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Abstract. Stochastic two-player games model systems with an environ-
ment that is both adversarial and stochastic. The environment is modeled
by a player (Player 2) who tries to prevent the system (Player 1) from
achieving its objective. We consider finitary versions of the traditional
mean-payoff objective, replacing the long-run average of the payoffs by
payoff average computed over a finite sliding window. Two variants have
been considered: in one variant, the maximum window length is fixed and
given, while in the other, it is not fixed but is required to be bounded. For
both variants, we present complexity bounds and algorithmic solutions for
computing strategies for Player 1 to ensure that the objective is satisfied
with positive probability, with probability 1, or with probability at least p,
regardless of the strategy of Player 2. The solution crucially relies on a
reduction to the special case of non-stochastic two-player games. We give
a general characterization of prefix-independent objectives for which this
reduction holds. The memory requirement for both players in stochastic
games is also the same as in non-stochastic games by our reduction.
Moreover, for non-stochastic games, we improve upon the upper bound
for the memory requirement of Player 1 and upon the lower bound for
the memory requirement of Player 2.

Keywords: Stochastic games · Finitary objectives · Mean-payoff · Reac-
tive synthesis

1 Introduction

We consider two-player turn-based stochastic games played on graphs. Games are
a central model in computer science, in particular for the verification and synthesis
of reactive systems [18, 11, 17]. A stochastic game is played by two players on
a graph with stochastic transitions, where the players represent the system
and the adversarial environment, while the objective represents the functional
requirement that the synthesized system aims to satisfy with a probability p
as large as possible. The vertices of the graph are partitioned into system,
environment, and probabilistic vertices. A stochastic game is played in infinitely
many rounds, starting by initially placing a token on some vertex. In every round,
if the token is on a system or an environment vertex, then the owner of the vertex
chooses a successor vertex; if the token is on a probabilistic vertex, then the



successor vertex is chosen according to a given probability distribution. The token
moves to the successor vertex, from where the next round starts. The outcome
is an infinite sequence of vertices, which is winning for the system if it satisfies
the given objective. The associated quantitative satisfaction problem is to decide,
given a threshold p, whether the system can win with probability at least p. The
almost-sure problem is the special case where p = 1, and the positive problem is
to decide whether the system can win with positive probability. The almost-sure
and the positive problems are referred to as the qualitative satisfaction problems.
When the answer to these decision problems is Yes, it is useful to construct a
winning strategy for the system that can be used as a model for an implementation
that ensures the objective be satisfied with the given probability.

Traditional objectives in stochastic games are ω-regular such as reachability,
safety, and parity objectives [11], or quantitative such as mean-payoff objec-
tives [16, 27]. For example, a parity objective may specify that every request of
the environment is eventually granted by the system, and a mean-payoff objective
may specify the long-run average power consumption of the system. A well-
known drawback of parity and mean-payoff objectives is that only the long-run
behaviour of the system may be specified [1, 9, 21], allowing weird transient be-
haviour: for example, a system may grant all its requests but with an unbounded
response time; or a system with long-run average power consumption below
some threshold may exhibit arbitrarily long (but finite) sequences with average
power consumption above the threshold. This limitation has led to considering
finitary versions of those objectives [9, 23, 8], where the sequences of undesired
transient behaviours must be of fixed or bounded length. Window mean-payoff
objectives [8] are quantitative finitary objectives that strengthen the traditional
mean-payoff objective: the satisfaction of a window mean-payoff objective implies
the satisfaction of the standard mean-payoff objective. Given a length ℓ ≥ 1, the
fixed window mean-payoff objective (FWMP(ℓ)) is satisfied if except for a finite
prefix, from every point in the play, there exists a window of length at most ℓ
starting from that point such that the mean payoff of the window is at least a
given threshold. In the bounded window mean-payoff objective (BWMP), it is
sufficient that there exists some length ℓ for which the FWMP(ℓ) objective is
satisfied.

