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Abstract We consider two-player zero-sum stochastic games on graphswith ω-regular win-
ning conditions specified as parity objectives. These gameshave applications in the design
and control of reactive systems. We survey the complexity results for the problem of de-
ciding the winner in such games, and in classes of interest obtained as special cases, based
on the information and the power of randomization availableto the players, on the class of
objectives and on the winning mode.

On the basis of information, these games can be classified as follows: (a) partial-
observation (both players have partial view of the game); (b) one-sided partial-observation
(one player has partial-observation and the other player has complete-observation); and (c)
complete-observation (both players have complete view of the game). The one-sided partial-
observation games have two important subclasses: the one-player games, known as partial-
observation Markov decision processes (POMDPs), and the blind one-player games, known
as probabilistic automata.

On the basis of randomization, (a) the players may not be allowed to use randomization
(pure strategies), or (b) they may choose a probability distribution over actions but the actual
random choice is external and not visible to the player (actions invisible), or (c) they may
use full randomization.

Finally, various classes of games are obtained by restricting the parity objective to a
reachability, safety, Büchi, or coBüchi condition. We also consider several winning modes,
such as sure-winning (i.e., all outcomes of a strategy have to satisfy the winning condition),
almost-sure winning (i.e., winning with probability1), limit-sure winning (i.e., winning with
probability arbitrarily close to1), and value-threshold winning (i.e., winning with probabil-
ity at leastν, whereν is a given rational).
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1 Introduction

Games on graphs.Games played on graphs provide the mathematical framework to analyze
several important problems in computer science as well as inmathematics. In particular,
the synthesis problem (Church’s problem) can be reduced to the construction of a winning
strategy in a game played on a graph where the vertices and edges of the graph represent the
states and transitions of a reactive system [7,36,34,32]. Game-theoretic formulations have
also proved useful for the verification [1], refinement [26],and compatibility checking [22]
of reactive systems. Games played on graphs are dynamic games that proceed for an infinite
number of rounds. In each round, one of the players chooses a move which, together with
the current state, determine a probability distribution over the successor state. An outcome
of the game, called aplay, consists of the infinite sequence of states that are visited.

Strategies and objectives.A strategy for a player is a recipe that describes how the player
chooses a move to extend a play prefix. Strategies can be classified as follows:purestrate-
gies, which always deterministically choose a move to extend the play, andrandomized
strategies, which may choose at a state a probability distribution over the available moves.
If the randomized strategy is allowed to observe the result of the move chosen from the
probability distribution, then it is a randomizedaction-visiblestrategy; otherwise it is a ran-
domizedaction-invisiblestrategy. Objectives are generally Borel measurable functions [31]:
the objective for a player is a Borel setB in the Cantor topology onQω (whereQ is the set
of states), and the objective is satisfied if the outcome of the game is a member ofB. In veri-
fication, objectives are usuallyω-regular languages. Theω-regular languages generalize the
classical regular languages to infinite strings; they occurin the low levels of the Borel hier-
archy (they lie inΣ3 ∩ Π3, called the first21/2-levels of the Borel hierarchy) and they form
a robust and expressive language for determining payoffs for commonly used specifications.
We consider the parity objective and its subclasses, which is a canonical form to express
ω-regular objectives in verification.

Classification of games.Games played on graphs can be classified according to the
knowledge of the players about the state of the game. Accordingly, there are (a)partial-
observationgames, where each player only has a partial or incomplete view about the
states visited and the actions played in the game; (b)one-sided partial-observationgames,
where one player has partial knowledge and the other player has complete knowledge; and
(c) complete-observationgames, where each player has complete knowledge of the play.
Partial-observation games are useful to model many important problems related to reactive
systems, for example, the interaction of a plant and controller when the plant has private vari-
ables not accessible to the controller. The class of one-sided partial-observation games has
two important subclasses when there is only one player: (a) one-player partial-observation
games, called partial-observation Markov decision processes (POMDPs); and (b) the special
case of POMDPs with a single observation, which are called blind POMDPs or probabilistic
automata [35].

Analysis.The analysis of games can be classified intoqualitativeandquantitativeanalysis.
The qualitative analysis consists of the following questions: given an objective and a state
of the game, (a) can player 1 ensure that the objective is satisfied with certainty against all
strategies of player 2 (sure winningproblem); (b) can player 1 ensure that the objective is
satisfied with probability1 against all strategies of player 2 (almost-sure winningproblem);
and (c) can player 1 ensure that the objective is satisfied with probability arbitrarily close
to 1 against all strategies of player 2 (limit-sure winningproblem). Given an objective, an
initial state of the game, and a rational thresholdν, the quantitative analysis problem asks
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whether the maximal probability with which player 1 can ensure the objective against all
player-2 strategies is at leastν.

Structure of the paper. We survey the main complexity results about various classesof
partial-observation games, for different classes of parity objectives, for all three types of
strategies (pure, randomized action-visible, and randomized action-invisible). We organize
the results according to sure winning (see Table 1), almost-sure winning (see Table 2 and
Table 3), limit-sure winning (see Table 4), and quantitative analysis (see Table 5).

2 Definitions

We define the class of two-player partial-observation stochastic games, and we consider
some relevant subclasses.

A probability distribution on a finite setS is a functionκ : S → [0,1] such that
P

s∈S κ(s) = 1. Thesupportof κ is the setSupp(κ) = {s ∈ S | κ(s) > 0}. We denote by
D(S) the set of probability distributions onS.

Stochastic games.Given finite alphabetsAi of actions for playeri (i = 1, 2), a two-player
stochastic game(or simply agame) is a tupleG = 〈Q1, Q2, δ〉 where

– Q1 is a finite state of player-1 states,Q2 is a finite state of player-2 states, withQ1 ∩

Q2 = ∅.
– δ : Qi × Ai → D(Q3−i) is a probabilistic transition function.

