the strategyπ chooses at state(s,m) the successor((s̃, 2r),m′), and at
((ŝ, 2r),m′′) it chooses a successor shortening the distance (i.e., chooses a succes-
sor with smaller breadth-first-search distance) to a fixed state(s∗,m∗) of priority
2r − 1 of C (such a state(s∗,m∗) exists inC sinceC is strongly connected and
has minimum priority2r− 1); and for the fixed state of priority2r− 1 the strategy
chooses a successor(s,m′) such that(s,m′) ∈ C.

Consider an arbitrary cycle in the subgraph(G × M ↾ C)σ,π,τ whereC is the set of
states in the gadgets of states inC. There are two cases. (Case 1): If there is at least
one state((ŝ, 2ℓ − 1),m), with ℓ ≤ r on the cycle, then the minimum priority on the
cycle is odd, as even priorities smaller than2r are not visited by the construction asC
does not contain states of even priorities smaller than2r. (Case 2): Otherwise, in all
states choices shortening the distance to the state with priority 2r − 1 are taken and
hence the cycle must contain a priority2r − 1 state and all other priorities on the cycle
are≥ 2r − 1, so2r − 1 is the minimum priority on the cycle. Hence a winning end
component for player 2 in the MDP contradicts that player 3 has a sure winning strategy

in Gσ from U
σ

1 . Thus it follows that all end components are winning for player 1 in
(G× M ↾ Uσ

1 )σ∗ .

Almost-sure reachability to winning end-components.Finally, we consider the proba-
bility of staying in Uσ

1 . For every probabilistic state(s,m) ∈ (SP × M) ∩ Uσ
1 , all

of its successors must be inUσ
1 . Otherwise, player 2 in the state(s,m) of the game

Gσ can choose the successor(s̃, 0) and then a successor to its winning setU
σ

2 . This

again contradicts the assumption that(s,m) belong to the sure winning statesU
σ

1 for
player 3 inGσ. Similarly, for every state(s,m) ∈ (S2 × M) ∩ Uσ

1 we must have all its
successors are inUσ

1 . For all states(s,m) ∈ (S1 × M) ∩ Uσ
1 , the strategyσ chooses

a successor inUσ
1 . Hence for all strategiesπ of player 2, for all states(s,m) ∈ Uσ

1 ,
the objectiveSafe(Uσ

1 ) (which requires that only states inUσ
1 are visited) is ensured

almost-surely (in fact surely), and hence with probability1 the set of states visited in-
finitely often is an end component inUσ

1 (by key property of MDPs). Since every end
component in(G× M ↾ Uσ

1 )σ∗ has even minimum priority, it follows that the strategy
σ is an almost-sure winning strategy for the parity objectiveParity(p) for player 1 from
all states(s,m) ∈ Uσ

1 . This concludes the proof for first part of the lemma.
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Proof (of Lemma 1:part 2).Consider a memoryless sure winning strategyπ for player 2

in Gσ from the setU
σ

2 . Let us consider the strategiesσ = Tras(σ) andπ = Tras(π),
and consider the Markov chainGσ,π. Our proof shows the following two properties to
establish the claim: (1) in the Markov chainGσ,π all bottom sccs (the recurrent classes)
in Uσ

2 have odd minimum priority; and (2) from all states inUσ
2 some recurrent class in

Uσ
2 is reached with positive probability. This establishes thedesired result of the lemma.

