
Strategy Construction

for Parity Games with Imperfect Information✩,✩✩

Dietmar Berwangera, Krishnendu Chatterjeeb, Martin De Wulfc,
Laurent Doyen∗,a, Thomas A. Henzingerb,d

aLSV, CNRS and ENS Cachan, France
bIST Austria (Institute of Science and Technology Austria)

cUniversité Libre de Bruxelles (ULB), Belgium
dÉcole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

We consider two-player parity games with imperfect information in which strate-
gies rely on observations that provide imperfect information about the history
of a play. To solve such games, i.e., to determine the winning regions of play-
ers and corresponding winning strategies, one can use the subset construction
to build an equivalent perfect-information game. Recently, an algorithm that
avoids the inefficient subset construction has been proposed. The algorithm
performs a fixed-point computation in a lattice of antichains, thus maintaining
a succinct representation of state sets. However, this representation does not
allow to recover winning strategies.

In this paper, we build on the antichain approach to develop an algorithm
for constructing the winning strategies in parity games of imperfect information.
One major obstacle in adapting the classical procedure is that the complementa-
tion of attractor sets would break the invariant of downward-closedness on which
the antichain representation relies. We overcome this difficulty by decomposing
problem instances recursively into games with a combination of reachability,
safety, and simpler parity conditions. We also report on an experimental imple-
mentation of our algorithm; to our knowledge, this is the first implementation
of a procedure for solving imperfect-information parity games on graphs.

✩A preliminary version of this paper appeared in the Proceedings of the 19th International
Conference on Concurrency Theory (CONCUR), Lecture Notes in Computer Science 5201,
Springer-Verlag, 2008, pages 325-339.

✩✩This research was supported in part by the NSF grants CCR-0132780, CNS-0720884,
and CCR-0225610, by the Swiss National Science Foundation, by the Deutsche Forschungs-
gemeinschaft (DFG), by the European projects Combest, Gasics, Lint, and Quasimodo, by
the Belgian PAI program Moves and by the Belgian Federated Center in Verification (CFV)
funded by the F.R.S.-FNRS. We thank three anonymous referees for their useful comments.

∗Corresponding author: Laurent Doyen, LSV, CNRS UMR 8643 & ENS Cachan, 61 avenue
du Président Wilson, 94235 Cachan Cedex, France.

Email addresses: dwb@lsv.ens-cachan.fr (Dietmar Berwanger),
Krishnendu.Chatterjee@ist.ac.at (Krishnendu Chatterjee), madewulf@gmail.com (Martin
De Wulf), doyen@lsv.ens-cachan.fr (Laurent Doyen), tah@epfl.ch (Thomas A. Henzinger)

Preprint submitted to Elsevier January 15, 2010

1. Introduction

Parity games capture the algorithmic essence of fundamental problems in
state-based system analysis [1]. They arise as natural evaluation games for the
µ-calculus, an expressive logic that subsumes most specification formalisms for
reactive systems, and they are closely related to alternating ω-automata [2].

In the basic variant, a parity game is played on a finite graph with nodes
labelled by natural numbers denoting priorities. There are two players, Player 1
and Player 2, who take turns in moving a token along the edges of the graph
starting from a designated initial node. In a play, the players thus form an
infinite path, and Player 1 wins if the least priority that is visited infinitely
often is even; otherwise Player 2 wins. These are games of perfect information:
during the play each of the players is informed about the current position of
the token. One key property of parity games is memoryless determinacy: from
every initial node, either Player 1 or Player 2 has a winning strategy that does
not depend on the history of the play [3]. As a consequence, a winning strategy
can be represented as a subset of the edges of the graph, and the problem of
constructing a winning strategy is in NP ∩ coNP.

The perfect-information setting is often not sufficient in practice. The need
to model uncertainty about the current state of a system arises in many sit-
uations. For instance in controller-synthesis applications, certain parameters
of the plant under control may not be observable by the controller. Likewise
in multi-component design, individual components of a complex system may
have private variables invisible to other components. As a way to handle state-
explosion problems, one may accept a loss of information in a concrete model
in order to obtain a manageable abstract model with imperfect information.

One fundamental question is how to model imperfect information. In the
classical theory of extensive games, this is done by partitioning the game tree
into information sets signifying that a player cannot distinguish between differ-
ent decision nodes of the same information set [4]. Technically, this corresponds
to restricting the set of strategies available to a player by requiring a uniform
choice across all nodes of an information set. However, for the algorithmic anal-
ysis of games of infinite duration on graphs, the information sets need to be
finitely represented. Such a model is obtained by restricting to strategies that
rely on observations corresponding to a partitioning of the game graph.

The model of imperfect information games that we consider here was origi-
nally introduced in [5]. Like in the perfect-information case, the game is played
by two opposing players on a finite graph. The nodes of the graph, called loca-
tions, are partitioned into information sets indexed by observations. Intuitively,
the only visible information available to Player 1 during a play is the observation
corresponding to the current location, whereas Player 2 has perfect information
about the current location of the game. This is a natural model for controller
synthesis, where the controller does not have access to the private variables of

2

the plant, and the control strategy needs to be winning against arbitrary behav-
ior of the plant, which corresponds to give the full-power of perfect-information
to Player 2. It can be formally shown that the existence of a winning strategy
for Player 1 does not depend on the ability or not for Player 2 to see the exact
position of the game [6]. The structure of the graph (including the starting
location) is known to both players, and the parity winning condition is defined
in terms of priorities assigned to observations. Therefore, the winning condi-
tion is itself visible, which is natural in the context of controller synthesis; it
also enables simpler algorithmic solutions. Games with non-observable winning
conditions require more involved techniques, as witnessed by the fact that the
universality problem for nondeterministic Büchi automata can be reduced to
them.

The basic algorithmic problems about parity games are (1) to determine
the winning region of a player, that is, the set of initial locations from which
he has a winning strategy, and (2) to construct such a winning strategy. One
straightforward way to solve parity games of imperfect information is based
on the following idea [5, 6]: after an initial prefix of a play, Player 1 may not
know in which precise location the play currently is but, by keeping track of
the history, he can identify a minimal set of locations that is guaranteed to
contain the current location. Such a set, to which we refer as a cell, reflects the
knowledge derived by a player from past play. Via a subset construction that
associates moves in the game to transitions between cells, the original imperfect-
information game over locations is transformed into an equivalent game with
perfect information over cells. This approach, however, incurs an exponential
increase in the number of states and is therefore inefficient.

For computing the winning region of a game, an algorithm that avoids the
explicit subset construction has been proposed recently in [6]. The algorithm
exploits a monotonicity property of imperfect-information games: if a cell is
winning for Player 1, that is, if he wins from every location of the cell, then he
also wins from every subset of the cell. Intuitively, the subcell represents more
precise knowledge than the entire cell. It is therefore sufficient to manipulate
sets of cells that are downward-closed in the sense that, if a cell belongs to
the set, then all its subcells also belong to it. As a succinct representation for
downward-closed sets of cells, the algorithm maintains antichains that consist of
maximal elements in the powerset lattice of cells. The winning region can now
be computed symbolically by evaluating its characterization as a µ-calculus
formula over the lattice. One particular effect of this procedure is that the
discovery of winning cells propagates backwards, rather than forwards from the
initial location, and thus avoids the construction and exploration of cells that
are not relevant for solving the game.

On many instances, the antichain algorithm performs significantly better
than the subset construction for computing winning regions. However, in con-
trast to the latter, the antichain algorithm does not construct winning strategies.
Indeed, we argue that there is no direct way to extract a winning strategy from
the symbolic fixed-point computation. In terms of logic, the algorithm evaluates
a µ-calculus formula describing the winning region, which corresponds to eval-

3

uating a monadic expression with second-order quantifiers that range over (sets
of) nodes in the game graph. On the other hand, strategies are not monadic
objects; already memoryless location- or observation-based strategies are com-
posed of binary objects, namely, edges of the graph or pairs of cells. In particu-
lar, we show that already in parity games with perfect information knowing the
winning region of a game does not make the problem of constructing a winning
strategy easier. In imperfect-information games there are additional sources of
complexity: the size of a winning strategy may be exponentially larger than
the winning region, already for reachability objectives. Nevertheless, the con-
struction of winning strategies is crucial for many applications such as controller
synthesis or counterexample-guided abstraction-refinement [7].