Let Q = Q1 ∪ Q2. Games are played for infinitely many rounds from an initial state
q0 ∈ Q. In each round, if the current state isq ∈ Qi (i ∈ {1, 2}), then playeri chooses
an actiona ∈ Ai and the game proceeds to the next round in stateq′ with probability
δ(q, a)(q′). In this way, the players construct an infinite path called aplay.

The game isdeterministicif for i = 1, 2, for all statesq ∈ Qi and all actionsa ∈ Ai,
there exists a stateq′ ∈ Q3−i such thatδ(q, a)(q′) = 1.

Partial-observation stochastic games.In partial-observation games, the players have a par-
tial or incomplete view of the states visited in the game, andthe views of the two players are
in general different. Apartial-observation two-player stochastic gameconsists of a game
G = 〈Q1, Q2, δ〉 and two setsOi ⊆ 2Q (i = 1, 2) of observationsfor playeri that define
two partitions ofQ. The states in an observation ofOi are indistinguishable for playeri.
These partitions uniquely define two functionsobsi : Q → Oi (i = 1, 2) that map each state
q ∈ Q to its observation for playeri such thatq ∈ obsi(q). A model of games where states
may have multiple observations (i.e., the observation setscan overlap) can be encoded in the
model where observations form a partition of the state space[17].

Fig. 1 shows an example of a two-player stochastic game wherethe player-1 statesQ1 =
{q1, q2, q5} are circles, and the player-2 statesQ2 = {q0, q3, q4, ,} are boxes. The transition
from q1 on a is such thatδ(q1, a)(q3) = δ(q1, a)(,) = 1

2 . Observations (not depicted) are
O1 = {{q0}, {qi | 1 ≤ i ≤ 5}, {,}} for player1, andO2 = {{q0}, {q1}, {q2} . . . } for
player2. Hence, player1 can observe the initial state and the state,, while player2 can
distinguish all states.

Special cases.We consider the following subclasses of partial-observation stochastic games:

– (Observation restriction).The games withone-sided partial-observationare the special
case of games whereO2 = {{q} | q ∈ Q} (equivalently,obs2(q) = {q} for all q ∈ Q),
i.e. player 2 has complete observation, and only player 1 haspartial-observation.
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Fig. 1 A two-player stochastic game.

The games of complete observationare the special case of games whereO1 = O2 =
{{q} | q ∈ Q}, i.e. every state is visible to each player and hence both players have com-
plete observation. Two-player games of complete observation are also called perfect-
information stochastic games, or21/2-player games.

– (Player restriction).Thepartial-observation Markov decision processes(POMDP) are
the the special case of games whereA2 is a singleton, i.e. only player1 has multiple
choice. An important subclass of POMDP is obtained when player 1 has only one ob-
servation (i.e.,O1 = {Q}) and is called blind POMDPs orprobabilistic automata[35].

Strategies.Strategies are recipes used by the players to choose their action. In partial-
observation games, it is more powerful to use randomizationin strategies, and when ran-
domization is used it is more powerful to observe which action was (randomly) chosen, as
compared to the case where the action is not visible. Therefore, we consider the following
classes of strategies.

– Randomized action-visible.Let Aε
i = Ai ∪ {ε}. A randomized action-visible strategyin

G for playeri is a functionσi : (Oi · A
ε
i )

∗ · Oi → D(Ai).
– Randomized action-invisible.A randomized action-invisible strategyin G for playeri is

a functionσi : O+
i → D(Ai) whereO+

i is the set of nonempty sequences of observa-
tions.

– Pure.A pure strategyin G for player i is a randomized action-invisible strategy such
that for all observation sequencesρ ∈ O+

i , there exists an actiona ∈ Ai such that
σi(ρ)(a) = 1.

For pure strategies, it does not matter whether the actions are visible or not because
given a pure strategyσi, and a finite prefixρ ∈ O+

i , the actions played by playeri alongρ

can be completely reconstructed.
Note that games where the players use randomized action-visible strategies can be en-

coded into games where the actions are invisible, in which the last action played is stored
in the state space, and the observations on states are enriched to reveal the last action. This
encoding has a polynomial blow-up. The same trick can be usedto encode games where the
actions can be partially observed (e.g., through observations on the action sets) into games
with actions invisible [25]. Hence the model with action invisible is more general.
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Memory of strategies. A randomized action-invisible strategy for playeri usesfinite-
memoryif it can be encoded by a deterministic transducer〈Mem, m0, αu, αn〉 whereMem

is a finite set (the memory of the strategy),m0 ∈ Mem is the initial memory value,
αu : Mem × Oi → Mem is an update function, andαn : Mem × Oi → D(Ai) is
a next-move function. Thememory sizeof the strategy is the number|Mem| of memory
values. The strategy ismemorylessif |Mem| = 1. If the current observation iso ∈ Oi,
and the current memory value ism, then the strategy chooses the next action according to
the probability distributionαn(m,o), and the memory is updated toαu(m,o). Formally,
〈Mem, m0, αu, αn〉 defines the strategyσ such thatσ(ρ · o) = αn(α̂u(m0, obs1(ρ)), o) for
all ρ ∈ O∗

i ando ∈ Oi, whereα̂u extendsαu to sequences of observations as expected. The
memory used by randomized action-visible strategies can bedefined analogously.