No winning bottom scc for player 1 inUσ
2 . Assume towards contradiction that there

is a bottom sccC contained inUσ
2 in the Markov chainGσ,π such that the minimum

priority in C is even. FromC we construct a winning cycle (minimum priority is even)

in U
σ

2 for player 3 in the gameGσ given the strategyπ. This contradicts thatπ is a sure

winning strategy for player 2 fromU
σ

2 in Gσ. Let the minimum priority ofC be2r for
somer ∈ N. The idea is similar to the construction of part 1. GivenC, and the strategies
σ andπ, we construct a strategyτ for player 3 inG as follows: For a probabilistic state
(s,m) in C:

– if π chooses a state((s̃, 2ℓ − 2),m′), with ℓ ≤ r, thenτ chooses the successor
((ŝ, 2ℓ− 2),m′);

– otherwiseℓ > r (i.e.,π chooses a state((s̃, 2ℓ− 2),m′) for ℓ > r), thenτ chooses
the state((ŝ, 2ℓ − 1),m′), and then a successor to shorten the distance to a fixed
state with priority2r (such a state exists inC); and for the fixed state of priority2r,
the strategyτ chooses a successor inC.

Similar to the proof of part 1, we argue that we obtain a cycle with minimum even

priority in the graph(G × M ↾ U
σ

2 )σ,π,τ . Consider an arbitrary cycle in the subgraph
(G×M ↾ C)σ,π,τ whereC is the set of states in the gadgets of states inC. There are two
cases. (Case 1): If there is at least one state((ŝ, 2ℓ−2),m), with ℓ ≤ r on the cycle, then
the minimum priority on the cycle is even, as odd priorities strictly smaller than2r+ 1
are not visited by the construction asC does not contain states of odd priorities strictly
smaller than2r + 1. (Case 2): Otherwise, in all states choices shortening the distance
to the state with priority2r are taken and hence the cycle must contain a priority2r
state and all other priorities on the cycle are≥ 2r, so2r is the minimum priority on the
cycle. Thus we obtain cycles winning for player 3, and this contradicts thatπ is a sure

winning strategy for player 2 fromU
σ

2 . Thus it follows that all recurrent classes inUσ
2

in the Markov chainGσ,π are winning for player 2.

Not almost-sure reachability toUσ
1 . We now argue that givenσ andπ there exists no

state inUσ
2 such thatUσ

1 is reached almost-surely. This would ensure that from all states
in Uσ

2 some recurrent class inUσ
2 is reached with positive probability and establish the

desired claim since we have already shown that all recurrentclasses inUσ
2 are winning

for player 2. Givenσ andπ, letX ⊆ Uσ
2 be the set of states such that the setUσ

1 is
reached almost-surely fromX , and assume towards contradiction thatX is non-empty.
This implies that from every state inX , in the Markov chainGσ,π, there is a path to
the setUσ

1 , and from all states inX the successors are inX . We construct a strategy
τ in the three-player gameGσ against strategyπ exactly as the strategy constructed
for winning bottom scc, with the following difference: instead of shortening distance
the a fixed state of priority2r (as for winning bottom scc’s), in this case the strategy

τ shortens distance toU
σ

1 . Formally, givenX , the strategiesσ andπ, we construct a
strategyτ for player 3 inG as follows: For a probabilistic state(s,m) in X :

10



– if π chooses a state((s̃, 2ℓ),m′), with ℓ ≥ 1, thenτ chooses the state((ŝ, 2ℓ −

1),m′), and then a successor to shorten the distance to the setU
σ

1 (such a successor

exists since from all states inX the setU
σ

1 is reachable).

Against the strategy of player 3 inGσ either (i)U
σ

1 is reached in finitely many steps,
or (ii) else player 2 infinitely often chooses successor states of the form(s̃, 0) with pri-
ority 0 (the minimum even priority), i.e., there is a cycle with a state(s̃, 0) which has
priority 0. If priority 0 is visited infinitely often, then the parity objective is satisfied.

This ensures that inGσ player 3 can ensure either to reachU
σ

1 in finitely many steps

from some state inU
σ

2 againstπ, or the parity objective is satisfied without reachingU
σ

1 .
In either case this implies that againstπ player 3 can ensure to satisfy the parity objec-

tive (by reachingU
σ

1 in finitely many steps and then playing a sure winning strategy

from U
σ

1 , or satisfying the parity objective without reachingU
σ

1 by visiting priority 0

infinitely often) from some state inU
σ

2 , contradicting thatπ is a sure winning strategy

for player 2 fromU
σ

2 . Thus we have a contradiction, and obtain the desired result.