In this paper, we present an algorithm for constructing winning strategies
in parity games with imperfect information. One main concern is to avoid the
subset construction. To accomplish this, our algorithm builds on the antichain
technique and works with symbolic representations of sets of cells. It generalizes
a fundamental procedure for solving parity games proposed by McNaughton [8]
and presented in detail by Zielonka [9]. The procedure works recursively, taking
the viewpoint of Player 1: in each stage a smaller game is obtained by removing
the attractor region from which Player 2 can ensure to reach the minimal odd
priority. This operation of removal marks the main difficulty in adapting the
algorithm to antichains, as the residual subgame is in general not downward
closed. Intuitively, switching between the sides of the two players breaks the
succinct representation. We overcome this difficulty by letting Player 1 sim-
ulate Player 2, in a certain sense. Technically, this amounts to replacing two
alternating reachability computations by the computation of a strategy that
simultaneously satisfies a reachability and a safety objective.

We have implemented the algorithm in a prototype called Alpaga1, based
on a fixed-point computation that essentially iterates a controllable predecessor
operator returning the states from which a player can force the play into a given
target set in one round. No polynomial algorithm for computing this operator
is known. In order to avoid the naive enumerative procedure, we propose a new
symbolic implementation based on BDDs. To our knowledge, this is the first
automatic tool for solving imperfect-information parity games on graphs.

We give two examples of distributed-system synthesis solved with Alpaga.
First, we illustrate the need for imperfect information in the games that arise
in the synthesis problem by considering a simple lock-based program. The
specification requires that the lock is never acquired or released twice in a row,
even if the status of the lock is not visible to the program. We also consider
the design of a mutual-exclusion protocol for two processes. Using Alpaga, we
have synthesized a winning strategy for a requirement of mutual exclusion and
starvation freedom which corresponds to Peterson’s protocol.

1The tool Alpaga is available at http://www.antichains.be/alpaga/.

4

2. Definitions

Let Σ be a finite alphabet of actions and let Γ be a finite alphabet of obser-
vations. A game structure with imperfect information over Σ and Γ is a tuple
G = (L, l0, ∆, γ), where L is a finite set of locations (or states), l0 ∈ L is the ini-
tial location, ∆ ⊆ L×Σ×L is a set of labelled transitions, and γ : Γ→ 2L \ ∅ is
an observability function that maps each observation to a set of locations. Abus-
ing notation, we usually identify the set γ(o) with the observation symbol o. We
require the following two conditions on G: (i) for all ℓ ∈ L and all σ ∈ Σ, there
exists ℓ′ ∈ L such that (ℓ, σ, ℓ′) ∈ ∆, i.e., the transition relation is total, and (ii)
the set {γ(o) | o ∈ Γ} partitions L. For each ℓ ∈ L, let obs(ℓ) = o be the unique
observation such that ℓ ∈ γ(o). In the special case where Γ = L and obs(ℓ) = ℓ,
for all ℓ ∈ L, we say that G is a game structure of perfect information over Σ.
For infinite sequences of locations π = ℓ1ℓ2 . . . , we define obs(π) = o1o2 . . .

where obs(ℓi) = oi for all i ≥ 1, and similarly for finite sequences of locations.
For σ ∈ Σ and s ⊆ L, we define postσ(s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ ∆} as
the set of σ-successors of locations in s.

The game on G is played in rounds. In each round, Player 1 chooses an
action σ ∈ Σ, and Player 2 chooses a successor ℓ′ of the current location ℓ such
that (ℓ, σ, ℓ′) ∈ ∆. A play in G is an infinite sequence π = ℓ1ℓ2 . . . of locations
such that (i) ℓ1 = l0, and (ii) for all i ≥ 0, there exists σi ∈ Σ such that
(ℓi, σi, ℓi+1) ∈ ∆.

A strategy for Player 1 in G is a function α : Γ+ → Σ. The set of possible
outcomes of α in G is the set Outcome(G, α) of plays π = ℓ1ℓ2 . . . such that
(ℓi, α(obs(ℓ1 . . . ℓi)), ℓi+1) ∈ ∆ for all i ≥ 1. We say that a strategy α is mem-
oryless if α(ρ · o) = α(ρ′ · o) for all ρ, ρ′ ∈ Γ∗. We say that a strategy uses
finite memory if it can be represented by a finite-state deterministic transducer
(M, m0, λ, δ) over a finite set of states M (the memory of the strategy) with an
initial state m0 ∈M , where λ : M → Σ is a labelling of states with actions, and
δ : M × Γ → M is a transition function. In state m, the strategy recommends
the action λ(m), and when Player 2 chooses a location with observation o, it up-
dates the internal state to δ(m, o). Formally, (M, m0, λ, δ) defines the strategy

α such that α(ρ) = λ(δ̂(m0, ρ)), for all ρ ∈ Γ+, where δ̂ extends δ to sequences
of observations in the usual way. The size of a finite-state strategy represented
by such a transducer is the number |M | of its states. Note that we do not
need to consider randomized (or mixed) stratregies because pure strategies are
sufficient to win a game [6].

An objective for a game structure G = (L, l0, ∆, γ) is a set φ ⊆ Γω of infinite
sequences of observations. A strategy α for Player 1 is winning for an objective φ

if obs(π) ∈ φ for all π ∈ Outcome(G, α). We say that set of locations s ⊆ L is
winning for φ if there exists a strategy α for Player 1 such that α is winning
for φ in Gℓ := (L, ℓ, ∆, γ) for all ℓ ∈ s. A game is a pair (G, φ) consisting of a
game structure and a matching objective. We say that Player 1 wins the game,
if he has a winning strategy for the objective φ.

We consider the following classical objectives. Given a target set T ⊆ Γ of
observations, the safety objective Safe(T) = {o1o2 . . . | ∀i ≥ 1 : oi ∈ T } re-

5

quires that the play remain within the set T . Dually, the reachability objective
Reach(T) = {o1o2 . . . | ∃i ≥ 1 : oi ∈ T } requires that the play visit the set T
at least once. The Büchi objective Buchi(T) = {o1o2 . . . | ∀i · ∃j ≥ i : oj ∈ T }
requires that an observation in T occur infinitely often. Dually, the coBüchi
objective coBuchi(T) = {o1o2 . . . | ∃i · ∀j ≥ i : oj ∈ T } requires that only obser-
vations in T occur infinitely often. Finally, given a priority function p : Γ→ N

that maps each observation to a non-negative integer priority, the parity objec-
tive Parity(p) requires that the minimum priority that appears infinitely often be
even. Formally, Parity(p) = {o1o2 . . . | min{p(o) | ∀i · ∃j ≥ i : o = oj} is even}.
We denote by coParity(p) the objective complementary to Parity(p), that is,
coParity(p) = {o1o2 . . . | min{p(o) | ∀i · ∃j ≥ i : o = oi} is odd}. Parity objec-
tives are a canonical form to express all ω-regular objectives [10]. In particular,
they subsume safety, reachability, Büchi, and coBüchi objectives.

Notice that objectives are defined as sets of sequences of observations, they
are thus visible to Player 1. A game with a safety (or reachability) objective
defined via a set of target states rather than observations can be transformed into
an equivalent game with a visible safety (or reachability) objective in polynomial
time, by simply making the target states observable.

3. Antichain Algorithm

Let Σ be an alphabet of actions and let Γ be an alphabet of observations.
We consider the problem of deciding, given a game structure G = (L, l0, ∆, γ)
and a parity objective φ, whether Player 1 has a winning strategy for φ in G. If
the answer is Yes, we ask to construct such a winning strategy. This problem is
known to be Exptime-complete already for reachability objectives [5, 6]. The
basic algorithm proposed in [5] constructs a game (GK, φ′) such that

(i) GK = (S, s0, ∆
′, γ′) is a game structure of perfect information over the

action alphabet Σ, and

(ii) Player 1 has a winning strategy for φ in G if and only if Player 1 has a
winning strategy for φ′ in GK.

The game structure GK is obtained via a subset construction where S = 2L\{∅}
and (s1, σ, s2) ∈ ∆′ if and only if there exists an observation o ∈ Γ such that
s2 = postσ(s1)∩γ(o) and s2 6= ∅. In the sequel, we call a set s ⊆ L a cell. A cell
summarizes the current knowledge of Player 1, i.e., the set of possible locations
in which the game G can be after the sequence of observations seen by Player 1.
Every cell reachable in GK is a subset of some observation and, accordingly, the
parity objective φ′ is defined by extending the priority function that defines φ

in a natural way to cells. Notice that an objective for GK is a set of infinite
sequences of cells, as locations and observations coincide in games with perfect
information. In (GK, φ′), memoryless winning strategies always exist and they
can be converted into winning strategies in (G, φ) which depend only on the
current cell in GK. Intuitively, there is a one-to-one correspondence between
plays πK in GK and sequences of observations obs(π) of plays in G. Since the

6

strategies in G are functions of the observations only, this correspondence can
be extended to strategies in GK and in G [6, 11].