Outcome.Strategies induce a set of plays and a (probability) measureµ over play prefixes,
defined as follows:

– For randomized action-visible strategies, we lift the functions obsi to sequences of in-
terleaved states and actions: fori = 1, 2, denote byobsi(q0a0q1a1 . . . qk) the sequence
obsi(q0) a′0 obsi(q1) a′1 . . . obsi(qk) wherea′j = aj if qj ∈ Qi, anda′j = ε if qj ∈ Q3−i.
Let state(q0a0q1a1 . . . qk) be the sequenceq0q1 . . . qk (i.e., the projection that removes
all actions).
A play ρ = q0q1 . . . is an outcomeof the randomized action-visible strategiesσ1

for player 1 and σ2 for player 2 from a stateq ∈ Q if q0 = q and there ex-
ists a sequenceπ = q0a0q1a1 . . . qk such thatρ = state(π) and for all j ≥ 0, if
qj ∈ Qi thenσi(obsi(q0a0q1 . . . qj))(aj) > 0, andδ(qj , aj)(qj+1) > 0. We denote
by Outcome(G, q, σ1, σ2) the set of all outcomes of the strategiesσ1 andσ2 from q.
Define the functionξσ1,σ2

q : (Q · (A1 ∪ A2))
∗ · Q → [0,1] inductively as follows. Let

ξσ1,σ2

q (q0) = 1 if q0 = q, andξσ1,σ2

q (q0) = 0 if q0 6= q. For allπ ∈ (Q ·(A1∪A2))
∗ ·Q,

andq′ ∈ Q, let i ∈ {1, 2} such thatLast(π) ∈ Qi (whereLast(π) is the last state in the
sequenceπ), and define

ξσ1,σ2

q (π · a · q′) =

(

ξ
σ1,σ2

q (π) · σi(obsi(π))(a) · δ(Last(π), a)(q′) if a ∈ Ai

0 if a ∈ A3−i

Fromξσ1,σ2

q , define the functionµσ1,σ2

q : Q+ → [0, 1] by

µσ1,σ2

q (ρ) =
X

π∈(Q·(A1∪A2))∗·Q | state(π)=ρ

ξσ1,σ2

q (π).

– For randomized action-invisible strategies, we lift the functionsobsi to sequences of
states and denote byobsi(q0q1 . . . qk) the sequenceobsi(q0)obsi(q1) . . . obsi(qk).
A play ρ = q0q1 . . . is anoutcomeof the strategiesσ1 for player1 andσ2 for player2
from a stateq ∈ Q if q0 = q and for all j ≥ 0, if qj ∈ Qi then there exists
a ∈ Ai such thatσi(obsi(q0 . . . qj))(a) > 0, andδ(qj , a)(qj+1) > 0. We denote by
Outcome(G, q, σ1, σ2) the set of all outcomes of the strategiesσ1 andσ2 from q. De-
fine the functionµσ1,σ2

q : Q+ → [0,1] inductively as follows. Letµσ1,σ2

q (q0) = 1 if
q0 = q, andµσ1,σ2

q (q0) = 0 if q0 6= q. For all ρ ∈ Q+ andq ∈ Q, let i ∈ {1, 2} such
thatLast(ρ) ∈ Qi (whereLast(ρ) is the last state in the sequenceρ), and define

µσ1,σ2

q (ρ · q) = µσ1,σ2

q (ρ) ·
X

ai∈Ai

σi(obsi(ρ))(ai) · δ(Last(ρ), ai)(q).
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– The definition of outcome for pure strategies is derived as a special case of the definition
of outcome for randomized action-invisible strategies.

By Caratheódary’s extension theorem, the functionµσ1,σ2

q can be uniquely extended to a
probability measurePrσ1,σ2

q (·) over Borel sets of infinite plays [39,6].

Objectives. An objective in G is a Borel setϕ ⊆ Qω of plays in the Cantor topology
on Qω [28]. All objectives we consider in this paper lie in the first21/2-levels of the Borel
hierarchy. We specifically consider the parity objective, which is a canonical form to express
all ω-regular objectives [38]. For a playρ = q0q1q2 . . ., denote byInf(ρ) = {q ∈ Q | ∀i ≥

0·∃j ≥ i : qj = q} the set of states that occur infinitely often inρ. We consider the following
objectives.

– Reachability and safety objectives.Given a setT ⊆ Q of target states, thereachability
objectiveReach(T ) = {q0q1q2 . . . ∈ Qω | ∃k ≥ 0 : qk ∈ T } requires that a target state
in T be visited at least once. Dually, thesafetyobjectiveSafe(T ) = {q0q1q2 . . . ∈ Qω |

∀k ≥ 0 : qk ∈ T } requires that only states inT be visited.
– Büchi and coB̈uchi objectives.Given a setT ⊆ Q of target states TheBüchi objective

Buchi(T ) = {ρ ∈ Qω | Inf(ρ) ∩ T 6= ∅} requires that a state inT be visited infinitely
often. Dually, thecoBüchi objectivecoBuchi(T ) = {ρ ∈ Qω | Inf(ρ) ⊆ T } requires
that only states inT be visited infinitely often.

– Parity objectives.For d ∈ N, let p : Q → {0, 1, . . . , d} be apriority function that
maps each state to a nonnegative integer priority. Theparity objectiveParity(p) = {ρ ∈

Qω | min{p(q) | q ∈ Inf(ρ)} is even} requires that the smallest priority that appears
infinitely often be even.

Note that a reachability objectiveReach(T ) can be viewed as a special case of Büchi
objectives, and safety objectives are special cases of coB¨uchi objectives.

And the objectivesBuchi(T ) andcoBuchi(T ) are special cases of parity objectives de-
fined by respective priority functionsp1, p2 such thatp1(q) = 0 andp2(q) = 2 if q ∈ T ,
andp1(q) = p2(q) = 1 otherwise.