Lemma 1 establishes the desired correctness result as follows: (1) If σ is a finite-
memory strategy such that inGσ player 3 has a sure winning strategy, then by part 1
of Lemma 1 we obtain thatσ = Tras(σ) is almost-sure winning. (2) Conversely, ifσ
is a finite-memory almost-sure winning strategy, then consider a strategyσ such that
σ = Tras(σ) (i.e.,σ = Tras

−1(σ)). By part 2 of Lemma 1, given the finite-memory
strategyσ, player 3 must have a sure winning strategy inGσ, otherwise we have a
contradiction thatσ is almost-sure winning. Thus we have the following theorem.

Theorem 1 (Polynomial reduction). Given a partial-observation stochastic game
graphG with a parity objectiveParity(p) for player 1, we construct a three-player
gameG = Tras(G) with a parity objectiveParity(p), where player 1 has partial-
observation and the other two players have perfect-observation, in timeO((n+m) ·d),
wheren is the number of states of the game,m is the number of transitions, andd the
number of priorities of the priority functionp, such that the following assertion holds:
there is a finite-memory almost-sure winning strategyσ for player 1 inG iff there exists
a finite-memory strategyσ for player 1 inG such that in the gameGσ obtained given
σ, player 3 has a sure winning strategy forParity(p). The game graphTras(G) has
O(n · d) states,O(m · d) transitions, andp has at mostd+ 1 priorities.

Remark 3 (Positive winning).We have presented the details of the reduction for almost-
sure winning, and a very similar reduction works for positive winning (see [1]).

3 Solving Sure Winning for Three-player Parity Games

In this section we present the solution for sure winning in three-player non-stochastic
parity games. We start with the basic definitions.

3.1 Basic definitions
We first present a model of partial-observation concurrent three-player games, where
player1 has partial observation, and player2 and player3 have perfect observation.
Player1 and player3 have the same objective and they play against player2. Three-
player turn-based games model (of Section 2) can be treated as a special case of this
model (see [1, Remark 3] for details).
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Partial-observation three-player concurrent games.Given alphabetsAi of actions for
playeri (i = 1, 2, 3), a partial-observation three-player concurrent game (for brevity,
three-player gamein sequel) is a tupleG = 〈S, s0, δ,O, obs〉 where: (i)S is a finite set
of states ands0 ∈ S is the initial state; (ii)δ : S×A1×A2×A3 → S is a deterministic
transition function that, given a current states, and actionsa1 ∈ A1, a2 ∈ A2, a3 ∈ A3

of the players, gives the successor states′ = δ(s, a1, a2, a3) of s; and (iii) O is a finite
set of observations andobs is the observation mapping (as in Section 2).

Strategies.Define the setΣ of strategiesσ : O+ → A1 of player 1 that, given a
sequence of past observations, return an action for player1. Equivalently, we sometimes
view a strategy of player1 as a functionσ : S+ → A1 satisfyingσ(ρ) = σ(ρ′) for all
ρ, ρ′ ∈ S+ such thatobs(ρ) = obs(ρ′), and say thatσ is observation-based. A strategy
of player2 (resp, player3) is a functionπ : S+ → A2 (resp.,τ : S+ → A3) without any
restriction. We denote byΠ (resp.Γ ) the set of strategies of player2 (resp. player3).

Sure winning.Given strategiesσ, π, τ of the three players inG, theoutcome playfrom
s0 is the infinite sequenceρσ,π,τ

s0
= s0s1 . . . such that for allj ≥ 0, we havesj+1 =

δ(sj , aj , bj , cj) whereaj = σ(s0 . . . sj), bj = π(s0 . . . sj), andcj = τ(s0 . . . sj).
Given a gameG = 〈S, s0, δ,O, obs〉 and a parity objectiveϕ ⊆ Sω, the sure winning
problem asks to decide if∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τ

s0
∈ ϕ. It will follow

from our result that if the answer to the sure winning problemis yes, then there exists a
witness finite-memory strategyσ for player 1.
3.2 Alternating Tree Automata
In this section we recall the definitions of alternating treeautomata, and present the
solution of the sure winning problem for three-player gameswith parity objectives by a
reduction to the emptiness problem of alternating parity tree automata.