Contributions. We present algorithmic solutions for stochastic games with
window mean-payoff objectives, and show that the positive and almost-sure
problems are solvable in polynomial time for FWMP(ℓ) (Theorem 5), and are in
NP ∩ coNP for BWMP (Theorem 6). The complexity result for the almost-sure
problem entails that the quantitative satisfaction problem is in NP∩coNP (for both
the fixed and bounded version), using standard techniques for solving stochastic
games with prefix-independent objectives [13]. Note that the NP ∩ coNP bound
for the quantitative satisfaction problem matches the special case of reachability
objectives in simple stochastic games [14], and thus would require a major
breakthrough to be improved.

As a consequence, using the FWMP(ℓ) objective instead of the standard mean-
payoff objective provides a stronger guarantee on the system, and even with a
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polynomial complexity for the positive and the almost-sure problems (which is
not known for mean-payoff objectives), and at no additional computational cost
for the quantitative satisfaction problem. The solution relies on a reduction to
non-stochastic two-player games (stochastic games without probabilistic vertices).
The key result is to show that in order to win positively from some vertex of the
game graph, it is necessary to win from some vertex of the non-stochastic game
obtained by transforming all probabilistic vertices into adversarial vertices. While
this condition, that we call the sure-almost-sure (SAS) property (Definition 1),
was used to solve finitary Streett objectives [13], we follow a similar approach and
generalize it to arbitrary prefix-independent objectives (Theorem 4). The bounds
on the memory requirement of optimal strategies of Player 1 can also be derived
from the key result, and are the same as optimal bounds for non-stochastic games.
For the FWMP(ℓ) and BWMP objectives in particular, we show that the memory
requirement of Player 2 is also no more than the optimal memory required by
winning strategies in non-stochastic games.

As solving a stochastic game with a prefix-independent objective φ reduces
to solving non-stochastic games with objective φ and showing that φ satisfies
the SAS property, we show that the FWMP(ℓ) and BWMP objectives satisfy the
SAS property (Lemma 4, Lemma 5) and rely on the solution of non-stochastic
games with these objectives [8] to complete the reduction.

We improve the memory bounds for optimal strategies of both players in
non-stochastic games. It is stated in [8] that |V | · ℓ memory suffices for both
players, where |V | and ℓ are the number of vertices and the window length
respectively. In [6, Theorem 2] and [19, Theorem 6.4], the bound is loosened
to O(wmax · ℓ2) and O(wmax · ℓ2 · |V |) for Player 1 and Player 2 respectively,
where wmax is the maximum absolute payoff in the graph, as the original tighter
bounds [8] were stated without proof. Since the payoffs are given in binary, this
is exponential in the size of the input. In contrast, we tighten the bounds stated
in [8]. We show that for Player 1, memory ℓ suffices (Theorem 1), and improve
the bound on memory of Player 2 strategies as follows. We compute the set W of
vertices from which Player 2 can ensure that the mean payoff remains negative
for ℓ steps, as well as the vertices from which Player 2 can ensure that the game
reaches W . These vertices are identified recursively on successive subgames of the
original input game. If k is the number of recursive calls, then we show that k · ℓ
memory suffices for Player 2 to play optimally (Theorem 2). Note that k ≤ |V |.
We also provide a lower bound on the memory size for Player 2. Given ℓ ≥ 2, for
every k ≥ 1, we construct a graph with a set V of vertices such that Player 2
requires at least k + 1 = 1

2 (|V | − ℓ+ 3) memory to play optimally (Theorem 3).
This is an improvement over the result in [8] which showed that memoryless
strategies do not suffice for Player 2. Our result is quite counterintuitive since
given an open window (a window in which every prefix has a total payoff less
than 0) that needs to be kept open for another j ≤ ℓ steps from a vertex v, one
would conjecture that it is sufficient for a Player 2 winning strategy to choose an
edge from v that leads to the minimum payoff over paths of length j. Thus for
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every j, Player 2 should choose a fixed edge and hence memory of size ℓ should
suffice. However, we show that this is not the case.

To the best of our knowledge, this work leads to the first study of stochastic
games with finitary quantitative objectives.

Related work. Window mean-payoff objectives were first introduced in [8] for
non-stochastic games, where solving FWMP(ℓ) was shown to be in PTIME and
BWMP in NP∩coNP. These have also been studied for Markov decision processes
(MDPs) in [4, 3]. In [4], a threshold probability problem has been studied, while
in [3], the authors studied the problem of maximising the expected value of
the window mean-payoff. Positive, almost-sure, and quantitative satisfaction of
BWMP in MDPs are in NP ∩ coNP [4], the same as in non-stochastic games.