Winning modes.Given a game structureG, a stateq, and an objectiveϕ, and classesC1, C2

of strategies, we say that:

– a strategyσ1 ∈ C1 for player1 is sure winningif Outcome(G, q, σ1, σ2) ⊆ ϕ for all
strategiesσ2 ∈ C2 for player2,

– a strategyσ1 ∈ C1 for player1 is almost-sure winningif Prσ1,σ2

q (ϕ) = 1 for all strate-
giesσ2 ∈ C2 for player2,

– player1 is limit-sure winningif for all ε > 0 there exists a strategyσ1 ∈ C1 for player1
such that for all strategiesσ2 ∈ C2 for player2, we havePrσ1,σ2

q (ϕ) ≥ 1 − ǫ,
– thevalue function〈〈1〉〉G

val
(ϕ) : Q → R for player 1 assigns to every state the maximal

probability with which player 1 can guarantee thatϕ using a strategy inC1, against all
strategies ofC2 for player 2. Formally, let

〈〈1〉〉Gval(ϕ)(q) = sup
σ1∈C1

inf
σ2∈C2

Prσ,σ2

q (ϕ).

In the above definitions, the classC2 of player-2 strategies can be taken as any of the
three classes of strategies we have defined (i.e., pure, randomized action-invisible, or ran-
domized action-visible) without changing the definition. This is because once a strategy of
player1 is fixed, we obtain a (possibly infinite-state) POMDP in whichpure strategies are
sufficient for parity objectives [15].
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For limit-sure and the value function, the complexity and decidability results presented
in this survey are independent of the choice of the classC1 among the three classes we have
defined.

Qualitative and quantitative analysis.We are interested in the problems of deciding, given
a gameG, a stateq, and an objectiveϕ, whether there exists a{pure, randomized action-
invisible, randomized action-visible} strategy for player1 that is{sure, almost-sure} win-
ning from q for the objectiveϕ, or whether player1 is limit-sure winning fromq for the
objectiveϕ

Given a rational value0 ≤ ν ≤ 1, thevalue decision problemasks whether the value
〈〈1〉〉G

val
(ϕ)(q) of the game atq is at leastν. The qualitative analysis consists of the sure,

almost-sure and limit-sure winning problems, and the quantitative analysis is the value de-
cision problem.

Consider the objectiveBuchi({,}) in the example of Fig. 1. There is no sure winning
strategy for player1 for this objective, but player1 has an almost-sure winning strategy that
uses randomization (play everywherea andb with probability 1

2 ), as well as a pure almost-
sure winning strategy (alternate playinga andb). Hence for the three classes of strategies,
we have〈〈1〉〉G

val
(Buchi({,}))(q0) = 1.

3 The Complexity of Partial-Observation Stochastic ParityGames

In this section we present a survey of results about the computational complexity and strat-
egy complexity of different classes of partial-observation games, with different classes of
parity objectives and strategies, both for qualitative andquantitative analysis. We organize
the results as follows: we first present the results for sure winning, then for almost-sure win-
ning, followed by limit-sure winning, and finally the quantitative analysis (value problem).

3.1 Complexity of sure winning

In this section we consider partial-observation games and its subclasses with parity objec-
tives and the winning mode is sure winning. We first present a simple result from the litera-
ture that shows that for sure winning, pure strategies are sufficient for all partial-observation
games.

Pure strategies suffice for sure winning.The key argument to show that pure strategies
suffice for sure winning is as follows. Consider a randomizedaction-visible strategyσ1 for
player1, let σP

1 be a pure strategy such that for all finite prefixesρ, the strategyσP
1 (ρ)

chooses an action fromSupp(σ1(ρ)). Then for all statesq and all strategiesσ2 for player2,
we haveOutcome(G, q, σP

1 , σ2) ⊆ Outcome(G, q, σ1, σ2), and thus ifσ1 is sure winning,
then so isσP

1 .

Counting spoiling strategies.To spoil a strategy of player1 (for sure-winning), player2
does not need the full memory of the history of the play, but only needs counting strate-
gies [17]. We say that a pure strategyσ2 for player2 is countingif for all finite prefixesρ, ρ′

such that|ρ| = |ρ′|, we haveσ2(ρ) = σ2(ρ
′). The memory needed by a counting strategy

is only the number of turns that have been played. This type ofstrategy is sufficient to spoil
the non-winning strategies of player1 [17].

Sure winning coincide for partial-observation and one-sided games.For all partitionsO2

of a partial-observation game, counting strategies are valid strategies. Since pure strategies
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suffice for sure winning and counting strategies suffice for spoiling pure strategies, it follows
that for spoiling strategies in sure winning games, the observation for player 2 does not
matter, and hence for sure winning, partial-observation and one-sided games coincide.

Computational complexity of sure winning.We now summarize the results related to the
computational complexity of sure winning in various classes of partial-observation games.
The following basic facts follow from the above argument: (1) For sure winning, pure strate-
gies are as powerful as randomized action-visible strategies, and hence we only focus on
pure strategies. (2) For sure winning, partial-observation games are equivalent as the special
class of one-sided partial-observation games.

1. Complete-observation games.The results for complete-observation games are as fol-
lows: (1) safety and reachability objectives can be solved in linear time (this is alter-
nating reachability in AND-OR graphs) [27]; (2) Büchi and coBüchi objectives can
be solved in quadratic time [38]; and (3) parity objectives lie in NP ∩ coNP and no
polynomial time algorithm is known [23]. The results for sure winning are derived as
follows: for sure winning since all paths need to satisfy theobjective, the probabilistic
choices can be interpreted as the choice of the adversary (player 2) and then we obtain
complete-observation deterministic games, and all results follow from the results for
complete-observation deterministic games.

