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Abstract. A stochastic game is a two-player game played on a graph,
where in each state the successor is chosen either by one of the players, or
according to a probability distribution. We survey stochastic games with
limsup and liminf objectives. A real-valued reward is assigned to each
state, and the value of an infinite path is the limsup (resp. liminf) of all
rewards along the path. The value of a stochastic game is the maximal
expected value of an infinite path that can be achieved by resolving the
decisions of the first player. We present the complexity of computing
values of stochastic games and their subclasses, and the complexity of
optimal strategies in such games.

1 Introduction

A turn-based stochastic game is played on a finite graph with three types of
states: in player-1 states, the first player chooses a successor state from a given set
of outgoing edges; in player-2 states, the second player chooses a successor state
from a given set of outgoing edges; and in probabilistic states, the successor state
is chosen according to a given probability distribution. The game results in an
infinite path through the graph. Every such path is assigned a real value, and the
objective of player 1 is to resolve her choices so as to maximize the expected value
of the resulting path, while the objective of player 2 is to minimize the expected
value. If the function that assigns values to infinite paths is a Borel function (in
the Cantor topology on infinite paths), then the game is determined [17]: the
maximal expected value achievable by player 1 is equal to the minimal expected
value achievable by player 2, and it is called the value of the game.

There are several canonical functions for assigning values to infinite paths.
If each state is given a reward, then the max (resp. min) function chooses the
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maximum (resp. minimum) of the infinitely many rewards along a path; the
limsup (resp. liminf ) function chooses the limsup (resp. liminf) of the infinitely
many rewards; and the limit-average function chooses the long-run average of
the rewards. The max and min functions are Borel level-1 functions, whereas
limsup and liminf are Borel level-2 functions, and limit-average is a Borel level-3
function. Stochastic games with the limit-average condition (also called mean-
payoff objective) have been studied extensively in the literature [11, 14, 20, 1,
15]. The study of stochastic games with max and min conditions [2, 4], as well
as limsup and liminf conditions [5, 13, 16], is more recent. The max and min
functions are natural generalizations of reachability and safety objectives in the
non-quantitative setting, while the limsup and liminf functions are natural gen-
eralizations of Büchi and coBüchi objectives [18, 19].

In this paper, we survey algorithms and computational complexity results
for computing values of turn-based stochastic games and with limsup and liminf
objectives. We organize the results according to the different classes of game
graphs. We successively consider (i) 1-player game graphs, where all states belong
to one player, (ii) 2-player game graphs, in which there is no probabilistic state,
(iii) 11/2-player game graphs (or Markov decision processes), in which there is
no player-2 state, and (iv) 21/2-player game graphs, which is the general case.
Along with surveying known results in the field, we also present two algorithmic
improvements over the literature for the solution of 1-player and 2-player game
graphs with limsup and liminf objectives. We show that 1-player game graphs
with n states and m edges can be solved in time O(n+m) while the previously
known algorithm of [2] runs in time O(n log n + m); for 2-player game graphs,
our algorithm runs in time O(mn log n) as compared to the previously known
algorithm of [2] that runs in time O(mn2).

2 Definitions

We consider the class of turn-based stochastic games and some of its subclasses.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S1, S2, SP ), δ) consists of a finite directed graph (S, E), a partition
(S1, S2, SP ) of the finite set S of states, and a probabilistic transition function
δ: SP → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in SP are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ SP and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S, E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors.

Subclasses of stochastic games. The turn-based deterministic game graphs
(2-player game graphs) are the special case of the 21/2-player game graphs with



SP = ∅. The Markov decision processes (11/2-player game graphs) are the special
case of the 21/2-player game graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs
with S2 = ∅ as player-1 MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.
The transition systems (1-player game graphs) are the special case of 21/2-player
game graphs with (a) SP = ∅ and (b) either S1 = ∅ or S2 = ∅. Observe that 1-
player game graphs are subclasses of both 2-player game graphs and 11/2-player
game graphs.

Size of graph. Given a game graph G = ((S, E), (S1, S2, SP ), δ) we use the
following notations: (a) we denote by n the number of states, i.e., n = |S|;
(b) we denote by m the number of edges, i.e., m = |E|; (c) we denote by ∆ the
maximum out-degree of the graph, i.e., ∆ = maxs∈S |E(s)|.