Parity objectives can be viewed as a special case of mean-payoff objectives [22].
A bounded window parity objective has been studied in [9, 20, 12] where a play
satisfies the objective if from some point on, there exists a bound ℓ such that from
every state with an odd priority, a smaller even priority occurs within at most ℓ
steps. Non-stochastic games with bounded window parity objectives can be solved
in PTIME [20, 12]. Stochastic games with bounded window parity objectives have
been studied in [13] where the positive and almost-sure problems are in PTIME
while the quantitative satisfaction problem is in NP ∩ coNP. A fixed version of
the window parity objective has been studied for two-player games and shown
to be PSPACE-complete [26]. Another window parity objective has been studied
in [5] for which both the fixed and the bounded variants have been shown to be
in PTIME for non-stochastic games. The threshold problem for this objective has
also been studied in the context of MDPs, and both fixed and bounded variants
are in PTIME [4]. Finally, synthesis for bounded eventuality properties in LTL is
2-EXPTIME-complete [23].

Due to lack of space, some of the proofs have been omitted. A full version of
the paper can be found in [15].

2 Preliminaries

Stochastic games. We consider two-player turn-based zero-sum stochastic
games (or simply, stochastic games in the sequel). The two players are referred
to as Player 1 and Player 2. A stochastic game is a weighted directed graph
G = ((V,E), (V1, V2, V♢),P, w), where:

– (V,E) is a directed graph with a finite set V of vertices and a set E ⊆ V ×V
of directed edges such that for all vertices v ∈ V , the set E(v) = {v′ ∈ V |
(v, v′) ∈ E} of out-neighbours of v is nonempty, i.e., E(v) ̸= ∅ (no deadlocks);

– (V1, V2, V♢) is a partition of V . The vertices in V1 belong to Player 1, the
vertices in V2 belong to Player 2, and the vertices in V♢ are called probabilistic
vertices (in figures, Player 1 vertices are shown as circles, Player 2 vertices as
boxes, and probabilistic vertices as diamonds, and we use pronouns “she/her”
for Player 1 and “he/him” for Player 2);
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– P : V♢ → D(V ), where D(V ) is the set of probability distributions over
V , is a transition function that maps probabilistic vertices v ∈ V♢ to a
probability distribution P(v) over the set E(v) of out-neighbours of v such
that P(v)(v′) > 0 for all v′ ∈ E(v) (i.e., all out-neighbours have nonzero
probability); for the algorithmic and complexity results, we assume that
probabilities are given as rational numbers.

– w : E → Q is a payoff function assigning a rational payoff to every edge in
the game.

Stochastic games are played in rounds. The game starts by initially placing
a token on some vertex. At the beginning of a round, if the token is on a
vertex v, and v ∈ Vi for i ∈ {1, 2}, then Player i chooses an out-neighbour
v′ ∈ E(v); otherwise v ∈ V♢, and an out-neighbour v′ ∈ E(v) is chosen with
probability P(v)(v′). Player 1 receives from Player 2 the amount w(v, v′) given by
the payoff function, and the token moves to v′ for the next round. This continues
ad infinitum, resulting in an infinite sequence π = v0v1v2 · · · ∈ V ω such that
(vi, vi+1) ∈ E for all i ≥ 0, called a play. For i < j, we denote by π(i, j) the
infix vivi+1 · · · vj of π. Its length is |π(i, j)| = j − i, the number of edges. We
denote by π(0, j) the finite prefix v0v1 · · · vj of π, and by π(i,∞) the infinite
suffix vivi+1 . . . of π. We denote by PlaysG and PrefsG the set of all plays and
the set of all prefixes in G respectively; the symbol G is omitted when it can
easily be derived from the context. We denote by First(ρ) and Last(ρ) the first
vertex and the last vertex of a prefix ρ ∈ PrefsG respectively. We denote by PrefsiG
(i ∈ {1, 2}) the set of all prefixes ρ such that Last(ρ) ∈ Vi.