2. Probabilistic automata and POMDPs.The sure winning problem for probabilistic au-
tomata is the same as the blind games problem considered by Reif [37], and the POMDP
problem is same as the sure winning problem for one-sided deterministic games (again
interpreting the probabilistic choice as adversarial choice). The results for blind games
are as follows: using the subset construction technique, Reif showed that the blind games
problem can be solved as a graph problem on an exponentially large graph for reacha-
bility objectives [37]. It follows from [17] that the same (subset construction) technique
also works for parity objectives, and [5] presents a reduction of parity objectives to safety
objectives. As a consequence it follows that the sure winning problem for probabilistic
automata with parity objectives can be solved in PSPACE, andthe PSPACE lower bound
follows from the universality problem for non-deterministic finite automata [37]. Hence
we have PSPACE-completeness for the sure winning problem for probabilistic automata.
The result for POMDPs is the same as for one-sided games discussed below.

3. One-sided and partial-observation games.The results for one-sided partial-observation
games are as follows: (1) the EXPTIME-completeness for reachability objectives fol-
lows from the results of [37]; (2) the EXPTIME-completenessfor safety objectives fol-
lows from the results of [5]; and (3) the EXPTIME-upper boundfor all parity objectives
follows from the results of [17] and hence it follows that forall Büchi, coBüchi and par-
ity objectives we have EXPTIME-complete bound. Again the EXPTIME upper bound
follows by constructing and solving an exponential-size game of complete observation.
The lower bound follows from a reduction of the membership problem of alternating
polynomial space Turing machines. The results follow for partial-observation games as
sure winning for partial-observation games coincides withsure winning for one-sided
partial-observation games.

The results are summarized in Theorem 1 and shown in Table 1.

Strategy complexity of sure winning.The sure winning problem for complete-observation
games is the same as complete-observation deterministic games, and hence the existence
of pure memoryless sure winning strategies for complete-observation games with parity
objectives follows from the results of [23]. For probabilistic automata, POMDP, and partial-
observation games, sure-winning strategies of exponential size suffices: the witness sure
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Complete-observation Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.

Reachability Linear-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.
Büchi Quadratic-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.

coBüchi Quadratic-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.
Parity NP∩ coNP PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.

Table 1 Complexity of sure winning.

Complete-observation Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.

Reachability Linear-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. 2EXPTIME-comp.
Büchi Quadratic-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. 2EXPTIME-comp.

coBüchi Quadratic-time Undecidable Undecidable Undecidable Undecidable
Parity NP∩ coNP Undecidable Undecidable Undecidable Undecidable

Table 2 Complexity of almost-sure winning: randomized action-visible strategies.

winning strategy is based on the subset construction where the subset represents thebe-
lief of the player (where belief represents the possible currentstates of the game). It fol-
lows that pure belief-based sure winning strategies exist.The exponential lower bound for
memory follows from the fact that the shortest word to witness the non-universality of a
non-deterministic finite automata is of exponential size.

Theorem 1 (Complexity of sure winning)The following assertions hold:

1. The sure winning problem for complete-observation games(i) with reachability and
safety objectives can be solved in linear time; (ii) with Büchi and coB̈uchi objectives
can be solved in quadratic time; and (iii) with parity objectives is in NP∩ coNP.

2. The sure winning problem for probabilistic automata withreachability, safety, B̈uchi,
coBüchi and parity objectives are PSPACE-complete.

3. The sure winning problem for POMDPs, one-sided partial-observation games, and
partial-observation games with reachability, safety, Büchi, coB̈uchi and parity objec-
tives are EXPTIME-complete.

4. Pure memoryless sure-winning strategies exist in complete-observation parity games.
Sure-winning strategies with exponential memory is sufficient for probabilistic au-
tomata, POMDP, one-sided partial-observation games, and partial-observation games
with parity objectives, and exponential memory is necessary for sure-winning strategies
in probabilistic automata with safety and reachability objectives.

3.2 Complexity of almost-sure winning

In this section, we discuss the results for almost-sure winning. In contrast to sure winning in
partial-observation games where all problems are decidable, the almost-sure winning prob-
lem becomes undecidable in many cases. We start with the mainundecidability result related
to almost-sure winning.

Undecidability result for almost-sure winning. The main undecidability result for the
almost-sure winning problem was established in [2] where itwas shown that the problem
of deciding the existence of a pure almost-sure winning strategy for probabilistic automata
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with coBüchi objectives is undecidable. The key steps of this deep result are: (1) First the
authors consider the undecidability of the approximation problem for probabilistic automata
over finite words which shows that given a probabilistic automata on finite words and a con-
stant0 < ε < 1 such that either there is a word accepted with probability1 − ε or all
words are accepted with probability at mostε, decide which is the case, is undecidable [30].
(2) Then the approximation problem is reduced to the problemof checking, given two prob-
abilistic Büchi automata, whether there is a word that is accepted with positive probability
by both the automata. (3) Using the closure properties of probabilistic Büchi automata [3], it
follows that the problem of deciding the existence of a word (which is same as a pure strat-
egy for probabilistic automata) that is accepted with positive probability is undecidable for
probabilistic automata with Büchi conditions. As the coB¨uchi condition is dual to the Büchi
condition, and almost-sure acceptance criteria is dual to acceptance with positive probabil-
ity, it follows that the problem of deciding the existence ofpure almost-sure winning strategy
for probabilistic automata with coBüchi objectives is undecidable.

Undecidability result for randomized strategies.As discussed above, the existence of
pure almost-sure winning strategy for probabilistic automata with coBüchi objectives is un-
decidable. It was established in [15] that for POMDPs pure strategies are as powerful as ran-
domized action-visible strategies for all objectives (i.e., for one-player games randomization
is not useful for strategies). As a consequence it follows that the existence of randomized
action-visible almost-sure winning strategy for probabilistic automata coincides with the ex-
istence of pure almost-sure winning strategies. Hence it follows that the existence of almost-
sure winning strategy for probabilistic automata, POMDPs,one-sided partial-observation
games, and partial observation games is undecidable for coBüchi (and hence also for parity)
objectives for all classes (pure, randomized action-visible, and randomized action-invisible)
of strategies.