Plays and strategies. An infinite path, or a play, of the game graph G is
an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write Ωs ⊆ Ω
for the set of plays that start from the state s. A strategy for player 1 is a function
σ: S∗ · S1 → D(S) that assigns a probability distribution to all finite sequences
w ∈ S∗ · S1 of states ending in a player-1 state (the sequence w represents a
prefix of a play). Player 1 follows the strategy σ if in each player-1 move, given
that the current history of the game is w ∈ S∗ · S1, she chooses the next state
according to the probability distribution σ(w). A strategy must prescribe only
available moves, i.e., for all w ∈ S∗, s ∈ S1, and t ∈ S, if σ(w · s)(t) > 0, then
(s, t) ∈ E. The strategies for player 2 are defined analogously. We denote by Σ
and Π the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of plays. For a state s ∈ S and an event A ⊆ Ω, we write
Prσ,π

s (A) for the probability that a play belongs to A if the game starts from
the state s and the players follow the strategies σ and π, respectively. For a
measurable function f : Ω → IR we denote by E

σ,π
s [f ] the expectation of the

function f under the probability measure Prσ,π
s (·).

Strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
σ(w · s)(t) = 1. A memoryless player-1 strategy does not depend on the his-
tory of the play but only on the current state; i.e., for all w, w′ ∈ S∗ and for
all s ∈ S1 we have σ(w · s) = σ(w′ · s). A memoryless strategy for player 1
can be represented as a function σ: S1 → D(S). A pure memoryless strategy is
a strategy that is both pure and memoryless. A pure memoryless strategy for
player 1 can be represented as a function σ: S1 → S. We denote by ΣPM the
set of pure memoryless strategies for player 1. The pure memoryless player-2
strategies ΠPM are defined analogously.

Quantitative objectives. A quantitative objective is specified as a measurable
function f : Ω → IR. We consider zero-sum games, i.e., games that are strictly
competitive. In zero-sum games the objectives of the two players are functions



f and −f , respectively. We consider quantitative objectives specified as limsup
and liminf objectives. These objectives are complete for the second levels of the
Borel hierarchy: limsup objectives are Π2-complete, and liminf objectives are
Σ2-complete. The definition of limsup and liminf objectives is as follows.

– Limsup objectives. Let r : S → IR be a real-valued reward function that
assigns to every state s the reward r(s). The limsup objective assigns to
every play the maximum reward that appears infinitely often in the play.
Formally, for a play ω = 〈s1, s2, s3, . . .〉 we have

limsup(r)(ω) = lim sup〈r(si)〉i≥0 = lim
n→∞

max{ r(si) | i ≥ n }.

– Liminf objectives. Let r : S → IR be a real-valued reward function that
assigns to every state s the reward r(s). The liminf objective assigns to every
play the maximum reward v such that the rewards that appear eventually
always in the play are at least v. Formally, for a play ω = 〈s1, s2, s3, . . .〉 we
have

liminf(r)(ω) = lim inf〈r(si)〉i≥0 = lim
n→∞

min{ r(si) | i ≥ n }.

The limsup and liminf objectives are complementary in the sense that for
all plays ω we have limsup(r)(ω) = −liminf(−r)(ω). If the reward function
r is boolean (that is rewards are only 0 and 1), then (a) the limsup objec-
tive correspond to the classical Büchi objective with the set of states with
reward 1 as the set of Büchi states; and (b) the liminf objective correspond
to the classical coBüchi objective with the set of states with reward 1 as the
set of coBüchi states.

Values and optimal strategies. Given a game graph G and a measurable
function f : Ω → IR we define the value functions 〈〈1〉〉G

val
and 〈〈2〉〉G

val
for the

players 1 and 2, respectively, as the following functions from the state space S
to the set IR of reals: for all states s ∈ S, let

〈〈1〉〉G
val

(f)(s) = sup
σ∈Σ

inf
π∈Π

E
σ,π
s [f ];

〈〈2〉〉G
val

(−f)(s) = sup
π∈Π

inf
σ∈Σ

E
σ,π
s [−f ].