Objectives. An objective φ is a Borel-measurable subset of PlaysG [2]. A play
π ∈ PlaysG satisfies an objective φ if π ∈ φ. In a (zero-sum) stochastic game G
with objective φ, the objective of Player 1 is φ, and the objective of Player 2
is the complement set φ = PlaysG \ φ. Common examples of objectives are
qualitative objectives such as reachability, safety, Büchi, and coBüchi.

An objective φ is closed under suffixes if for all plays π satisfying φ, all
suffixes of π also satisfy φ, that is, π(j,∞) ∈ φ for all j ≥ 0. An objective φ is
closed under prefixes if for all plays π satisfying φ, for all prefixes ρ such that the
concatenation ρ · π is a play in G, i.e., ρ · π ∈ PlaysG , we have that ρ · π ∈ φ. An
objective φ is prefix-independent if it is closed under both prefixes and suffixes.
An objective φ is closed under suffixes if and only if the complement objective φ
is closed under prefixes. Thus, an objective φ is prefix-independent if and only if
its complement φ is prefix-independent.

Strategies. A (deterministic) strategy for Player i ∈ {1, 2} in a game G is a
function σi : PrefsiG → V that maps prefixes ending in a vertex v ∈ Vi to a
successor of v. The set of all strategies of Player i ∈ {1, 2} in the game G is
denoted by Λi. Strategies can be realised as the output of a (possibly infinite-
state) Mealy machine. A Mealy machine is a deterministic transition system with
transitions labelled by an input/output pair. Formally, a Mealy machine M is
a tuple (Q, q0, Σi, Σo, ∆, δ) where Q is the set of states of M (the memory of
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the induced strategy), q0 ∈ Q is the initial state, Σi is the input alphabet, Σo

is the output alphabet, ∆ : Q×Σi → Q is a transition function that reads the
current state of M and an input letter and returns the next state of M , and
δ : Q × Σi → Σo is an output function that reads the current state of M and
an input letter and returns an output letter. We point the reader to [15] for a
description of how a strategy is defined by a Mealy machine.

The memory size of a strategy σi is the smallest number of states a Mealy
machine defining σi can have. A strategy σi is memoryless if σi(ρ) only depends
on the last element of the prefix ρ, that is for all prefixes ρ, ρ′ ∈ PrefsiG if
Last(ρ) = Last(ρ′), then σi(ρ) = σi(ρ

′). Memoryless strategies can be defined by
Mealy machines with only one state.

A play π = v0v1 · · · is consistent with a strategy σi ∈ Λi (i ∈ {1, 2}) if
vj+1 = σi(π(0, j)) for all j ≥ 0 such that vj ∈ Vi. A play π is an outcome of
σ1 and σ2 if it is consistent with both σ1 and σ2. We denote by Prσ1,σ2

G,v (φ) the
probability that an outcome of σ1 and σ2 in G with initial vertex v satisfies φ.

Non-stochastic two-player games. A stochastic game without probabilistic
vertices (that is, with V♢ = ∅) is called a non-stochastic two-player game (or
simply, non-stochastic game in the sequel). In a non-stochastic game G with
objective φ, a strategy σi is winning from a vertex v ∈ V for Player i (i ∈ {1, 2})
if every play in G with initial vertex v that is consistent with σi satisfies the
objective φ. A vertex v ∈ V is winning for Player i in G if Player i has a winning
strategy in G from v. The set of vertices in V that are winning for Player i in G
is the winning region of Player i in G, denoted ⟨⟨i⟩⟩G(φ). If a vertex v belongs to
the winning region of Player i (i ∈ {1, 2}), then Player i is said to play optimally
from v if she follows a winning strategy.