Some basic facts.In contrast to sure winning in all classes of games and almost-sure win-
ning for probabilistic automata and POMDPs, where pure strategies are as powerful as
randomized action-visible strategies, the scenario is quite different for one-sided partial-
observation games. It was shown in [17, Example 2.3] that foralmost-sure winning, random-
ized action-visible strategies are more powerful than purestrategies for one-sided partial-
observation games with reachability objectives (and the example of [17] also shows that
randomized action-invisible strategies are more powerfulthan pure strategies for almost-
sure winning in one-sided partial-observation games). It was shown in [21, Section 3] that
for one-sided partial-observation games, randomized action-visible strategies are more pow-
erful than randomized action-invisible strategies for almost-sure winning with reachability
objectives. For safety objectives, the counter-examples are always finite prefixes, and it can
be shown that for a given strategy for player 1 if there is a strategy for player 2 to produce
a finite counter-example, then the finite counter-example isproduced with some constant
positive probability. It follows that for partial-observation games and one-sided partial-
observation games, and all the subclasses with safety objectives, the almost-sure problem
coincide with the sure winning problem.

Complexity of almost-sure winning: randomized action-visible strategies. We now
summarize the results related to the computational complexity of deciding the existence
of randomized action-visible almost-sure winning strategies in various classes of partial-
observation games. As for safety objectives the results areexactly the same as in the case of
sure winning, we omit the discussion of safety objectives below.

1. Complete-observation games.A quadratic-time reduction of the almost-sure winning
problem to the sure winning problem for parity objectives was established in [18,12].
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The reduction is linear-time for reachability, Büchi and coBüchi objectives. It follows
that reachability objectives can be solved in linear time, Büchi and coBüchi objectives
in quadratic time, and parity objectives in NP∩ coNP.

2. Probabilistic automata.The PSPACE-completeness of the almost-sure winning prob-
lem for reachability and Büchi objectives was establishedin [9,10] for pure strategies.
Since for probabilistic automata, the problem for pure strategies coincides with random-
ized action-visible strategies, the result of PSPACE-completeness follows for all classes
of strategies. The almost-sure winning problem is undecidable for coBüchi and parity
objectives [2].

3. POMDPs.The EXPTIME upper bound for the almost-sure winning problemfor reach-
ability and Büchi objectives was established in [2] for pure strategies (and hence also
for randomized action-visible strategies), and the EXPTIME lower bound was shown
in [16]. The almost-sure winning problem is undecidable forcoBüchi and parity objec-
tives [2].

4. One-sided games.The EXPTIME-completeness for almost-sure winning with reach-
ability and Büchi objectives for one-sided partial-observation games was established
in [17]. The standard subset construction does not work for almost-sure winning, as the
standard subset construction yields a complete-observation game where randomization
is not useful, whereas in one-sided partial-observation games randomized strategies are
more powerful than pure strategies for almost-sure winningwith reachability objectives.
A slightly more involved exponential-size game can be constructed to solve the almost-
sure winning problem, and an EXPTIME lower bound was established through a reduc-
tion of the membership problem of alternating polynomial-space Turing machine [17].
The almost-sure winning problem is undecidable for coBüchi and parity objectives [2].

5. Partial-observation games.The 2EXPTIME-completeness for almost-sure winning with
reachability and Büchi objectives for partial-observation games was shown in [4]: the
upper bound was established generalizing the result of [17]and the lower bound was
established through a reduction of the membership problem of alternating exponential-
space Turing machine. The almost-sure winning problem is undecidable for coBüchi
and parity objectives [2].

This gives the results for almost-sure winning, summarizedin Theorem 2 below (see
also Table 2).

Strategy complexity of almost-sure winning: randomized action-visible strategies.The
existence of pure memoryless almost-sure winning strategyfor complete-observation games
with parity objectives was established in [18,12], and a consequence of the result also
shows that for complete-observation games with parity objectives pure memoryless strate-
gies are as powerful as randomized action-visible strategies. It was shown in [17] that in one-
sided partial-observation games belief-based randomizedaction-visible almost-sure winning
strategies exist for reachability and Büchi objectives. As a consequence, an exponential up-
per bound for memory follows for all decidable problems. Theexponential lower bound
for memory for POMDPs with reachability objectives was established in [16], and the con-
struction can be adapted to show the same lower bound for probabilistic automata. It was
shown in [4] that even in partial-observation games belief-based randomized action-visible
almost-sure winning strategies exist for reachability andBüchi objectives. As a consequence
optimal exponential memory bound follows for randomized action-visible almost-sure win-
ning strategies for reachability and Büchi objectives forprobabilistic automata, POMDPs,
one-sided partial observation games, and partial-observation games. For coBüchi and par-
ity objectives, no bound on memory of almost-sure winning strategies can be established
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as the problem is undecidable. In the sequel, we do not discuss the memory bounds for
problems where undecidability has been established as the undecidability result implies that
infinite memory is necessary (as sufficiency of finite-memorystrategies would imply semi-
decidability, contradicting the undecidability results).

Theorem 2 (Complexity of almost-sure winning: randomized action-visible strategies)
The following assertions hold for randomized action-visible strategies:

1. The almost-sure winning problem for complete-observation games (i) with reachability
and safety objectives can be solved in linear time; (ii) withBüchi and coB̈uchi objectives
can be solved in quadratic time; and (iii) with parity objectives is in NP∩ coNP.

2. The almost-sure winning problem for probabilistic automata with reachability, safety,
Büchi objectives are PSPACE-complete, and undecidable for coBüchi and parity objec-
tives.