In other words, the value 〈〈1〉〉G
val

(f)(s) gives the maximal expectation with which
player 1 can achieve her objective f from state s, and analogously for player 2.
The strategies that achieve the values are called optimal: a strategy σ for player 1
is optimal from the state s for f if 〈〈1〉〉G

val
(f)(s) = infπ∈Π E

σ,π
s [f ]. The optimal

strategies for player 2 are defined analogously. We now state the classical deter-
minacy results for 21/2-player games with limsup and liminf objectives.

Theorem 1 (Quantitative determinacy). Let G = ((S, E), (S1, S2, SP ), δ)
be a 21/2-player game graph. For all reward functions r : S → IR and all
states s ∈ S, we have

〈〈1〉〉G
val

(limsup(r))(s) + 〈〈2〉〉G
val

(liminf(−r))(s) = 0;



〈〈1〉〉G
val

(liminf(r))(s) + 〈〈2〉〉G
val

(limsup(−r))(s) = 0.

The above results can be derived from the results in [16] or from the result of
Martin [17].

3 Computational and Strategy Complexity

In this section we survey the computational complexity and the structural prop-
erties of optimal strategies in various subclasses of stochastic games. We orga-
nize our results for various classes of game graphs. The classical algorithmic
solutions for stochastic games can be classified as (a) graph-theoretic algorithms
or (b) value-iteration algorithms. We briefly discuss the general properties of
the value-iteration algorithm and provide specific details of the algorithms for
different classes of the game graphs later (in specific subsections).

Value-iteration algorithms and improvement functions. The values of
stochastic games and their subclasses with limsup and liminf objectives can
be characterized as fixpoint solution of certain nested fixpoint formulas. The
characterization provides symbolic value-iteration algorithms to compute values
by iterating certain binary improvement functions parametrized by a predecessor
operator Pre that will be instantiated according to the different classes of game
graphs. A valuation is a function v: S → IR ∪ { −∞,∞} that maps every state
to a real number1. We write V for the set of valuations. A binary improvement
function Imp2 operates on pairs of valuations and needs to satisfy the following
requirements.

Monotone For all valuation pairs (v1, u1), (v2, u2), if (v1, u1) ≤ (v2, u2), then
Imp2(v1, u1) ≤ Imp2(v2, u2) (the inequality ≤ is pointwise for valuations).

Continuous For every chain C = 〈(v0, u0), (v1, u1), (v2, u2), . . .〉 of valuations,
the sequence Imp2(C) = 〈Imp2(v0, u0), Imp2(v1, u1), Imp2(v2, u2), . . .〉 is a
chain of valuations by monotonicity of Imp2. We require that Imp2(lim C) =
lim Imp2(C).

Directed Either v ≥ Imp2(v, u) ≥ u for all valuations v, u with v ≥ u; or v ≤
Imp2(v, u) ≤ u for all real valuations v, u with v ≤ u.

If the above requirements are satisfied, then we can invoke Kleene’s fixpoint
theorem for existence of fixpoints with the improvement functions. The binary
improvement functions we consider also satisfy the following locality property:
for all states s ∈ S and all valuation pairs (v1, u1), (v2, u2), if v1(s

′) = v2(s
′)

and u1(s
′) = u2(s

′) for all successors s′ ∈ E(s), then Imp2(v1, u1)(s) =
Imp2(v2, u2)(s).

The description of improvement functions. Consider a reward function r,
and the corresponding objectives limsup(r) and liminf(r). Given a function Pre:

1 we add −∞ and ∞ to the set of reals in the range of valuations so that the set V of
valuations form a complete lattice