Subgames. Given a stochastic game G = ((V,E), (V1, V2, V♢),P, w), a subset
V ′ ⊆ V of vertices induces a subgame if (i) every vertex v′ ∈ V ′ has an out-
neighbour in V ′, that is E(v′) ∩ V ′ ̸= ∅, and (ii) every probabilistic vertex
v′ ∈ V♢ ∩ V ′ has all out-neighbours in V ′, that is E(v′) ⊆ V ′. The induced
subgame is ((V ′, E′), (V1∩V ′, V2∩V ′, V♢∩V ′),P′, w′), where E′ = E∩ (V ′×V ′),
and P′ and w′ are restrictions of P and w respectively to (V ′, E′). We denote
this subgame by G ↾ V ′. Let φ be an objective in the stochastic game G. We
define the restriction of φ to a subgame G′ of G to be the set of all plays in G′

satisfying φ, that is, the set PlaysG′ ∩ φ.

Satisfaction probability. A strategy σ1 of Player 1 is winning with probability p
from an initial vertex v in G for objective φ if Prσ1,σ2

G,v (φ) ≥ p for all strategies
σ2 of Player 2. A strategy σ1 of Player 1 is positive winning (resp., almost-sure
winning) from v for Player 1 in G with objective φ if Prσ1,σ2

G,v (φ) > 0 (resp.,

Prσ1,σ2

G,v (φ) = 1) for all strategies σ2 of Player 2. We refer to positive and almost-
sure winning as qualitative satisfaction of φ, while for arbitrary p ∈ [0, 1], we call
it quantitative satisfaction. We denote by ⟨⟨1⟩⟩PosG (φ) (resp., by ⟨⟨1⟩⟩ASG (φ)) the
positive (resp., almost-sure) winning region of Player 1, i.e., the set of all vertices
in G from which Player 1 has a positive (resp., almost-sure) winning strategy
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for G with objective φ. If a vertex v belongs to the positive (resp., almost-sure)
winning region of Player 1, then Player 1 is said to play optimally from v if
she follows a positive (resp., almost-sure) winning strategy from v. We omit
analogous definitions for Player 2.

Positive attractors and traps. The Player i positive attractor (i ∈ {1, 2}) to
T ⊆ V , denoted PosAttri(T ), is the set of vertices in V from which Player i can
ensure that the token reaches a vertex in T with positive probability. It is possible
to compute the positive attractor in O(|E|) time [10]. In non-stochastic games, a
positive attractor to a set T is the same as an attractor to the set T , which we
denote by Attri(T ). Computation of PosAttri(T ) gives a memoryless strategy for
Player i that ensures that the token reaches T with positive probability. We call
such a strategy a positive-attractor strategy of Player i.

A trap for Player 1 is a set T ⊆ V such that for every vertex v ∈ T , if
v ∈ V1 ∪ V♢, then E(v) ⊆ T , and if v ∈ V2, then E(v) ∩ T ̸= ∅. In other words,
from every vertex v ∈ T , Player 2 can ensure (with probability 1) that the token
never leaves T , moreover using a memoryless strategy. A trap for Player 2 can
be defined analogously.

Remark 1. Let G be a non-stochastic game with objective φ for Player 1. If φ is
closed under suffixes, then the winning region of Player 1 is a trap for Player 2.
As a corollary, if φ is prefix-independent, then the winning region of Player 1 is
a trap for Player 2 and the winning region of Player 2 is a trap for Player 1.

3 Window mean payoff

We consider two types of window mean-payoff objectives, introduced in [8]: (i)
fixed window mean-payoff objective (FWMP(ℓ)) in which a window length ℓ ≥ 1
is given, and (ii) bounded window mean-payoff objective (BWMP) in which for
every play, we need a bound on window lengths. We define these objectives below.

For a play π in a stochastic game G, the total payoff of an infix π(i, i+ n) =

vivi+1 · · · vi+n is defined as TP(π(i, i + n)) =
∑i+n−1

k=i w(vk, vk+1). The mean
payoff of an infix π(i, i + n) is defined as MP(π(i, i + n)) = 1

nTP(π(i, i + n)).
Observe that the mean payoff of an infix is nonnegative if and only if the total
payoff of the infix is nonnegative. The mean payoff of a play π is defined as
MP(π) = lim inf

n→∞
MP(π(0, n)). Given a window length ℓ ≥ 1, a play π = v0v1 · · ·

in G satisfies the fixed window mean-payoff objective FWMPG(ℓ) if from every
position after some point, it is possible to start an infix of length at most ℓ with
a nonnegative mean payoff. Formally,

FWMPG(ℓ) = {π ∈ PlaysG | ∃k ≥ 0 ·∀i ≥ k ·∃j ∈ {1, . . . , ℓ} : MP(π(i, i+j)) ≥ 0}.