3. The almost-sure winning problem for POMDPs and one-sidedpartial-observation
games with reachability, safety, and Büchi objectives are EXPTIME-complete, and un-
decidable for coB̈uchi and parity objectives.

4. The almost-sure winning problem for partial-observation games is EXPTIME-complete
for safety objectives, 2EXPTIME-complete for reachability, and B̈uchi objectives, and
undecidable for coB̈uchi and parity objectives.

5. Pure memoryless almost-sure winning strategies exist incomplete-observation par-
ity games. Exponential memory is sufficient for almost-surewinning strategies in
probabilistic automata, POMDP, one-sided partial-observation games, and partial-
observation games with safety, reachability and Büchi objectives; and exponential mem-
ory is necessary for almost-sure winning strategies in probabilistic automata with safety
and reachability objectives. For probabilistic automata,infinite memory may be neces-
sary for almost-sure winning with coBüchi and parity objectives.

Computational and strategy complexity of almost-sure winning: pure and random-
ized action-invisible strategies.We now summarize the results related to the computa-
tional complexity of pure and randomized action-invisiblealmost-sure winning strategies.
We start with some basic facts. (1) For complete-observation games, probabilistic automata,
and POMDPs, the results for randomized action-visible, randomized action-invisible and
pure strategies are the same for almost-sure winning, as forall these classes pure strategies
are as powerful as randomized action-visible strategies [13]. (2) For almost-sure winning
for reachability and Büchi objectives, the equivalence ofthe pure and randomized action-
invisible strategies has been established in [14] (polynomial-time reduction in both direc-
tions for equivalence). Note that randomized action-invisible strategies are more powerful
than pure strategies for almost-sure winning; however, thereduction of [14] shows that given
a gameG, a gameH (polynomial in the size ofG) can be constructed such that there is a
randomized action-invisible almost-sure winning strategy in G iff there is a pure one inH;
and similarly a reduction in the other direction. (3) For safety objectives, all results are sim-
ilar to the case of sure winning. (4) For almost-sure winningfor Büchi objectives, there
is a linear-time reduction to reachability objectives for probabilistic automata [2], and the
same reduction also works for partial-observation games. (5) The undecidability results for
coBüchi and parity objectives follows from the results of probabilistic automata.

In view of the above facts we discuss the results for almost-sure winning strategies
for reachability objectives in one-sided partial-observation games and in general partial-
observation games. It was previously claimed that belief-based randomized action-invisible
strategies suffices for almost-sure winning for reachability objectives in partial-observation
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Complete-observation Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.

Reachability Linear-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. ??(open)
Büchi Quadratic-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. ??(open)

coBüchi Quadratic-time Undecidable Undecidable Undecidable Undecidable
Parity NP∩ coNP Undecidable Undecidable Undecidable Undecidable

Table 3 Complexity of almost-sure winning: pure and randomized action-invisible strategies.

games, and enumerating over the space of exponentially manybelief-based strategies gives
a 2EXPTIME upper bound for the problem [25]. However, it was shown that this result is
not correct, and even in the special case of one-sided partial-observation games both pure
and randomized action-invisible almost-sure winning strategies require more than belief
memory, still exponential memory is sufficient for reachability objectives and the problem
is EXPTIME-complete for one-sided partial-observation games [14]. However, the scenario
is much more complicated for partial-observation games, and although finite-memory pure
and randomized action-invisible strategies suffice for almost-sure winning for reachability
objectives, memory of non-elementary size is required in general [14], in contrast to the ex-
ponential upper bound claimed in [25]. The exact computational complexity of the problem
remains open. The results are summarized in Table 3.

Theorem 3 (Complexity of almost-sure winning: pure and randomized action-invisible
strategies)The following assertions hold for pure and randomized action-invisible strate-
gies:

1. The almost-sure winning problem for complete-observation games (i) with reachability
and safety objectives can be solved in linear time; (ii) withBüchi and coB̈uchi objectives
can be solved in quadratic time; and (iii) with parity objectives is in NP∩ coNP.

2. The almost-sure winning problem for probabilistic automata with reachability, safety,
and B̈uchi objectives are PSPACE-complete, and undecidable for coBüchi and parity
objectives.

3. The almost-sure winning problem for POMDPs and one-sidedpartial-observation
games with reachability, safety, and Büchi objectives are EXPTIME-complete, and un-
decidable for coB̈uchi and parity objectives.

4. The almost-sure winning problem for partial-observation games is EXPTIME-complete
for safety objectives, and undecidable for coBüchi and parity objectives.

5. Pure memoryless almost-sure winning strategies exist incomplete-observation parity
games. Almost-sure winning strategies with exponential memory is sufficient for proba-
bilistic automata, POMDP, and one-sided partial-observation games with safety, reach-
ability and B̈uchi objectives; and exponential memory is necessary for almost-sure
winning strategies in probabilistic automata with safety and reachability objectives.
For probabilistic automata infinite memory may be necessaryfor almost-sure winning
with coB̈uchi and parity objectives. For partial-observation gameswith reachability
and B̈uchi objectives finite-memory almost-sure winning strategies exist, and in general
almost-sure winning strategies require at least memory of non-elementary size.

3.3 Complexity of limit-sure winning

In this section we discuss the results for limit-sure winning.
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Complete-observation Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp. EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.

Reachability Linear-time Undecidable Undecidable Undecidable Undecidable
Büchi Quadratic-time Undecidable Undecidable Undecidable Undecidable

coBüchi Quadratic-time Undecidable Undecidable Undecidable Undecidable
Parity NP∩ coNP Undecidable Undecidable Undecidable Undecidable

Table 4 Complexity of limit-sure winning.