Due to the explicit construction of GK, this approach involves an exponential
blow-up of the original game structure.

In [6], an alternative algorithm is proposed for solving games with imperfect
information. Winning cells are computed symbolically, avoiding the exponential
subset construction. The algorithm is based on the controllable predecessor
operator CPre : 2S → 2S which, given a set of cells q, computes the set of
cells q′ from which Player 1 can force the game into a cell of q in one round.
Formally,

CPre(q) = {s ∈ S | ∃σ ∈ Σ · ∀s′ : if (s, σ, s′) ∈ ∆′ then s′ ∈ q}. (1)

The key of the algorithm is that CPre(·) preserves downward-closedness, which
intuitively means that, if Player 1 has a strategy from s to force the game to
be in q in the next round, then he also has such a strategy from all s′ ⊆ s

because then Player 1 has a more precise knowledge in s′ than in s. For-
mally, a set q of cells is downward-closed if s ∈ q implies s′ ∈ q, for all
s′ ⊆ s. If q is downward-closed, then so is CPre(q). Since parity games
can be solved by evaluating a µ-calculus formula over the powerset lattice
(S,⊆,∪,∩), and because CPre(·), ∩, and ∪ preserve downward-closedness, it
follows that a symbolic algorithm maintains only downward-closed sets q of
cells and can therefore use a compact representation, namely their maximal el-
ements ⌈q⌉ = {as ∈ q | s 6= ∅ and ∀s′ ∈ q : s 6⊂ s′}, forming antichains of
cells, i.e., sets of ⊆-incomparable cells. The set A of antichains is partially
ordered by setting q ⊑ q′ for q, q′ ∈ A if and only if for all s ∈ q there
exists s′ ∈ q′ such that s ⊆ s′. The least upper bound of two antichains
q, q′ ∈ A is q ⊔ q′ = ⌈{s | s ∈ q or s ∈ q′}⌉, and their greatest lower bound is
q ⊓ q′ = ⌈{s ∩ s′ | s ∈ q and s′ ∈ q′}⌉. The partially ordered set (A,⊑,⊔,⊓)
forms a complete lattice. We view antichains of location sets as a symbolic
representation of ⊆-downward-closed sets of cells.

The advantage of the symbolic antichain approach over the explicit sub-
set construction has been demonstrated in practice for different applications in
model-checking (e.g. [12, 13]). The following proposition shows that the an-
tichain algorithm may be exponentially faster than the subset construction.

Proposition 1 (see also [12]). There exists a family (Gk)k≥2 of reachability
games with imperfect information over k locations such that, on input Gk the
subset-construction algorithm runs in time exponential in k whereas the an-
tichain algorithm runs in time polynomial in k.

Proof. Consider the family of games Gk over the alphabet Σ = {0, 1} depicted
in Figure 1. For any k ≥ 2 the set Lk of locations of Gk consists of 2k + 1
locations, ℓ0, . . . , ℓk and ℓ′1, . . . , ℓ

′
k, the initial location is ℓ0. The observations

are {ℓk, ℓ′k} and Lk \ {ℓk, ℓ′k}, and the goal is to reach the set T = {ℓk, ℓ′k}.
Clearly, there exists a winning strategy in Gk for all k ≥ 2, consisting in playing
any {0, 1}-word starting with 1.

7

Gk

ℓ0

ℓ1 ℓ2 ℓ3 ℓk−1 ℓk

ℓ′1 ℓ′2 ℓ′3 ℓ′k−1 ℓ′k

0, 1

0

1 0, 1 0, 1 0, 1 0, 1
. . .

0, 1

1 0, 1 0, 1 0, 1
. . .

0, 1

Figure 1: A family of games Gk, k ≥ 2, for Proposition 1.

It is easy to see that the subset-construction algorithm encounters an expo-
nential blow-up on Gk as there are O(2k) cells in the perfect-information version
of the subgame {ℓ1, . . . , ℓk}.

However, the antichain algorithm terminates in polynomial time, as the se-
quence defined by q0 = {{ℓk, ℓ

′
k}}, and qi+1 = CPreGk(qi) ⊔ q0 for i ≥ 0, sta-

bilizes after k iterations with qi = {{ℓk−i, . . . , ℓk} ∪ {ℓ′k−i, . . . , ℓ
′
k}} for i < k,

qk = {Qk}, and qk+1 = qk. �

The antichain algorithm computes a compact representation of the set of
winning cells. However, it does not produce a winning strategy. We point
out that, already for parity games with perfect information, no polynomial-
time algorithm is known to construct a winning strategy, even when the set of
winning locations for each player is given. In fact, such an algorithm would
show that parity games with perfect information can be solved in polynomial
time, as the problem of verifying a winning partition for a game is as hard as
solving the game itself.

Proposition 2. The following two problems on parity games with perfect in-
formation are polynomial-time equivalent.

(i) Given a game, decide whether Player 1 is winning from the initial location.

(ii) Given a game and a set W of locations, decide whether W is the set of all
winning locations for Player 1.

Proof. Clearly, Problem (ii) can be solved by solving Problem (i) successively,
for all locations.

For the reverse direction, consider an instance of problem (i) – a game G

over a set L of locations with initial location l0. We construct in polynomial
time a game G′ such that (G′, L) is a positive instance of problem (ii) if, and
only if, G is a positive instance of problem (i).

Without loss of generality, we may assume that no priority in G is less than 2.
The game G′ is obtained by adding to G a “reset” location z of priority 1, with

8

ℓ0 ℓ1 ℓ2

b a

a b

Figure 2: A reachability game G.

transitions that allow Player 1 to reach z from any location of G where he moves,
and with one transition from z back to l0. If Player 1 wins in G from l0, then
he will win in the new game from any location by first moving via z to l0 and
then following the winning strategy he has in G. Thus, G′ together with the
set of all locations is a positive instance of Problem (ii); obviously this can be
constructed in polynomial time. Conversely, suppose Player 1 wins from every
location in G′, and let α be a memoryless winning strategy from l0. No play
starting from l0 that follows α can reach z, otherwise Player 1 loses. Thus, the
strategy α readily witnesses that Player 1 wins in the original game G from l0.

�

We also argue that, in games with imperfect information, even for simple
reachability objectives the antichain representation of the set of winning cells
may not be sufficient to construct a winning strategy. Consider the game G

depicted in Figure 2, with reachability objective Reach({ℓ2}). The observations
are {ℓ0, ℓ1} and {ℓ2}. Since CPre({{ℓ2}}) = {{ℓ1}} (by playing action b) and
CPre({{ℓ1}, {ℓ2}}) = {{ℓ0, ℓ1}} (by playing action a), the fixed point computed
by the antichain algorithm is {{ℓ2}, {ℓ0, ℓ1}}. However, from {ℓ0, ℓ1}, after
playing a, Player 1 reaches the cell {ℓ1} which is not in the fixed point (however,
it is subsumed by the cell {ℓ0, ℓ1}). Intuitively, the antichain algorithm has
forgotten which action is to be played next. Notice that playing a again, and
thus forever, is not a winning strategy. The next proposition formalizes this
intuition.

Proposition 3. There exists a family of games Gk with O(p(k)) many locations
for a polynomial p, and a reachability objective φ, such that the fixed point com-
puted by the antichain algorithm for (Gk, φ) is of polynomial size in k, whereas
any finite-memory winning strategy for (Gk, φ) is of exponential size in k.

We first present the ideas of the proof informally. Let p1, p2, . . . be the
list of prime numbers in increasing order. The action alphabet of the game is
Σ = {tick, #,⊥}. The game is composed of subgames Hi, each consisting of a
loop over pi locations ℓ1, . . . , ℓpi

. From a location ℓj , action tick leads to ℓj+1 and
from the last location ℓpi

to the initial location ℓ1. Formally, for all 1 ≤ i ≤ k, we
define the subgame Hi with location space Li = {ℓ1, . . . , ℓpi

}, initial location ℓ1,
and transition relation Ei = {(ℓj, tick, ℓj+1) | 1 ≤ j ≤ pi − 1} ∪ {(ℓpi

, tick, ℓ1)}.
In the sequel, we assume that the location spaces of all Hi are disjoint, e.g. by
adding a superscript i to the locations of Li (Li = {ℓi

1, . . . , ℓ
i
pi
}).