We omit the subscript G when it is clear from the context. Note that when ℓ = 1,
the FWMP(1) and FWMP(1) (i.e., the complement of FWMP(1)) objectives
reduce to coBüchi and Büchi objectives respectively. The following properties
of FWMP(ℓ) have been observed in [8]. For all window lengths ℓ ≥ 1, if a play
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π satisfies FWMP(ℓ), then MP(π) ≥ 0. In all plays satisfying FWMP(ℓ), there
exists a suffix that can be decomposed into infixes of length at most ℓ, each with
a nonnegative mean payoff. Such a desirable robust property is not guaranteed
by the classical mean-payoff objective, where infixes of unbounded lengths may
have negative mean payoff.

As defined in [8], given a play π = v0v1 · · · and 0 ≤ i < j, we say that the
window π(i, j) is open if the total-payoff of π(i, k) is negative for all i < k ≤ j.
Otherwise, the window is closed. Given j > 0, we say a window is open at j
if there exists an open window π(i, j) for some i < j. The window starting
at position i closes at position j if j is the first position after i such that the
total-payoff of π(i, j) is nonnegative. If the window starting at i closes at j, then
for all i ≤ k < j, the windows π(k, j) are closed. This property is called the
inductive property of windows.

We also have the bounded window mean-payoff objective BWMP. A play π
satisfies the BWMP objective if there exists a window length ℓ ≥ 1 for which π
satisfies FWMP(ℓ), i.e.,

BWMPG = {π ∈ PlaysG | ∃ℓ ≥ 1 : π ∈ FWMP(ℓ)}

Equivalently, a play π does not satisfy BWMP if for every suffix of π, for all ℓ ≥ 1,
the suffix contains an open window of length ℓ. Note that both FWMP(ℓ) for all
ℓ ≥ 1 and BWMP are prefix-independent objectives.

Decision problems. Given a game G, an initial vertex v ∈ V , a rational
threshold p ∈ [0, 1], and an objective φ (that is either FWMP(ℓ) for a given
window length ℓ ≥ 1, or BWMP), consider the problem of deciding:

– Positive satisfaction of φ: whether Player 1 positively wins φ from v, i.e.,
whether v ∈ ⟨⟨1⟩⟩PosG (φ).

– Almost-sure satisfaction of φ: whether Player 1 almost-surely wins φ from v,
i.e., whether v ∈ ⟨⟨1⟩⟩ASG (φ).

– Quantitative satisfaction of φ (also known as quantitative value problem [13]):
whether Player 1 wins φ from v with probability at least p, i.e., whether
supσ1∈Λ1

infσ2∈Λ2
Prσ1,σ2

G,v (φ) ≥ p.

Note that these three problems coincide for non-stochastic games. As considered
in previous works [8, 3, 4], the window length ℓ is usually small (typically ℓ ≤ |V |),
and therefore we assume that ℓ is given in unary (while the payoff on the edges
is given in binary). From determinacy of Blackwell games [24], stochastic games
with window mean-payoff objectives as defined above are determined, i.e., the
largest probability with which Player 1 is winning and the largest probability
with which Player 2 is winning add up to 1.

Algorithms for non-stochastic window mean-payoff games. To compute
the positive and almost-sure winning regions for Player 1 for FWMP(ℓ), we recall
intermediate objectives defined in [8]. The good window objective GWG(ℓ) consists
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Algorithm 1 NonStocFWMP(G, ℓ)
In: G = ((V,E), (V1, V2,∅), w) and ℓ ≥ 1
Out: ⟨⟨1⟩⟩G(FWMP(ℓ))
1: Wd ← NonStocDirFWMP(G, ℓ)
2: if Wd = ∅ then
3: return ∅
4: else
5: A← Attr1(Wd)
6: return A∪NonStocFWMP(G ↾ (V \

A), ℓ)