V → V , we define the two parametric functions limsupImp[Pre]: V ×V → V and
liminfImp[Pre]: V × V → V by

limsupImp[Pre](v, u) = min{ max{ r, u, Pre(u) }, v, max{ u, Pre(v) } };
liminfImp[Pre](v, u) = max{ min{ r, u, Pre(u) }, v, min{ u, Pre(v) } };

for all valuations v, u ∈ V (the functions max and min are lifted from real
values to valuations in a pointwise fashion). Observe that if v ≥ u, then v ≥
limsupImp[Pre](v, u) ≥ u; and if v ≤ u, then v ≤ liminfImp[Pre](v, u) ≤ u. Thus
both limsupImp[Pre] and liminfImp[Pre] are directed. For different graph models,
we will instantiate the parameter Pre differently. We remark that in all the cases
that we will consider in this paper, we can simplify the above definitions of the
binary improvement functions as follows:

limsupImp[Pre](v, u) = min{ max{ r, u, Pre(u) }, v, Pre(v) };
liminfImp[Pre](v, u) = max{ min{ r, u, Pre(u) }, v, Pre(v) };

for all valuations v, u ∈ V . To see why the simplification is sound, let uj+1 =
limsupImp[Pre](v, uj) (according to the original, unsimplified definition) for all
j ≥ 0. For all valuations v ≥ u0, if Pre(v) ≥ u0, then for all j ≥ 0, both v ≥ uj

and Pre(v) ≥ uj, and therefore uj+1 = min{ max{ p, uj, Pre(uj) }, v, Pre(v) }.
If u0(s) = mint∈S r(t) for all s ∈ S, then for all instantiations of Pre (that
we will use) for all valuations v ≥ u0, we will have Pre(v) ≥ u0, and thus the
above simplification is sound. The case liminfImp[Pre] and u0(s) = maxt∈S r(t)
for all s ∈ S is symmetric. In some special cases of boolean reward functions
r, the valuations can also be restricted to be functions from states to boolean
(such as 2-player game graphs with boolean reward functions). In such cases, we
can invoke Tarski-Knaster fixpoint theorem that requires only the monotonicity
property. Then the improvement function can be further simplified as follows:

limsupImp[Pre](v, u) = min{ max{ r, Pre(u) }, Pre(v) };
liminfImp[Pre](v, u) = max{ min{ r, Pre(u) }, Pre(v) };

The above description of the improvement functions does not satisfy the directed
property. Also see [4] for a more detailed discussion about the properties of the
fixpoint and the requirements of improvement functions.

Fixpoint characterization. Given the two parametric improvement functions,
the value function of player 1 for limsup objective can be characterized as a
nested fixpoint solution (nesting of a greatest fixpoint and a least fixpoint). In
µ-calculus notation, let

vls = (νx)(µy) limsupImp[Pre](x, y). (1)

Then for suitable instantiation Pre in limsupImp[Pre] the valuation vls gives the
value function for a stochastic game with limsup objective. Symmetrically, the
value function for liminf objective can also be characterized as a nested fix-
point solution (nesting of a least fixpoint and a greatest fixpoint). In µ-calculus
notation, let

vli = (µx)(νy) liminfImp[Pre](x, y). (2)



Then for suitable instantiation Pre in liminfImp[Pre] the valuation vli gives the
value function for a stochastic game with liminf objective. In all cases that we
consider, for the least fixpoint iterations are initialized with the valuation min r
(i.e, the valuation that assigns the value min r to all states) , and for the greatest
fixpoint iterations are initialized with the valuation max r. We will illustrate the
value-iteration algorithm and the fixpoint characterization on an example in
the case of 2-player game graphs. In the following subsection we present the
instantiation of Pre for different classes of game graphs.

3.1 1-player game graphs

In this subsection we present the results for 1-player game graphs with limsup
and liminf objectives. For simplicity we consider 1-player game graphs with
SP = ∅ and S2 = ∅ (the results for the case when SP = ∅ and S1 = ∅ are
similar).

Strategy complexity. Pure memoryless optimal strategies exist for 1-player
game graphs with limsup and liminf objectives. The result can be obtained as
a special case of the result known for 2-player game graphs (see Section 3.2) or
11/2-player game graphs (see Section 3.3).