9

ℓ0

ℓ1
1

ℓ1
2

ℓ2
1

ℓ2
2 ℓ2

3

Goal

H1 H2

⊥ ⊥

tick tick

tick tick
tick

tick

tick

#
#

#,⊥

Figure 3: The game G2.

Figure 3 shows the game Gk for k = 2. In general, in Gk, there is a unique
trivial observation, so it is a blind game. We also assume that playing a par-
ticular action in a location where it is not allowed leads to a sink location from
which Goal is not reachable. The plays start in location ℓ0 where Player 1 should
play tick, allowing Player 2 to choose a subgame Hi. As Player 1 does not know
in which of the Hi the play is, he should avoid playing action # whenever his
knowledge set contains other locations than one of the ℓi

pi
(i.e., the last locations

of the subgames). However, after a certain number of steps — p∗k =
∏k

i=1 pi

many, to be precise — the current location of the game will for sure be one of
the ℓi

pi
. Then, playing # necessarily leads to Goal. The action # is not allowed

in any other location, so that Player 1 needs to count the first p∗k steps before
playing that action. Notice that after the first round, Player 1 could play ⊥,
but this would not reduce the amount of memory needed to win. However, it
shows that he is winning uniformly from all locations of the subgames Hi and
thus the antichain of winning positions is the singleton Win = {L} where L is
the set of locations of the game. Since the size p∗k of the strategy is exponential

in the size
∑k

i=1 pi of the antichain Win, the proposition follows.

Proof of Proposition 3. The location space of Gk is the disjoint union of
L1, . . . , Lk and {ℓ0, Goal, Bad}. The initial location is ℓ0, the target observation
consists of Goal, and the sink location is Bad. The transition relation contains
each set Ei, the transitions (ℓi

j,⊥, ℓ0), the transitions (ℓ0, tick, ℓ
i
1), and the tran-

sitions (ℓi
pi

, #, Goal) for all 1 ≤ i ≤ k, 1 ≤ j ≤ pi. The transition relation is
made total by adding the transitions (q, σ, Bad) for each location ℓ of Gn and
σ ∈ {tick, #} such that there is no transition of the form (q, σ, q′) for q′ 6= Bad.

10

There is only one trivial observation, i.e., the observation alphabet Γ is a sin-
gleton.

First we show that Player 1 wins Gk (from ℓ0). As there is exactly one
observation, a strategy for Player 1 corresponds to a function α : N → Σ. Let
α(j) = tick for all 0 ≤ j < p∗k and α(j) = # for all j ≥ p∗k. It is easy to check
that this strategy is winning for Player 1.

For the second part of the statement assume, towards a contradiction, that
there exists a finite-state winning strategy β with less than p∗k states. Clearly, β

cannot play # before the (p∗k +1)-th round since Player 2 can ensure that one of
the subgames Hi is not in ℓi

pi
(by his initial choice). Note that the state reached

by the automaton defining β after p∗k rounds has necessarily been visited in a
previous round. Since β has to play # eventually to reach Goal, this means
that # must have been played in some round j < p∗k, when at least one of the
subgames subgames Hi was not in location ℓi

pi
, so that Player 1 would have

already lost. This is in contradiction with our assumption that β is a winning
strategy. �

Note that for safety games with imperfect information, there always exists
a winning strategy of the size of the antichain representation of the winning
cells [14].

Finally, we show that it is not trivial to compute CPre(·) efficiently. In the
antichain representation, the controllable predecessor operator is defined as

CPre(q) =
⌈
{s ⊆ L | ∃σ ∈ Σ · ∀o ∈ Γ · ∃s′ ∈ q : postσ(s) ∩ γ(o) ⊆ s′}

⌉
, (2)

or equivalently as

CPre(q) =
⊔

σ∈Σ

l

o∈Γ

⊔

s′∈q

{p̃reσ(s′ ∪ γ(o))}, (3)

where p̃reσ(s) = {s′ ∈ S | postσ({s′}) ⊆ s} and γ(o) = L \ γ(o).
Notice that the least upper bound of a set {ℓ1, . . . , ℓk} of antichains can be

computed in polynomial time, whereas a naive algorithm for the greatest lower
bound is exponential. The next proposition shows that, assuming a reasonable
representation of antichains which allows to decide in polynomial time whether
an antichain contains a set larger than n, it is unlikely that CPre(·) is computable
in polynomial time.

Proposition 4. The following problem is NP-hard: given a game with imper-
fect information G, an antichain q and an integer n, decide whether there exists
a set B ∈ CPre(q) with |B| ≥ n.

Proof. We reduce the NP-complete problem 3SAT to our problem. Let P

be a finite set of propositions. We denote by P̄ = {p̄ | p ∈ P} the set of negated
propositions and by L = P ∪ P̄ the set of literals. An instance of 3SAT is a set
C = {c1, . . . , ck} of clauses ci ∈ L × L × L for 1 ≤ i ≤ k, corresponding to the
Boolean formula c1 ∧ · · · ∧ ck where each clause is the disjunction of its literals.

11

Given an instance C of 3SAT, we construct an instance of our decision
problem consisting of a game with imperfect information G (see Figure 4), an
antichain q and an integer n. The components of the game G = (S, Σ,→, Γ)
are:

• S = L ∪ {ux, vx, wx | x ∈ P ∪ C};

• Σ = {σ};

• The transition relation → is the union of the following sets:

◦ {(p, σ, up), (p, σ, wp), (p̄, σ, vp), (p̄, σ, wp) | p ∈ P},

◦ {(p̄, σ, uc), (q̄, σ, vc), (r̄, σ, wc) | c = (p, q, r) ∈ C},

◦ {ux, vx, wx | x ∈ P ∪ C} × {σ} × {uy, vy, wy | y ∈ P ∪ C};

• Γ = {{ux, vx, wx} | x ∈ P ∪ C} ∪ {L}.

Notice that the transition relation is total and that the observations cover the
location space. Further, let

q = {{vp, wp | p ∈ P ∪ C}, {up, wp | p ∈ P ∪ C}, {up, vp | p ∈ P ∪ C}},

and set n = |P |.
At this point, we have

CPre(q) =
l

o∈Γ

⊔

s′∈q

{p̃reσ(s′ ∪ o)}

=
l

x∈P∪C

⊔

s′∈q

{p̃reσ(s′ ∪ {ux, vx, wx})} ⊓
⊔

s′∈q

{p̃reσ(s′ ∪ L̄)}

=
l

x∈P∪C

⌈
{p̃reσ(S \ {ux}), p̃reσ(S \ {vx}), p̃reσ(S \ {wx})}

⌉

⊓
⊔

s′∈q

{p̃reσ(L̄)}

=
l

p∈P

⌈
{L \ {p}, L \ {p̄}, L \ {p, p̄}}

⌉

⊓
l

(p,q,r)∈C

⌈
{L \ {p̄}, L \ {q̄}, L \ {r̄}}

⌉
⊓ {S}

=
l

p∈P

{L \ {p}, L \ {p̄}}︸ ︷︷ ︸
Ap

⊓
l

c=(p,q,r)∈C

⌈
{L \ {p̄}, L \ {q̄}, L \ {r̄}}

⌉
︸ ︷︷ ︸

Ac

.

We show that C = {c1, . . . , ck} is satisfiable if and only if there exists a set
B ∈ CPre(q) with |B| ≥ n.

First, assume that C is satisfiable and let f : P → {true, false} be a truth
assignment satisfying C. Set

B′ = {p ∈ P | f(p) = true} ∪ {p̄ ∈ P̄ | f(p) = false}.

12

p

q

r

s

p̄

q̄

r̄

s̄

up

uq

wp

wq

vp

vq

...

uc1

uc2

wc1

wc2

vc1

vc2

Figure 4:

Reduction for the formula (r̄ ∨ q ∨ s̄)︸ ︷︷ ︸
c1

∧ (p̄ ∨ s ∨ r)︸ ︷︷ ︸
c2

.

Then, (i) |B′| = n, (ii) for all propositions p ∈ P , if f(p) = true then B′ ⊆
L \ {p̄}, and if f(p) = false then B′ ⊆ L \ {p}, so that there exists B ∈ Ap such
that B′ ⊆ B, and (iii) as each clause c ∈ C is satisfied by f , there exists a literal
ϕc in c such that either ϕc = p and f(p) = true, or ϕc = p̄ and f(p) = false.
Hence, either there exists a proposition p in c and B′ ⊆ L \ {p̄}, or there exists
a negated proposition p̄ in c and B′ ⊆ L \ {p}, so that there exists B ∈ Ac such
that B′ ⊆ B. In either case, there must exist a set B ∈ CPre(q) with |B| ≥ n.