Complexity of limit-sure winning. We summarize the results for limit-sure winning. Like
in the case of almost-sure winning, for safety objectives limit-sure winning coincides with
sure winning (the same argument of finite counter-examples applies). Hence, all results for
limit-sure winning for safety objectives follow from the results for sure winning.

1. Complete-observation games.It follows from the results of [18,12] that for complete-
observation games limit-sure winning coincide with almost-sure winning for all parity
objectives, and hence all results follow from the results for almost-sure winning

2. Probabilistic automata.The main undecidability result for limit-sure winning was es-
tablished for probabilistic finite automata. In [24] the authors start with the automata
construction of [2] and show that the following question is undecidable for probabilis-
tic finite automata: for allε > 0 is there a wordwε that is accepted with probability
greater than1 − ε? The results of [24] can be easily adapted to show that the existence
of pure strategies for limit-sure winning is undecidable for probabilistic automata with
reachability objectives. By the result of [15] for probabilistic automata pure strategies
are as powerful as randomized action-visible strategies, and hence the limit-sure win-
ning problem is undecidable for all classes of strategies inprobabilistic automata. Since
(i) reachability objectives are a special case of Büchi, coBüchi and parity objectives, and
(ii) probabilistic automata are a special class of POMDPs, one-sided partial-observation
games, and partial-observation games, the undecidabilityfollows for all more general
problems.

This gives the results for limit-sure winning, and they are summarized in Theorem 4
(see also Table 4).

Theorem 4 (Complexity of limit-sure winning) The following assertions hold:

1. The results for limit-sure winning for complete-observation games with all classes of
parity objectives, and for all classes of games with safety objectives coincide with the
corresponding results for the almost-sure winning problem.

2. The limit-sure winning problem for probabilistic automata, POMDPs, one-sided partial-
observation games, and partial-observation games with reachability, B̈uchi, coB̈uchi,
and parity objectives is undecidable.

3.4 Complexity of value decision problem

In this section we consider the quantitative analysis problem, i.e., the value decision prob-
lem.

Complexity of the value decision problems.Since the limit-sure winning problem is a spe-
cial case of the value decision problem (withν = 1), the undecidability results for all objec-
tives other than safety objectives follow from Theorem 4 forall classes other than complete-
observation games. The undecidability of the value decision problem for probabilistic safety
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Complete-observation Prob. Automata POMDP One-sided Partial-observation
Safety NP∩ coNP Undecidable Undecidable Undecidable Undecidable

Reachability NP∩ coNP Undecidable Undecidable Undecidable Undecidable
Büchi NP∩ coNP Undecidable Undecidable Undecidable Undecidable

coBüchi NP∩ coNP Undecidable Undecidable Undecidable Undecidable
Parity NP∩ coNP Undecidable Undecidable Undecidable Undecidable

Table 5 Complexity of value decision (quantitative analysis).

automata with pure strategies can be derived from the results of [35,33], and from [15] the
undecidability follows for all other classes of strategies. For complete-observation games,
the value decision problem was shown to be in NP∩ coNP for reachability and safety ob-
jectives in [20], and parity objectives in [19,12], and for complete-observation games with
parity objectives pure memoryless optimal strategies exist [20,19,12]. We summarize the
results in Theorem 5 and Table 5.

Theorem 5 (Complexity of value decision problems)The value decision problem for
complete-observation games with with safety, reachability, Büchi, coB̈uchi, and parity ob-
jectives lie in NP∩ coNP; and for probabilistic automata, POMDPs, one-sided partial-
observation games and partial-observation games are undecidable.

4 Other Related Results

We presented a survey of results for partial-observation stochastic games and their sub-
classes, with parity objectives for different classes of strategies. To keep the presentation fo-
cused we omitted several special cases (such as deterministic games), generalizations (such
as arithmetic hierarchy characterizations of the undecidable problems), other variants (such
as positive winning), and applications. We briefly discuss them below.

Deterministic games.In this article we considered stochastic games where the transition
function is probabilistic. The special case of deterministic games consist of games graphs
with deterministic transition function that given a state and an action gives a unique next
state rather than a probability distribution over the next states. All the problems we studied
in this work can also be studied for deterministic games, andthe collection of results for
deterministic games is presented in [13].

Arithmetic hierarchy characterization. As we have discussed in the survey, many prob-
lems related to qualitative and quantitative analysis are undecidable. An interesting theoret-
ical question is to establish in which level of the arithmetic hierarchy the undecidable prob-
lems lie. The arithmetic hierarchy characterization for many of the problems we consider
for the special case of probabilistic automata has been considered in [10,11] where it has
been established that the undecidable problems lie in the low level of arithmetic hierarchy.

Positive winning.Along with sure, almost-sure and limit-sure winning, thereis another vari-
ant of qualitative analysis, namely positive winning, considered in literature. The positive
winning problem asks for the existence of a strategy to ensure that an objective is satisfied
with positive probability. Intuitively, the positive winning problem is dual to the almost-
sure winning problem, and the results of [2] show that the positive winning problem for
Büchi objectives is undecidable for probabilistic automata. The positive winning problem
for partial-observation games with safety and reachability objectives has been considered
in [4] where optimal complexity and memory bounds have been established.
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Applications and future directions. Partial-observation games are an important general-
ization of complete-observation games, and arise naturally in many applications such as
controller synthesis where the controller does not have access to private variables of the
plant; in program analysis such as synchronizers for lock placement in concurrent pro-
grams [8]; and in artificial intelligence such as controllers for robot planning [29]. Thus anal-
ysis of partial-observation games is an important practical problem. However many prob-
lems are undecidable and decidable problems often have highcomplexity. An interesting
direction of future research would be to identify natural and practically relevant subclasses
of partial-observation games where the qualitative and quantitative analysis problems are
more tractable.
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