Value-iteration algorithm. We present the value iteration solution for 1-
player game graphs. We define the graph predecessor operator maxPre: V → V
as the function on valuations defined by

maxPre(v)(s) = max{ v(s′) | s′ ∈ E(s) }

for all valuations v ∈ V and all states s ∈ S; that is, the value of maxPre(v) at
a state s is the maximal value of v at the states that are successors of s. If the
parameter Pre is instantiated as maxPre, then the nested fixpoint solution of (1)
gives the value function for 1-player game graphs with limsup objectives, and the
solution of (2) gives the value function for liminf objectives. Each inner improve-
ment fixpoint converges within at most n steps, and the outer improvement fix-
points converges within at most n computations of inner improvement fixpoints.
Every improvement step (i.e., each application of the function limsupImp[Pre] or
liminfImp[Pre]) can be computed in O(m) time. Hence the value-iteration algo-
rithm has the time complexity O(mn2).

Graph-theoretic algorithm. The value function for 1-player game graphs
with the limsup and liminf can be obtained in O(m) time. The algorithm for
limsup objective is as follows. First compute the set of all maximal strongly
connected components (this can be done in O(m) time). For a bottom maximal
strongly connected component C, the value of every state in C is maxs∈C r(s).
Then proceed in a bottom up fashion: consider a maximal strongly connected
component C′ such that for every state t ∈

(
⋃

s∈C′ E(s)
)

\C′ the value of state
t is computed, and let this value be v(t). The value of every state s ∈ C′ is as
follows:



1. If either (a) |C′| ≥ 2, or (b) |C′| = 1 and the only state of C′ has a self-loop;
then for every state s ∈ C′ the value v(s) is given by

max{ max{ r(s) | s ∈ C′ }, max{ v(t) | ∃s ∈ C′ · t ∈ E(s) } }.

2. If |C′| = 1 and the only state of C′ does not have self-loop, then the value
v(s) of the only state s of C′ is given by

max{ v(t) | ∃s ∈ C′ · t ∈ E(s) }.

Thus value of every state can be computed in O(m) time. The algorithm for
liminf objectives is similar. We know of no implementation of the nested value
improvement scheme that matches this complexity. We summarize the results in
the following theorem.

Theorem 2 (Complexity of 1-player game graphs). For all 1-player game
graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(n2m) time by the value-iteration

algorithm.
3. The value function can be computed in O(m) time by the graph-theoretic

algorithm.

Remark 1. The graph-theoretic algorithm we present runs in O(m) time, as
compared to the previously known algorithm of [2] that runs in O(m+n · log n)
time. The algorithm of [2] first sorted states with respect to the rewards and then
applied algorithms for Büchi (or coBüchi) objectives, whereas our algorithm does
not need the sorting step of the previous algorithm.

3.2 2-player game graphs

We now present the results for 2-player game graphs with limsup and liminf
objectives.

Strategy complexity. Pure memoryless optimal strategies exist for 2-player
game graphs with limsup and liminf objectives. The result has several different
proofs. In [13] Gimbert and Zielonka present sufficient conditions on measurable
functions (that specify quantitative objectives) that ensures existence of pure
memoryless optimal strategies in 2-player game graphs. It was also shown in [13]
that limsup and liminf objectives satisfy the required conditions, and hence
existence of pure memoryless optimal strategies in 2-player game graphs with
limsup and liminf objectives follows.

Value-iteration algorithm. The value-iteration solution for 2-player game
graphs uses the game graph predecessor operator maxminPre: V → V defined
by

maxminPre(v)(s) =

{

max{ v(s′) | s′ ∈ E(s) } if s ∈ S1;

min{ v(s′) | s′ ∈ E(s) } if s ∈ S2;



for all valuations v ∈ V and all states s ∈ S. In other words, the value of
maxminPre(v) at a player-1 state s is the maximal value of v at the successors
of s, and at a player-2 state s it is the minimal value of v at the successors of s.
If the parameter Pre is instantiated as maxminPre, then the nested fixpoint solu-
tion of (1) gives the value function for 2-player game graphs with limsup objec-
tives, and the solution of (2) gives the value function for liminf objectives. Each
inner improvement fixpoint converges within at most n steps, and the outer im-
provement fixpoints converges within at most n computations of inner improve-
ment fixpoints. Every improvement step (i.e., each application of the function
limsupImp[maxminPre] or liminfImp[maxminPre]) can be computed in O(m) time.
Hence the value-iteration algorithm has the time complexity O(mn2).