Second, assume that B ∈ CPre(q) and |B| ≥ n. Then for all p ∈ P , there
exists B′ ∈ Ap such that B ⊆ B′ (⋆). In particular, this entails that B ⊆ L. Let
us show that p ∈ B iff p̄ 6∈ B for all p ∈ P . Towards a contradiction, assume
that p ∈ B and p̄ ∈ B for some p ∈ P . Then, {p, p̄} ⊆ B but {p, p̄} 6⊆ L \ {p}
and {p, p̄} 6⊆ L\{p̄}. Hence B 6⊆ L\{p} and B 6⊆ L\{p̄}, which contradicts (⋆).
Similarly, it is impossible that p 6∈ B and p̄ 6∈ B, because |B| ≥ n would imply
that there exists q ∈ P such that {q, q̄} ⊆ B. Now, take f(p) = true iff p ∈ B.
For each clause c ∈ C, there exists B′ ∈ Ac such that B ⊆ B′, hence there exists
a literal ϕc in c such that ϕc ∈ B, and thus f satisfies c. �

13

4. Strategy Construction with Antichains

We present a procedure for constructing a winning strategy for a parity game
of imperfect information G = (L, l0, ∆, γ) over the alphabets Σ and Γ. It will
sometimes be convenient to reason in terms of the equivalent perfect-information
game GK obtained via the subset construction in Section 3. Let C denote the set
of all cells s such that s ⊆ γ(o) for some o ∈ Γ. Thus, C contains all locations
of GK. For R ⊆ C, a cell strategy on R is a memoryless strategy α : R→ Σ for
Player 1 in GK. Given an objective φ ⊆ Cω in GK, we define

WinR(φ) := { s ∈ R | there exists a cell strategy α such that

Outcome(GK

s , α) ⊆ φ ∩ Safe(R) }.

In words, WinR(φ) consists of cells s such that there exists a winning cell strategy
for Player 1 to ensure φ starting from cell s and maintaining the play of GK

in R.
In Algorithm 1, we present a procedure to construct a winning cell strategy

in GK for objectives of the form

Reach(T) ∪ (Parity(p) ∩ Safe(F)),

where T ,F ⊆ C are downward-closed sets of cells and p : Γ → N is a priority
function over observations. With p extended naturally to cells, the set Parity(p)
contains the sequence of cells such that the minimal priority of a cell appearing
infinitely often is even. The parity objective Parity(p) corresponds to the special
case where F = C and T = ∅. Note that a winning strategy does not need to be
defined on T since Reach(T) is satisfied for all cells in T . Memoryless strategies
are sufficient for this kind of objective in games with perfect information. Thus,
we can restrict our attention, without loss of generality, to memoryless cell
strategies.

Informal description. We first present an informal description of Algorithm 1.
The algorithm is based on two elementary procedures ReachOrSafe(T ,F) and
ReachAndSafe(T ,F) that use antichains to compute the set of winning cells and
a winning strategy for the objectives Reach(T)∪Safe(F) and Reach(T)∩Safe(F),
respectively, for given downward-closed sets of cells T ⊆ C and F ⊆ C. In games
with perfect information, it is known that memoryless winning strategies exist
for such combinations of safety and reachability objectives.

The algorithm works recursively, reducing the number of priorities. Given a
parity function p, we denote by p−2 the parity function such that, for all o ∈ Γ,
we have (p − 2)(o) = p(o) if p(o) ≤ 1, and (p − 2)(o) = p(o) − 2 otherwise.
For i ≥ 0, we denote by Cp(i) = { s ∈ C | s ⊆ γ(o), o ∈ Γ, p(o) = i } the set of
cells with priority i. Let W1 and W2 be disjoint sets of cells, and let α1 be a cell
strategy on W1 and α2 be a cell strategy on W2. We denote by α1 ∪α2 the cell
strategy on W1∪W2 such that for all s ∈W1∪W2, we have (α1∪α2)(s) = α1(s)
if s ∈W1, and (α1 ∪ α2)(s) = α2(s) otherwise.

14

s0

p = 4

s1

p = 5

s2

p = 1

s3

p = 2

Figure 5: A parity game with perfect information to illustrate Algorithm 1.

s0

p′ = 2

s1

p′ = 3

s2

p′ = 1

s3

p′ = 0

Figure 6: The parity game of Figure 5, with parity function p′ = p − 2.

Without loss of generality we assume that the cells in the target set T are
absorbing, that is, they only have self-loops and no other out-going transitions.
In line 1 of Algorithm 1, we compute W = WinC(φ) using the antichain algorithm
of [6]. As we assume that cells in T are absorbing, a winning cell strategy for
the objective φ ensures that the set W is never left. In the rest of the algorithm
and in the arguments below, we consider the sub-game induced by W . In line 2
of Algorithm 1, the set W ∗ of winning cells and a winning cell strategy α∗

on W ∗ \ T for the objective Reach(T) is computed by invoking the procedure
ReachAndSafe with target T and safe set W . Then, the set W0 of cells is obtained
along with a cell strategy α0 ensuring that either W ∗ or the set of priority 0
cells in W is reached. After this, the algorithm iterates a loop as follows: at
iteration i+1, let Wi be the set of cells already obtained in the previous iteration
and let Ai = W \Wi. The algorithm is invoked recursively with Wi as target set,
Ai\Cp(1) as the safe set, and p−2 as the priority function to obtain a set Wi+1 as
a result. In the base case, where W consists of priorities 0, 1, and 2 only, since Ai

has no priority 0 cells, the objective Reach(Wi)∪ (Parity(p−2)∩Safe(Ai \Cp(1))
can be equivalently written as Reach(Wi) ∪ Safe(Ai ∩ Cp(2)). Therefore, in
the base case, the recursive call is replaced by ReachOrSafe(Wi, Ai ∩ Cp(2)).
Notice that Wi ⊆ Wi+1. The algorithm proceeds until it reaches a fixed point
Wi = Wi+1.

Example. To illustrate how Algorithm 1 works, let us consider a simple exam-
ple involving only one player with perfect information. In the game structure
depicted in Figure 5, all out-going edges from a state are controlled by Player 1.
The safe set is F = { s0, s1, s3 } and the target set T is empty. The parity func-
tion p is as follows: p(s0) = 4, p(s1) = 5, p(s2) = 1, and p(s3) = 2. In the game
shown, the winning set W for the objective Reach(T) ∪ (Parity(p) ∩ Safe(F))
is the set { s0, s1, s3 }. The main steps of the computation of Algorithm 1 are
as follows: the algorithm enters the recursion for the first step with the parity

15

Algorithm 1: Imperfect-Information Game Solver - Solve(G, T , F , p)

Input : A game structure G with target T ⊆ C, safe set F ⊆ C and
parity function p on Γ.

Output: W = WinC(φ) where φ := Reach(T)∪(Parity(p)∩Safe(F)), and
a winning cell strategy α on W \ T for φ.

begin
1 W ←WinC(φ)
2 (W ∗, α∗)← ReachAndSafe(T , W)
3 (W0, α0)← ReachAndSafe(W ∗ ∪ (Cp(0) ∩W), W))
4 Let α′

0 be a cell strategy on (Cp(0) ∩W) \W ∗ such that
5 postα′

0
(s)(s) ∩ γ(o) ∈W for all o ∈ Γ and s ∈ (Cp(0) ∩W) \W ∗

6 α0 ← α0 ∪ α′
0 ∪ α∗

7 i← 0
8 repeat
9 Ai ←W \Wi

10 if W ⊆ Cp(0) ∪ Cp(1) ∪ Cp(2) then
11 (Wi+1, αi+1)← ReachOrSafe(Wi, Ai ∩ Cp(2))

12 else
(Wi+1, αi+1)← Solve(G, Wi, Ai \ Cp(1), p− 2)

13 αi+1 ← αi ∪ αi+1

14 i← i + 1

until Wi = Wi−1

15 return (Wi, αi)

end

function p− 2 on the set W , the safe set F and the empty target set (the mod-
ified parity function is shown in Figure 6). The computation of the set W ∗ in
step 1 of this recursive call yields the empty set. The state s3 (with priority 0
under the parity function p−2) cannot be reached from s0 or s1 by staying safe
in the set W = { s0, s1, s3 } (since to reach the state s3 from s0 or s1 the state
s2 must be reached). Hence the set W0 = ReachAndSafe({ s3 }, W) computed
in step 2 of this recursive call is { s3 }. The algorithm then enters the following
recursive step with the set { s0, s1 } of states, and this recursive call returns the
set { s0, s1 } as the winning set. Then in the iterations of the first recursive
step, the set { s0, s1 } acts as the target set Wi. Since the state s2 can reach the
target set Wi = { s0, s1 } by staying safe in W , the state s2 is included in the
winning set. This illustrates the main computation steps of Algorithm 1.