Trees.Given an alphabetΩ, anΩ-labeled tree(T, V ) consists of a prefix-closed set
T ⊆ N

∗ (i.e., if x · d ∈ T with x ∈ N
∗ andd ∈ N, thenx ∈ T ), and a mapping

V : T → Ω that assigns to each node ofT a letter inΩ. Givenx ∈ N
∗ andd ∈ N such

thatx · d ∈ T , we callx · d thesuccessorin directiond of x. The nodeε is theroot of
the tree. Aninfinite pathin T is an infinite sequenceπ = d1d2 . . . of directionsdi ∈ N

such that every finite prefix ofπ is a node inT .

Alternating tree automata.Given a parameterk ∈ N \ {0}, we consider input trees of
rankk, i.e. trees in which every node has at mostk successors. Let[k] = {0, . . . , k−1},
and given a finite setU , letB+(U) be the set of positive Boolean formulas overU , i.e.
formulas built from elements inU ∪ {true, false} using the Boolean connectives∧ and
∨. An alternating tree automatonover alphabetΩ is a tupleA = 〈S, s0, δ〉 where: (i)S
is a finite set of states ands0 ∈ S is the initial state; and (ii)δ : S×Ω → B+(S× [k]) is
a transition function. Intuitively, the automaton is executed from the initial states0 and
reads the input tree in a top-down fashion starting from the rootε. In states, if a ∈ Ω is
the letter that labels the current nodex of the input tree, the behavior of the automaton
is given by the formulasψ = δ(s, a). The automaton chooses asatisfying assignment
of ψ, i.e. a setQ ⊆ S × [k] such that the formulaψ is satisfied when the elements of
Q are replaced bytrue, and the elements of(S × [k]) \Q are replaced byfalse. Then,
for each〈s1, d1〉 ∈ Q a copy of the automaton is spawned in states1, and proceeds
to the nodex · d1 of the input tree. In particular, it requires thatx · d1 belongs to the
input tree. For example, ifδ(s, a) = (〈s1, 0〉 ∧ 〈s2, 0〉) ∨ (〈s3, 0〉 ∧ 〈s4, 1〉 ∧ 〈s5, 1〉),
then the automaton should either spawn two copies that process the successor ofx in
direction0 (i.e., the nodex · 0) and that enter the respective statess1 ands2, or spawn
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three copies of which one processesx · 0 and enters states3, and the other two process
x · 1 and enter the statess4 ands5 respectively.
Runs.A run of A over anΩ-labeled input tree(T, V ) is a tree(Tr, r) labeled by el-
ements ofT × S, where a node ofTr labeled by(x, s) corresponds to a copy of the
automaton proceeding the nodex of the input tree in states. Formally, arun of A over
an input tree(T, V ) is a (T × S)-labeled tree(Tr, r) such thatr(ε) = (ε, s0) and for
all y ∈ Tr, if r(y) = (x, s), then the set{〈s′, d′〉 | ∃d ∈ N : r(y · d) = (x · d′, s′)}
is a satisfying assignment forδ(s, V (x)). Hence we require that, given a nodey in Tr

labeled by(x, s), there is a satisfying assignmentQ ⊆ S × [k] for the formulaδ(s, a)
wherea = V (x) is the letter labeling the current nodex of the input tree, and for all
states〈s′, d′〉 ∈ Q there is a (successor) nodey · d in Tr labeled by(x · d′, s′).