Algorithm 2 NonStocDirFWMP(G, ℓ)
In: G = ((V,E), (V1, V2,∅), w) and ℓ ≥ 1
Out: ⟨⟨1⟩⟩G(DirFWMP(ℓ))
1: Wgw ← GoodWin(G, ℓ)
2: if Wgw = V or Wgw = ∅ then
3: return Wgw

4: else
5: A← Attr2(V \Wgw)
6: return NonStocDirFWMP(G ↾

(Wgw \A), ℓ).

of all plays π in G such that the window opened at the first position in the play
closes in at most ℓ steps:

GWG(ℓ) = {π ∈ PlaysG | ∃j ∈ {1, . . . , ℓ} : MP(π(0, j)) ≥ 0}

The direct fixed window mean-payoff objective DirFWMPG(ℓ) consists of all
plays π in G such that from every position in π, the window closes in at most ℓ
steps:

DirFWMPG(ℓ) = {π ∈ PlaysG | ∀i ≥ 0 : π(i,∞) ∈ GWG(ℓ)}

The FWMPG(ℓ) objective can be expressed in terms of DirFWMPG(ℓ):

FWMPG(ℓ) = {π ∈ PlaysG | ∃k ≥ 0 : π(k,∞) ∈ DirFWMPG(ℓ)}

We refer to Algorithms 1, 2, and 3 from [8] shown here with the same numbering.
They compute the winning regions for Player 1 for the FWMP(ℓ), DirFWMP(ℓ),
and GW(ℓ) objectives in non-stochastic games respectively. The original algo-
rithms in [8] contain subtle errors for which the fixes are known [6, 19]. For
completeness, we refer the reader to [15] for counterexamples for the algorithms
in [8] along with brief explanations of correctness for the modified versions.

Algorithm 3 uses dynamic programming to compute, for all v ∈ V and all
lengths i ∈ {1, . . . , ℓ}, the largest payoff Ci(v) that Player 1 can ensure from v
within at most i steps. The winning region for GW(ℓ) for Player 1 consists of all
vertices v such that Cℓ(v) ≥ 0.

4 Memory requirement for non-stochastic window
mean-payoff games

The memory requirement for winning strategies of Player 1 in non-stochastic
games with objective FWMP(ℓ) is claimed to be O(|V | · ℓ) without proof [8,
Lemma 7], and further “correctly stated” as O(wmax · ℓ2), where wmax is the
maximum absolute payoff in the graph [6, Theorem 2]. We improve upon these
bounds and show that memory of size ℓ suffices for a winning strategy of Player 1.
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Algorithm 3 GoodWin(G, ℓ)
In: G = ((V,E), (V1, V2,∅), w) the non-stochastic game, and ℓ ≥ 1, the window length
Out: The set of vertices from which Player 1 wins GW(ℓ) in G
1: for all v ∈ V do
2: C0(v)← 0
3: for all i ∈ {1, . . . , ℓ} do
4: Ci(v)← −∞
5: for all i ∈ {1, . . . , ℓ} do
6: for all v ∈ V1 do
7: Ci(v)← max(v,v′)∈E{max{w(v, v′), w(v, v′) + Ci−1(v

′)}}
8: for all v ∈ V2 do
9: Ci(v)← min(v,v′)∈E{max{w(v, v′), w(v, v′) + Ci−1(v

′)}}
10: Wgw ← {v ∈ V | Cℓ(v) ≥ 0}
11: return Wgw

We also present a family of games with arbitrarily many vertices where Player 2 is
winning and all his winning strategies require at least 1

2 (|V |−ℓ)+3 memory, while
it was only known that memoryless strategies are not sufficient for Player 2 [8].

4.1 Memory requirement for Player 1 for FWMP objective

Upper bound on memory requirement for Player 1. We show that memory
of size ℓ suffices for winning strategies of Player 1 for the DirFWMP(ℓ) objective
(Lemma 1), which in turn shows that the same memory also works for the
FWMP(ℓ) objective (Theorem 1).

Lemma 1. If Player 1 wins in a non-stochastic game with objective DirFWMP(ℓ),
then Player 1 has a winning strategy with memory of size ℓ.