Correctness of the iteration. First, we have W \ W ∗ ⊆ F . This holds
essentially because Player 1 cannot reach T from W \W ∗. More precisely, if we
suppose that a cell s ∈ W \W ∗ does not belong to F , then against every cell
strategy for Player 1, there is a Player 2 strategy which ensures that the set T
is not reached from s. Hence from s, against every cell strategy for Player 1,
there is a Player 2 strategy to ensure that the condition Reach(T) ∪ Safe(F),

16

and thus φ = Reach(T)∪ (Parity(p)∩Safe(F)) is violated, in contradiction with
s ∈ W = WinC(φ). The significance of the claim is that, if W ∗ is reached, then
Player 1 can ensure that T is reached, and since W \W ∗ ⊆ F it follows that,
if W ∗ is not reached, then the game stays safe in F .

To establish the correctness of the iterative step, we claim that from the
set Wi+1 the cell strategy αi+1 on Wi+1 \Wi which ensures

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)
.

Notice that in Ai \ Cp(1), there is no cell with priority 0 or priority 1 for the
priority function p, since Cp(0) ∩W ⊆W0 ⊆Wi. Hence, we have

Parity(p− 2) ∩ Safe(Ai \ Cp(1)) = Parity(p) ∩ Safe(Ai \ Cp(1)).

Since Ai ⊆ W \ W0 ⊆ W \ W ∗ ⊆ F , it follows that the cell strategy αi+1

on Wi+1 \Wi which ensures

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)

holds from all cells in Wi+1. By induction on i, composing the cell strategies
(i.e., by taking the union of strategies obtained in the iteration) we obtain that
from Wi+1, the cell strategy αi+1 on Wi+1 \T for Player 1 ensures the condition
Reach(W0)∪

(
Parity(p)∩Safe(F)∩ coBuchi(F \Cp(1))

)
. Note that, to apply the

induction step for i times, one may visit cells in Cp(1), but only finitely many
times.

Termination. We claim that, upon termination, we have Wi = W . As-
sume towards a contradiction that the algorithm terminates with Wi = Wi+1

and Wi+1 6= W . Then the following assertions hold. The set Ai = W \Wi is
nonempty and

Wi+1 = Wi = WinW
(
Reach(Wi) ∪

(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

))
,

that is, in the whole set Ai against all Player 1 cell strategies, Player 2 can
ensure the complementary objective, i.e.,

Safe(Ai) ∩
(
coParity(p− 2) ∪ Reach(Ai ∩ Cp(1))

)
.

Now, we show that satisfying the above objective also implies satisfying the
objective Safe(Ai) ∩ coParity(p). Consider a cell strategy for Player 1, and
consider the counter-strategy for Player 2 that ensures that the game stays

17

in Ai, and also ensures that coParity(p− 2)∪Reach(Ai ∩ Cp(1)) is satisfied. If a
play visits Ai ∩ Cp(1) only finitely many times, then from some point onwards,
it only visits cells in Ai that do not have priority p equal to 1 or 0, and hence
coParity(p− 2) = coParity(p). Otherwise, the set Ai ∩ Cp(1) is visited infinitely
often and Ai is never left. Since Ai has cells of priority p equal to 0, it means
that Player 2 satisfies the coParity(p) objective. It follows that in Ai against
all Player 1 cell strategies, Player 2 can ensure Safe(Ai) ∩ coParity(p). This is a
contradiction to the fact that Ai ⊆W = WinW (φ) and Safe(Ai)∩ coParity(p) ⊆
Γω \ φ.

The insights formulated above lead to the following theorem.

Theorem 1. Given an imperfect-information game G with target T ⊆ C, safe
set F ⊆ C and a parity function p on Γ, Algorithm 1 computes W = WinC(φ),
where φ = Reach(T) ∪ (Parity(p) ∩ Safe(F)), and a winning cell strategy α on
W \ T for φ.

Proof. The statement follows from the correctness of the iteration, and the
fact that W = Wi for some i. From our previous analysis, it also follows that
from all locations in W , the obtained cell strategy ensures

Reach(W0) ∪ (Parity(p) ∩ Safe(F) ∩ coBuchi(F \ Cp(1)).

We now complete the argument by showing that the cell strategy is winning
for φ. The cell strategy on W0 ensures that T is reached from cells in W ∗, from
cells in Cp(0) ∩W it ensures to stay in W , and in all remaining cells in W0 it
ensures to reach W ∗ ∪ (Cp(0) ∩W). The following case analysis completes the
proof.

1. If the set W0 is visited infinitely often, then (a) if W ∗ is reached, then
T is reached; (b) otherwise Cp(0) ∩W is visited infinitely often and the
game always stays safe in W \W ∗ ⊆ F . This ensures that Parity(p) is also
satisfied.

2. If W0 is visited only finitely often, then the play never reaches W ∗, other-
wise it would reach T and stay in T forever, and hence Safe(F) is satisfied,
such that the objective Parity(p)∩Safe(F)∩coBuchi(F \Cp(1)) is attained.
Overall, it follows the objective φ is satisfied.

�

Antichain algorithm. To turn Algorithm 1 into an antichain algorithm, all
set operations must preserve the downward-closed property. The union and in-
tersection operations on sets preserve the downward-closed property of sets, but
the complementation operation does not. Observe that Algorithm 1 performs
complementation in line 9 (Ai ←W \Wi) and uses the set Ai in lines 11 and 12.
This was done for the ease of correctness proof of the algorithm. To see that
the complementation step is not necessary, observe that

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
=

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(W \ Cp(1))

)
.

18

Indeed, if a play never visits Wi, then the play is in Safe(Ai \ Cp(1)) if, and
only if, it is in Safe(W \ Cp(1)). Also, note that the expression Parity(p − 2) ∩
Safe(W \Cp(1)) can be equivalently written as Parity(p−2)∩Safe(W∩

⋃
i≥2 Cp(i)).

It follows that every set operation in Algorithm 1 preserves downward-closed
property. Since the algorithm of [6] is antichain based, it follows that step 1
of Algorithm 1 is compatible with antichain representation. This demonstrates
the following statement.

Theorem 2. Algorithm 1 is compatible with the antichain representation.

We remark that the explicit construction of the strategies takes place only
in few steps of the algorithm: at line 2 and 3 of each recursive call where cell
strategies are computed for reachability objectives, and in the base case (parity
games with priorities 0, 1 and 2) in line 11 where cell strategies are computed
for union of safety and reachability objectives. Also note that we never need
to compute strategies for the target set T , and therefore in line 10, we would
obtain strategies for the set Wi+1 \Wi. Hence, once the strategy is computed
for a set, it will never be modified in any subsequent iteration.

5. Implementation

We have implemented Algorithm 1 in a tool called Alpaga [15] written in
Python, except for the BDD package which is written in C. We use the CUDD
BDD library [16] with its PYCUDD Python binding. There is a certain per-
formance overhead in using Python, but we chose it to enhance readability and
to make the code easy to change. We believe this is important in the context
of academic research, as we expect other researchers to experiment with the
tool, tweak the existing algorithms and add their own ones. In the same spirit,
the code architecture is designed in a modular way and offers possibilities to
reuse utility functions like, for example, the successors of a set of states, the
controllable predecessors, or antichain-handling functions.

The building blocks of the algorithm are the computation of the control-
lable predecessor operator CPre(·), and the two basic procedures ReachOrSafe

and ReachAndSafe.

Controllable predecessor. According to Proposition 4, computing CPre(·) is likely
to require time exponential in the number of observations. Therefore, it is nat-
ural to let the BDD machinery evaluate the quantifications in (2). We present
a BDD-based algorithm to compute CPre(·).

Let L = {ℓ1, . . . , ℓn} be the state space of the game G. A cell s ⊆ L can be
represented by a valuation v of the Boolean variables x̄ = x1, . . . , xn such that,
for all 1 ≤ i ≤ n, ℓi ∈ s iff v(xi) = true. A BDD over x1, . . . , xn is called a linear
encoding, it encodes a set of cells. A cell s ⊆ L can also be represented by a
BDD over Boolean variables ȳ = y1, . . . , ym with m = ⌈log2 n⌉. This is called a
logarithmic encoding, it encodes a single cell.