Example 1 (2-player game with limsup objective). Consider the deterministic
game shown in Fig. 1, where the reward function r is indicated by state labels.
We consider the objective limsup(r) for player 1 (the 2 player). We specify
valuations as value vectors; the outer initial valuation is v0 = 〈15, 15, 15, 15, 15〉,
and the inner initial valuation is u0 = 〈5, 5, 5, 5, 5〉. We compute the first inner
improvement fixpoint: u0

0 = 〈5, 5, 5, 5, 5〉, and since

uj+1
0 = min{ max{ r, uj

0, maxminPre(uj
0) }, v

0, maxminPre(v0) }

for all j ≥ 0, where v0 = maxminPre(v0) = 〈15, 15, 15, 15, 15〉, we obtain
u1

0 = 〈5, 5, 15, 10, 5〉. Note that u1
0 coincides with the reward function r. Next we

obtain u2
0 = max{ r, u1

0, maxminPre(u1
0) } = 〈10, 5, 15, 10, 10〉. Finally u3

0 = u4
0 =

〈10, 10, 15, 10, 10〉, which is the first inner improvement fixpoint v1. Intuitively,
vi(s) is the largest reward that player 1 can ensure to visit at least i times from
s. The second inner improvement chain starts with u0

1 = 〈5, 5, 5, 5, 5〉 using

uj+1
1 = min{ max{ r, uj

1, maxminPre(uj
1) }, v

1, maxminPre(v1) },

where v1 = 〈10, 10, 15, 10, 10〉 and maxminPre(v1) = 〈10, 10, 10, 10, 10〉. Since
max{ r, u0

1, maxminPre(u0
1) } = 〈5, 5, 15, 10, 5〉, we obtain u2

1 = 〈5, 5, 10, 10, 5〉
and u3

1 = 〈10, 5, 10, 10, 10〉 Then u3
1 = u4

1 = 〈10, 10, 10, 10, 10〉, which is the
second inner improvement fixpoint v2. This is also the desired outer improvement
fixpoint; that is, vls = v2 = v3 = 〈10, 10, 10, 10, 10〉. The player-1 strategy that
chooses at state s0 the successor s3 ensures that against all strategies of player 2,
the reward 10 will be visited infinitely often. Dually, the player-2 strategy that
chooses at s1 the successor s0 ensures that against all strategies of player 1, the
reward 15 will be visited at most once. Hence 〈10, 10, 10, 10, 10〉 is the 2-player
game valuation of the player-1 objective limsup(r): from any start state, player 1
can ensure that reward 10 will be visited infinitely often, but she cannot ensure
reward 15.

Graph-theoretic algorithm. The value function for 2-player game graphs

with the limsup and liminf objectives can be computed in O(mn log(∆) log(k)
log(n) )

time, where k is the number of different rewards of the reward function in the
game graph. The algorithm for limsup objectives is as follows: we first sort the
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Fig. 1. Deterministic game with limsup objective.

rewards in ascending order, and let the reward values in ascending order be
r1 < r2 < · · · < rk. To check if the value at a state s is at at least ri, for
1 ≤ i ≤ k, we consider all states with rewards at least ri as Büchi states, and
then check if player 1 can satisfy the Büchi objective from s. A game with a Büchi

objective can be solved in O(mn log(∆)
log(n) ) time by graph-theoretic algorithms [6].

By a binary search over the sorted set of rewards we can compute the value

in O(mn log(∆) log(k)
log(n) ) time. The algorithm for liminf objectives is similar, and

it uses solution of games with coBüchi objectives instead of Büchi objectives.
We know of no implementation of the nested value improvement scheme that
matches this complexity. We summarize the results in the following theorem.

Theorem 3 (Complexity of 2-player game graphs). For all 2-player game
graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(n2m) time by the value-iteration

algorithm.

3. The value function can be computed in O(mn log(∆) log(k)
log(n) ) time by the graph-

theoretic algorithm.

Remark 2. Observe that for the worst case complexity for graph-theoretic algo-
rithmic solution we have ∆ = O(n) and k = O(n), and then the graph-theoretic
algorithm runs in time O(mn log(n)). The worst-case complexity of the previ-
ously known algorithm (of [2]) is O(mn2).