Given an accepting conditionϕ ⊆ Sω, we say that a run(Tr, r) is acceptingif for
all infinite pathsd1d2 . . . of Tr, the sequences1s2 . . . such thatr(di) = (·, si) for all
i ≥ 0 is inϕ. Thelanguageof A is the setLk(A) of all input trees of rankk over which
there exists an accepting run ofA. The emptiness problem for alternating tree automata
is to decide, givenA and parameterk, whetherLk(A) = ∅.

3.3 Solution of the Sure Winning Problem for Three-player Games
Theorem 2. Given a three-player gameG = 〈S, s0, δ,O, obs〉 and a parity objective
ϕ, the problem of deciding whether∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τ

s0
∈ ϕ is

EXPTIME-complete.

Proof. The EXPTIME-hardness follows from EXPTIME-hardness of two-player
partial-observation games with reachability objective [23].

We prove membership in EXPTIME by a reduction to the emptiness problem for
alternating tree automata, which is solvable in EXPTIME forparity objectives [17–
19]. The reduction is as follows. Given a gameG = 〈S, s0, δ,O, obs〉 over alpha-
bet of actionsAi (i = 1, 2, 3), we construct the alternating tree automatonA =
〈S′, s′0, δ

′〉 over alphabetΩ and parameterk = |O| (we assume thatO = [k])
where: (i)S′ = S, ands′0 = s0; (ii) Ω = A1; and (iii) δ′ is defined byδ′(s, a1) =∨

a3∈A3

∧
a2∈A2

〈δ(s, a1, a2, a3), obs(δ(s, a1, a2, a3))〉 for all s ∈ S anda1 ∈ Ω. The
acceptance conditionϕ of the automaton is the same as the objective of the gameG.
We prove that∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τ

s0
∈ ϕ if and only if Lk(A) 6= ∅.

We use the following notation. Given a nodey = d1d2 . . . dn in a (T × S)-labeled
tree(Tr, r), consider the prefixesy0 = ε, andyi = d1d2 . . . di (for i = 1, . . . , n). Let
r2(y) = s0s1 . . . sn wherer(yi) = (·, si) for 0 ≤ i ≤ n, denote the corresponding
state sequence ofy.
1. Sure winning implies non-emptiness.First, assume that for someσ ∈ Σ andτ ∈ Γ ,

we have∀π ∈ Π : ρσ,π,τ
s0

∈ ϕ. Fromσ, we define an input tree(T, V ) where
T = [k]∗ andV (γ) = σ(obs(s0) · γ) for all γ ∈ T (we view σ as a function
[k]+ → Ω, since[k] = O andΩ = A1). Fromτ , we define a(T × S)-labeled tree
(Tr, r) such thatr(ε) = (ε, s0) and for ally ∈ Tr, if r(y) = (x, s) andr2(y) = ρ,
then fora1 = σ(obs(s0) · x) = V (x), for a3 = τ(s0 · ρ), for everys′ in the set
Q = {s′ | ∃a2 ∈ A2 : s′ = δ(s, a1, a2, a3)}, there is a successory · d of y in
Tr labeled byr(y · d) = (x · obs(s′), s′). Note that{〈s′, obs(s′)〉 | s′ ∈ Q} is a
satisfying assignment forδ′(s, a1) anda1 = V (x), hence(Tr, r) is a run ofA over
(T, V ). For every infinite pathρ in (Tr, r), consider a strategyπ ∈ Π consistent
with ρ. Thenρ = ρσ,π,τ

s0
, henceρ ∈ ϕ and the run(Tr, r) is accepting, showing

thatLk(A) 6= ∅.
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2. Non-emptiness implies sure winning.Second, assume thatLk(A) 6= ∅. Let
(T, V ) ∈ Lk(A) and(Tr, r) be an accepting run ofA over(T, V ). From(T, V ),
define a strategyσ of player1 such thatσ(s0 ·ρ) = V (obs(ρ)) for all ρ ∈ S∗. Note
thatσ is indeed observation-based. From(Tr, r), we know that for all nodesy ∈ Tr