We represent the transition relation of G by the n · |Σ| many BDDs Tσ(ℓi),
for σ ∈ Σ and 1 ≤ i ≤ n, with logarithmic encoding over ȳ. Thus, Tσ(ℓi)

19

represents the set {ℓj | (ℓi, σ, ℓj) ∈ ∆}. The observations Γ = {o1, . . . , op} are
encoded by ⌈log2 p⌉ many Boolean variables b0, b1, . . . in the BDD BΓ defined
by

BΓ ≡
∧

0≤j≤p−1

b̄ = [j]2 → Cj+1(ȳ),

where [j]2 is the binary encoding of j and C1, . . . , Cp are BDDs that represent
the sets γ(o1), . . . , γ(op) in logarithmic encoding.

Given the antichain q = {s1, . . . , st}, let Sk (1 ≤ k ≤ t) be the BDDs that
encode the set sk in logarithmic encoding over ȳ. For each σ ∈ Σ, we compute
the BDD CPσ in linear encoding over x̄ as follows:

CPσ ≡ ∀b̄ ·
∨

1≤k≤t

∧

1≤i≤n

xi →
[
∀ȳ ·

(
Tσ(ℓi) ∧BΓ

)
→ Sk

]
.

Then, we define CP ≡
∨

σ∈Σ CPσ(q), and we extract the maximal elements
in CP(x̄) as follows, with ω a BDD that encodes the relation of (strict) set
inclusion ⊂:

ω(x̄, x̄′) ≡
(n∧

i=1

xi → x′
i

)
∧

(n∨

i=1

xi 6= x′
i

)
,

CPmin(x̄) ≡ CP(x̄) ∧ ¬∃x̄′ · ω(x̄, x̄′) ∧ CP(x̄′).

Finally, we construct the antichain CPre(q) as the following set of BDDs in
logarithmic encoding: CPre(q) = {s | ∃v ∈ CPmin : s = {ℓi | v(xi) = true}}.

Strategy construction. To compute ReachOrSafe(T ,F), we evaluate the follow-
ing fixed-point formula in the lattice of antichains: ϕ1 ≡ νX.(F⊓CPre(X))⊔T ∗

where T ∗ = µX.CPre(X) ⊔ T . To compute ReachAndSafe(T ,F), we evaluate
ϕ2 ≡ µX.F ⊓ (CPre(X) ⊔ T).

While computing q′ = CPre(q), we associate with each cell s in the an-
tichain q′ the action σ to be played in order to ensure reaching a cell in q.
Each such pair (s, σ) is output with a rank (a natural number) that is incre-
mented at each iteration of CPre(). Thus, a strategy is represented by a set
Π = {(s1, Rank1, σ1), . . . , (sn, Rankn, σn)} of triples (si, Ranki, σi) ∈ 2L ×N×Σ
where si is a cell, and σi is an action. The action to be played in a given cell s

is the action ai associated with the cell si with minimal rank that contains s.
Formally, given the current knowledge s of Player 1, let (si, Ranki, σi) be a triple
with minimal rank in Π such that s ⊆ si (such a triple exists if s is a winning
cell); the strategy represented by Π plays the action σi in s.

Our implementation applies the following rules to simplify the strategies and
to obtain a compact representation of winning strategies in parity games with
imperfect information.

(Rule 1) In a strategy Π, retain only elements that are maximal with respect
to the following order: (s, Rank, σ) � (s′, Rank′, σ′) if Rank ≤ Rank′ and s′ ⊆ s.
Intuitively, the rule specifies that we can delete (s′, Rank′, σ′) whenever all cells

20

contained in s′ are also contained in s; since Rank ≤ Rank′, the strategy can
always choose (s, Rank, σ) and play σ.

(Rule 2) In a strategy Π, delete all triples (si, Ranki, σi) such that there exists
(sj , Rankj , σj) ∈ Π (i 6= j) with σi = σj , si ⊆ sj (and hence Ranki < Rankj

by Rule 1), such that for all (sk, Rankk, σk) ∈ Π, if Ranki ≤ Rankk < Rankj

and si ∩ sk 6= ∅, then σi = σk. Intuitively, the rule specifies that we can delete
(si, Ranki, σi) whenever all cells contained in si are also contained in sj , and the
action σj is the same as the action σi. Moreover, if a cell s ⊆ si is also contained
in sk with Ranki ≤ Rankk < Rankj , then the action played by the strategy is
also σk = σi = σj .

Features of the tool. The input of the tool is a file describing the transitions and
observations of the game graph. The output is the set of maximal winning cells,
and a winning strategy in compact representation. We have also implemented a
simulator that let the user play against the strategy computed by the tool. The
user has to provide an observation in each round (or may let the tool choose one
randomly). Details about the tool features and options can be found in [15].
Alpaga is available for download at http://www.antichains.be/alpaga for
Linux-operated systems. For convenience, the tool can also be tested through
a web interface. We provide the source code, the executable, an online demo,
and several examples.

6. Examples

We illustrate the use of imperfect-information games for the synthesis of
distributed programs. Currently, the input language of Alpaga does not allow
to describe the transition graph in a symbolic way via variables. To solve our
examples, we had to manually translate the programs into game graphs, enu-
merating the valuations of the variables. This is manageable for small examples,
but for larger ones Alpaga needs to be extended to handle symbolic input.

6.1. An example with locks

Consider the program in Figure 7 that acquires and releases a lock. The if-
statement in line 1 corresponds to a nondeterministic choice that abstracts away
any concrete branching condition. The program has a local variable got lock

used to ensure that the functions lock() and unlock() are called in strict
alternation. The program is partially specified in that lines 3 and 6 are non-
deterministic assignments. We provide a set of possible choices to assign the
variable: inc, dec, s0, or s1. We use a game formulation to find the correct
assignment, in which Player 1 resolves the choices in line 3 and 6, while Player 2
controls the branching choice in line 1. Solving this game and constructing a
winning strategy for Player 1 provides a way to synthesize a correct program.
This setting was used in [17] as an example of program repair. There, a diag-
nosis is performed on a concrete version of Figure 7, and a fault is localized in

21

int got_lock = 0;

do {

1. if (*) {

2. lock();

3. | got_lock++ (inc);

| got_lock-- (dec);

| got_lock=1 (s1);

| got_lock=0 (s0);

}

4. if (got_lock != 0) {

5. unlock();

}

6. | got_lock++ (inc);

| got_lock-- (dec);

| got_lock=1 (s1);

| got_lock=0 (s0);

} while(true)

void lock() {

assert(L == 0);

L=1;

}

void unlock() {

assert(L == 1);

L=0;

}

Figure 7: Example with locks.

the assignment of got lock. The repair consists in fixing the correct value of
the variable.

The actual status of the lock is tracked by the variable L which is not visible
to the main program. Assertions over L are used to enforce the alternation of
lock holds and releases, encoding the requirement as a safety objective (namely,
that the assertions are never violated).

In [17], the game is solved under the assumption of perfect information (that
is, L is visible), thus assuming that L is a global variable. A correct repair is
obtained by choosing an assignment that is common to a memoryless winning
strategy for L=0 and L=1, universally quantifying L in a permissive strategy
(i.e., a strategy that allows multiple actions to be played). Note that maximally
permissive strategies exist only for safety objectives [18]. This approach is sound
but not complete, as it may not find a winning strategy even if there exists one.

In the setting of imperfect information, states that differ only by the value
of L display the same observation and are thus indistinguishable to Player 1. The
observation-based strategy constructed by Alpaga is then guaranteed to provide
assignments that do not depend on the value of L. The computed strategy
corresponds to a memoryless winning strategy in game structure GK obtained
from the original game G via subset construction (see Section 3). When used
in the game G, the strategy may need (finite) memory for tracking the cell
that represents the knowledge of Player 1. To implement the strategy in the
program, we may thus need additional variables for tracking this information.
In the locking example, this is not the case, as Alpaga constructs a strategy
that plays s0 in line 6, while in line 3, all actions except s0 can be played.