3.3 11/2-player game graphs

We now present the results for 11/2-player game graphs with limsup and liminf
objectives.

Strategy complexity. Pure memoryless optimal strategies exist for 11/2-player
game graphs with limsup and liminf objectives. This fact can be proved by
straightforward extension of the results and proof techniques for MDPs with
Büchi and coBüchi objectives. The existence of pure memoryless optimal strate-
gies in MDPs with Büchi and coBüchi objectives has been shown in [8, 10].



Value-iteration algorithm. To present the value iteration solution for 11/2-
player game graphs, we need the probabilistic graph predecessor operator
maxPre

P : V → V defined by

maxPreP (v)(s) =

{

max{ v(s′) | s′ ∈ E(s) } if s ∈ S1;
∑

s′∈E(s) v(s′) · δ(s)(s′) if s ∈ SP ;

for all valuations v ∈ V and all states s ∈ S. In other words, the value of
maxPreP (v) at a player-1 state s is the maximal value of v at the successors of s,
and the value of maxPreP (v) at a probabilistic state s is the average value of
v at the successors of s. If the parameter Pre is instantiated as maxPreP , then
the nested fixpoint solution of (1) gives the value function for 11/2-player game
graphs with limsup objectives, and the solution of (2) gives the value function
for liminf objectives. Unlike the case of 1-player and 2-player game graphs, the
inner and outer iterations do not necessarily converge in finitely many iterations,
but converge only in the limit. We now present the result on the boundedness
properties of values for rational rewards and transition probabilities that allows
to compute the exact values by value-iteration algorithms.

Precision of values. We assume that all transition probabilities and rewards
are given as rational numbers, and for simplicity (but without loss of generality)
we assume that all rewards are positive. From the existence of pure memoryless
optimal strategies, and the results of [9, 20] it follows that all values in 11/2-
player game graphs with limsup and liminf objectives are again rationals and
that the denominators can be bounded. Let δu = max{ d | δ(s)(s′) = n

d
for s ∈

SP and s′ ∈ E(s) } be the largest denominator of all transition probabilities.
Let ru = lcm{ d | r(s) = n

d
for s ∈ S } be the least common multiple of all

reward denominators. Let rmax = max{ n | r(s) = n
d

for s ∈ S } be the largest
numerator of all rewards. Then, for all states s ∈ S, both 〈〈1〉〉G

val
(limsup(r))(s)

and 〈〈1〉〉G
val

(liminf(r))(s) have the form n
d

for positive integers n and d with
n, d ≤ γ, where

γ = δ4m

u · ru · rmax.

This boundedness property of values for limsup and liminf objectives in 11/2-
player game graphs is the key for proving computability of the two improvement
fixpoints. The inner fixpoint can be computed as follows: the improvement func-
tion can be iterated for 2 · γ2 iterations, and the valuation obtained is rounded
to the nearest multiple of 1

γ
to obtain the inner fixpoint (the argument is sim-

ilar to the value-iteration algorithms of [9, 20]). Similarly, the valuation of the
outer fixpoint can be obtained by rounding after 2 · γ2 iterations of the outer
fixpoint computation. Hence the value-iteration algorithm has the time complex-
ity O(γ4).

Graph-theoretic algorithm and linear program. The value function for
11/2-player game graphs with the limsup and liminf objective can be computed
in polynomial time. Let k be the number of different reward values. The key
steps of the algorithm for limsup objective is as follows: (a) first the rewards



are sorted in ascending order; (b) then qualitative analysis (computing the set
of states with value 1) of sub-graphs of the given 11/2-player game graph with
Büchi objectives is performed, and there are k calls to the qualitative analysis
algorithm (see [5] for details) for Büchi objectives which can be performed in
polynomial time using algorithms of [7]; (c) after the above analysis the value
function can be obtained by solving a linear program. The algorithm for liminf
objective is similar and it uses qualitative analysis for coBüchi objectives (see [5]
for details). We know of no implementation of the nested value improvement
scheme that runs in polynomial time. We summarize the results in the following
theorem.