with r(y) = (x, s) andr2(y) = ρ, the setQ = {〈s′, d′〉 | ∃d ∈ N : r(y · d) =
(x · d′, s′)} is a satisfying assignment ofδ′(s, V (x)), hence there existsa3 ∈ A3

such that for alla2 ∈ A2, there is a successor ofy labeled by(x · obs(s′), s′) with
s′ = δ(s, a1, a2, a3) anda1 = σ(s0 · ρ). Then defineτ(s0 · ρ) = a3. Now, for all
strategiesπ ∈ Π the outcomeρσ,π,τ

s0
is a path in(Tr, r), and henceρσ,π,τ

s0
∈ ϕ.

Therefore∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τ
s0

∈ ϕ.

The nonemptiness problem for an alternating tree automatonA with parity condi-
tion can be solved by constructing an equivalent nondeterministic parity tree automaton
N (such thatLk(A) = Lk(N )), and then checking emptiness ofN . The construc-
tion proceeds as follows [19]. The nondeterministic automatonN guess a labeling of
the input tree with a memoryless strategy for the alternating automatonA. As A has
n states andk directions, there are(kn) possible strategies. A nondeterministic par-
ity word automaton withn states andd priorities can check that the strategy works
along every branch of the tree. An equivalent deterministicparity word automaton can
be constructed with(nn) states andO(d · n) priorities [4]. Thus,N can guess the
strategy labeling and check the strategies withO((k · n)n) states andO(d · n) prior-
ities. The nonemptiness ofN can then be checked by considering it as a (two-player
perfect-information deterministic) parity game withO((k · n)n) states andO(d · n)

priorities [15]. This games can be solved in timeO((k · n)d·n2

) [14]. Moreover, since
memoryless strategies exist for parity games [14], if the nondeterministic parity tree au-
tomaton is nonempty, then it accepts a regular tree that can be encoded by a transducer
with ((k · n)n) states. Thus, the nonemptiness problem for alternating tree automaton
with parity condition can be decided in exponential time, and there exists a transducer
to witness nonemptiness that has exponentially many states.

Theorem 3. Given a three-player gameG = 〈S, s0, δ,O, obs〉 with n states (andk ≤
n observations for player1) and parity objectiveϕ defined byd priorities, the problem
of deciding whether∃σ ∈ Σ · ∃τ ∈ Γ · ∀π ∈ Π : ρσ,π,τ

s0
∈ ϕ can be solved in time

exponential time. Moreover, memory of exponential size is sufficient for player1.

Remark 4.By our reduction to alternating parity tree automata and thefact that if an
alternating parity tree automaton is non-empty, there is a regular witness tree for non-
emptiness it follows that strategies for player 1 can be restricted to finite-memory with-
out loss of generality. This ensures that we can solve the problem of the existence
of finite-memory almost-sure winning (resp. positive winning) strategies in partial-
observation stochastic parity games (by Theorem 1 of Section 2) also in EXPTIME,
and EXPTIME-completeness of the problem follows since the problem is EXPTIME-
hard even for reachability objectives for almost-sure winning [10] and safety objectives
for positive winning [9].

Theorem 4. Given a partial-observation stochastic game and a parity objective ϕ
defined byd priorities, the problem of deciding whether there exists a finite-memory
almost-sure (resp. positive) winning strategy for player 1is EXPTIME-complete. More-
over, if there is an almost-sure (resp. positive) winning strategy, then there exists one
that uses memory of at most exponential size.
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Remark 5.As mentioned in Remark 2 the EXPTIME upper bound for qualitative analy-
sis of partial-observation stochastic parity games with finite-memory randomized strate-
gies follows from Theorem 4. The EXPTIME lower bound and the exponential lower
bound on memory requirement for finite-memory randomized strategies follows from
the results of [10, 9] for reachability and safety objectives (even for POMDPs).
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