22

do {

unbounded_wait;

flag[1]:=true;

turn:=2;

| while(flag[1]) nop; (C1)

| while(flag[2]) nop; (C2)

| while(turn=1) nop; (C3)

| while(turn=2) nop; (C4)

| while(flag[1] & turn=2) nop; (C5)

| while(flag[1] & turn=1) nop; (C6)

| while(flag[2] & turn=1) nop; (C7)

| while(flag[2] & turn=2) nop; (C8)

fin_wait; // Critical section

flag[1]:=false;

} while(true)

do {

unbounded_wait;

flag[2]:=true;

turn:=1;

while(flag[1] & turn=1) nop;

fin_wait; // Critical section

flag[2]:=false;

} while(true)

Figure 8: Mutual-exclusion protocol synthesis.

6.2. Mutual-exclusion protocol

We consider the design of a mutual-exclusion protocol for two processes,
following the lines of [19]. We assume that one process (on the right in Figure 8)
is completely specified. The second process (on the left in Figure 8) has freedom
of choice in line 4. It can use one of 8 possible conditions C1–C8 to guard the
entry to its critical section in line 5. The Boolean variables flag[1] and flag[2]
are used to place a request to enter the critical section. They are both visible
to each process. The variable turn is visible and can be written by the two
processes. Thus, all variables are visible to the left process, except the program
counter of the right process.

There is also some nondeterminism in the length of the delays in lines 1
and 5 of the two processes. The processes are free to request or not the critical
section and thus may wait for an arbitrary amount of time in line 1 (as indicated
by unbounded wait), but they have to leave the critical section within a finite
amount of time (as indicated by fin wait). In the game model, the length of
the delay is chosen by the adversary.

Finally, each computation step is assigned to one of the two processes by
a scheduler. We require that the scheduler is fair, i.e., it assigns computation
steps to both processes infinitely often. In our game model, we encode all fair
schedulers by allowing each process to execute an arbitrary finite number of
steps, before releasing the turn to the other process. Again, the actual number
of computation steps assigned to each process is chosen by the adversary.

The mutual-exclusion requirement (that the processes are never simultane-
ously in their critical section) and the starvation-freedom requirement (that
whenever the left process requests to enter the critical section, it will eventually

23

Locations Observations Priorities Execution time (s)
Game1 4 4 Reach. 0.1
Game2 3 2 Reach. 0.1
Game3 6 3 3 0.1
Game4 8 5 5 1.4
Game5 8 5 7 9.4
Game6 11 9 10 50.7
Game7 11 8 10 579.0
Locks 22 14 Safety 0.6
Mutex 50 28 3 57.7

Table 1: Experimental results with Alpaga.

enter) can be encoded using three priorities.
When solving this game with our tool, we find that Player 1 is winning, and

that choosing C8 is a winning strategy.

6.3. Experimental results

We have run Alpaga on the previous examples (locks and mutual exclusion),
as well as on seven toy examples (Game1-7) that we have set up to test our tool
while programming. We provide those examples as representative of different
levels of difficulty for our tool, and also for the purpose of comparing with
future versions of our tool, or later with other tools. They are included in the
tool package at http://www.antichains.be/alpaga. Table 1 shows the size of
the games (in terms of number of locations of the game structure, number of
observations, and number of priorities). The experiments were conducted on a
Intel Dual-processor P8400 (2.3GHz) with 2Gb of RAM. Execution times are
given in Table 1, and include strategy construction.

7. Conclusion

We conclude with some discussion and remarks. The antichain approach
has been applied to several problems in automata and game theory, always in a
way to avoid exponential subset constructions for solving decision problems [12,
13, 20, 21]. In this paper, we go beyond decision problems and consider the
construction of a witness, namely, a winning strategy. We show that winning
strategies may have size exponentially larger than the antichain representation
of winning positions (see Proposition 3). Therefore, a natural question is to
search for an alternative (and more compact) representation of strategies, or to
show that certain classes of strategies that can be represented compactly are
sufficient to win. For instance, in reachability games, a winning strategy does
not necessarily need to enforce the objective within minimal number of steps,
and this may give enough freedom for reducing the size of winning strategies.

24

Concerning the implementation of Alpaga, we identify two issues where im-
provements can be made. First, the game graph has to be provided explicitly
which is not convenient for dealing with symbolic (variable-based) games as in
the mutex and locks examples. Second, it is not clear whether BDDs are the
best data-structure for antichains. We use BDDs because they provide highly
optimized algorithms for existential and universal quantification. However, ex-
periments made with other data-structures in automata theory (see above) tend
to show that simple data-structures (like arrays) can outperform BDDs. This
however holds in applications where the main operations are computable in
polynomial time, which is not the case of the controllable predecessor operator
for games with imperfect information (see Proposition 4).

Other future works include the extension of the approach and implementa-
tion to non-visible objectives, and to weaker notions of winning condition such
as almost-sure winning, i.e., winning with probability 1.

References

[1] W. Thomas, On the Synthesis of Strategies in Infinite Games., in: Proc. of
STACS 1995, Springer-Verlag, 1–13, 1995.

[2] E. Grädel, W. Thomas, T. Wilke (Eds.), Automata, Logics, and Infinite
Games, LNCS 2500, Springer-Verlag, 2002.

[3] E. A. Emerson, C. S. Jutla, Tree Automata, Mu-Calculus and Determinacy,
in: Proc. of FoCS 1991, IEEE, 368–377, 1991.

[4] D. Fudenberg, J. Tirole, Game Theory, MIT Press, 1991.

[5] J. Reif, The complexity of two-player games of incomplete information,
Journal of Computer and System Sciences 29 (1984) 274–301.

[6] K. Chatterjee, L. Doyen, T. A. Henzinger, J.-F. Raskin, Algorithms for
Omega-regular Games of Incomplete Information, Logical Methods in Com-
puter Science 3 (3:4).

[7] T. A. Henzinger, R. Jhala, R. Majumdar, Counterexample-guided control,
in: Proc. of ICALP 2003, LNCS 2719, Springer-Verlag, 886–902, 2003.

[8] R. McNaughton, Infinite Games Played on Finite Graphs., Annals of Pure
and Applied Logic 65 (2) (1993) 149–184.

[9] W. Zielonka, Infinite Games on Finitely Coloured Graphs with Applications
to Automata on Infinite Trees, Theoretical Computer Science 200 (1998)
135–183.

[10] W. Thomas, Languages, automata, and logic, Handbook of Formal Lan-
guages 3 (1997) 389–455.

25

[11] D. Berwanger, L. Doyen, On the power of imperfect information, in: Proc.
of FSTTCS 2008, Dagstuhl Seminar Proceedings 08004, Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), 2008.

[12] M. De Wulf, L. Doyen, T. A. Henzinger, J.-F. Raskin, Antichains: A New
Algorithm for Checking Universality of Finite Automata, in: Proc. of CAV
2006, LNCS 4144, Springer-Verlag, 17–30, 2006.

[13] M. De Wulf, L. Doyen, N. Maquet, J.-F. Raskin, Antichains: Alternative
Algorithms for LTL Satisfiability and Model-Checking, in: Proc. of TACAS
2008, LNCS 4693, Springer-Verlag, 63–77, 2008.

[14] M. De Wulf, L. Doyen, J.-F. Raskin, A Lattice Theory for Solving Games
of Imperfect Information, in: Proc. of HSCC 2006, LNCS 3927, Springer-
Verlag, ISBN 3-540-33170-0, 153–168, 2006.

[15] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, T. A. Henzinger,
Alpaga: A Tool for Solving Parity Games with Imperfect Information, in:
Proc. of TACAS 2009, LNCS 5505, Springer, 58–61, 2009.

[16] F. Somenzi, CUDD: Colorado University Decision Diagram Package,
http://vlsi.colorado.edu/˜fabio/CUDD/, 2005.

[17] B. Jobstmann, A. Griesmayer, R. Bloem, Program Repair as a Game, in:
Proc. of CAV: Computer-Aided Verification, LNCS 3576, Springer, 226–
238, 2005.

[18] J. Bernet, D. Janin, I. Walukiewicz, Permissive strategies: from parity
games to safety games, Inf. Théorique et Applications 36 (3) (2002) 261–
275.

[19] K. Chatterjee, T. A. Henzinger, Assume-guarantee synthesis, in: Proc. of
TACAS 2007, LNCS 4424, Springer, 261–275, 2007.

[20] A. Bouajjani, P. Habermehl, L. Hoĺık, T. Touili, T. Vojnar, Antichain-
Based Universality and Inclusion Testing over Nondeterministic Finite Tree
Automata, in: Proc. of CIAA 2008, LNCS 5148, Springer, 57–67, 2008.

[21] L. Doyen, J.-F. Raskin, Antichains for the Automata-Based Approach to
Model-Checking, Logical Methods in Computer Science 5 (1:5).

26