Theorem 4 (Complexity of 1 1/2-player game graphs). For all 11/2-player
game graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(γ4) time by the value-iteration

algorithm.
3. The value function can be computed in polynomial time by the graph-theoretic

algorithm and linear programming.

3.4 21/2-player game graphs

Finally, in this section we present the results for 21/2-player game graphs with
limsup and liminf objectives.

Strategy complexity. Pure memoryless optimal strategies exist for 21/2-player
game graphs with limsup and liminf objectives. The results (Theorem 3.19
of [12]) showed that if for a quantitative objective f and its complement −f
pure memoryless optimal strategies exist in 11/2-player game graphs, then pure
memoryless optimal strategies also exist in 21/2-player games. Since pure memo-
ryless optimal strategies exist for both limsup and liminf objectives in 11/2-player
game graphs (Theorem 4), the existence of pure memoryless optimal strategies
follows for 21/2-player games with limsup and liminf objectives.

Value-iteration algorithm. To present the value-iteration solution for 21/2-
player game graphs, we need the probabilistic game graph predecessor operator
maxminPreP : V → V defined by

maxminPreP (v)(s) =











max{ v(s′) | s′ ∈ E(s) } if s ∈ S1;

min{ v(s′) | s′ ∈ E(s) } if s ∈ S2;
∑

s′∈E(s) v(s′) · δ(s)(s′) if s ∈ SP ;

for all valuations v ∈ V and all states s ∈ S. The predecessor operator
maxminPreP is a generalization of game graph predecessor operator maxminPre

and the probabilistic graph predecessor operator maxPreP . If the parameter Pre

is instantiated as maxminPreP , then the nested fixpoint solution of (1) gives
the value functions for 21/2-player game graphs with limsup objectives, and the



solution of (2) gives the value function for liminf objectives. The boundedness
properties of the values of 11/2-player game graphs also holds for 21/2-player
game graphs, and bounds on the number of iterations to compute the fixpoints
for 11/2-player game graphs also generalize to 21/2-player game graphs. Hence if
all the rewards and transition probabilities are rational, then the value function
for 21/2-player game graphs with limsup and liminf objectives can be computed
in O(γ4) time using value-iteration algorithm.

Optimal algorithm. The problem to decide, given a state s and a rational num-
ber q, whether the value function at s is at least q for 21/2-player game graphs
with limsup and liminf objectives lies in NP ∩ coNP [5]. The result follows from
existence of pure memoryless strategies, and the polynomial time algorithms to
compute values in 11/2-player game graphs with limsup and liminf objectives.
No polynomial-time algorithms are known for computing values for limsup and
liminf objectives in 21/2-player game graphs. In particular, the qualitative anal-
ysis and the linear-programming approach for 11/2-player game graphs do not
generalize to 21/2-player game graphs. We summarize the results in the following
theorem.

Theorem 5 (Complexity of 2 1/2-player game graphs). For all 21/2-player
game graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(γ4) time by value-iteration algo-

rithm.
3. Given a state s and a rational number q, whether the value function at s is

at least q can be decided in NP ∩ coNP.

4 Conclusion

In this survey, we considered stochastic games and their subclasses with lim-
sup and liminf objectives. In Table 1, we summarize the results for the different
classes of game graphs. We presented a comprehensive study of the known results
in terms of the complexity of strategies, and the two classical algorithmic solu-
tions, namely, value-iteration algorithms and graph-theoretic algorithms. For
1-player and 2-player games, we also improved the previously known graph-
theoretic algorithms and their complexity.

Finally, note that the 1-player game graphs with limsup and liminf objective
can be viewed as weighted automata with limsup and liminf functions, and
computing the value of such games can then be viewed as computing the greatest
value of a word in such weighted automata, which amounts to solving the so-
called quantitative emptiness problem [3].
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8. K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative stochastic parity
games. In SODA’04, pages 121–130. SIAM, 2004.

9. A. Condon. On algorithms for simple stochastic games. In Advances in Computa-

tional Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, pages 51–73. American Mathematical Society,
1993.



10. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

11. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag,
1997.

12. H. Gimbert. Jeux positionnels. PhD thesis, Université Paris 7, 2006.
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