Proof (Sketch). Given a non-stochastic game G, let Wd be the winning region
of Player 1 in G for objective DirFWMP(ℓ). By definition, every vertex in Wd is
also winning for Player 1 for the GW(ℓ) objective.

A winning strategy σd of Player 1 in Wd satisfies the objective GW(ℓ) by
closing a window within at most ℓ steps and then restarts with the same strategy,
playing for GW(ℓ) and so on. Using memory space Q = {1, . . . , ℓ}, we may store
the number of steps remaining before the window must close. However, the
window may close any time within ℓ steps, and the difficulty lies in detecting this
independently of the history. For memory state q = i and the next visited vertex
being v, intuitively, the memory should be updated to q = i− 1 if the window
did not close yet upon reaching v, and to q = ℓ if it did, but that depends on
which path was followed to reach v (not just on v), which is not stored in the
memory space.

The crux is to show that it is not always necessary for Player 1 to be able
to infer when the window closes. Given the current memory state q = i, and
the next visited vertex v, the memory update is as follows: if Ci(v) ≥ 0 (that
is, Player 1 can ensure the window from v will close within i steps), then we

10



update to q = i − 1 (decrement) although the window may or may not have
closed upon reaching v; otherwise Ci(v) < 0 and we update to q = ℓ− 1 (reset to
ℓ and decrement) and we show that in this case the window did close. Intuitively,
updating to q = i− 1 is safe even if the window did close, because the strategy
of Player 1 will anyway ensure the (upcoming) window is closed within i− 1 < ℓ
steps. A formal description of a Mealy machine with ℓ states defining a winning
strategy of Player 1 for the DirFWMP(ℓ) objective is given in [15]. ⊓⊔

Theorem 1. If Player 1 wins in a non-stochastic game G with objective FWMP(ℓ),
then Player 1 has a winning strategy with memory of size ℓ.

Proof (Sketch). Since FWMP(ℓ) is a prefix-independent objective, we have that
the winning region ⟨⟨1⟩⟩G(FWMP(ℓ)) of Player 1 is a trap for Player 2 (Re-
mark 1), and induces a subgame, say G0. Let there be k + 1 calls to the
subroutine NonStocDirFWMP from Algorithm 1 where k < |V |. We denote
by (Wi)i∈{1,...,k} the nonempty Wd returned by the ith call to the subroutine,
and let Ai = Attr1(Wi). The Ai’s are pairwise disjoint, and their union is⋃k

i=1 Ai = ⟨⟨1⟩⟩G(FWMP(ℓ)). For i ∈ {1, . . . , k}, inductively define Gi to be the
subgame induced by the complement of Ai in Gi−1. Since DirFWMP(ℓ) is closed
under suffixes, for all i ∈ {1, . . . , k}, we have that Wi is a trap for Player 2 in Gi

(Remark 1).
We construct a strategy σNS

1 that follows the (memoryless) attractor strategy
in

⋃
i(Ai \Wi), and follows the winning strategy σd for DirFWMP(ℓ) objective

(defined in the proof of Lemma 1) in
⋃

i Wi. The reader is pointed to [15] for
a formal description of a Mealy machine defining the strategy σNS

1 . For the
correctness of the construction, the crux is to show that one of the sets Wi

(i ∈ {1, . . . , k}) is never left from some point on. Intuitively, given the token is
in Ai for some i ∈ {1, . . . , k} (thus in Gi), following σNS

1 , the token will either
remain in Ai, or leave the subgame Gi and enter Aj for a smaller index j < i.
The result follows since this can be done at most k times. ⊓⊔

Lower bound on memory requirement for Player 1. In [8], the authors
show a game with ℓ = 4 where Player 1 requires memory at least 3. This can be
generalized to arbitrary ℓ to show that memory of size ℓ− 1 may be necessary
(See [15] for details).

4.2 Memory requirement for Player 2 for FWMP objective

Upper bound on memory requirement for Player 2. Now we show that
for the FWMP(ℓ) objective, Player 2 has a winning strategy that uses memory
of size at most |V | · ℓ. This has been loosely stated in [8] without a formal proof.

Theorem 2. Let G be a non-stochastic game with objective FWMP(ℓ) for Player 2.
Then, Player 2 has a winning strategy with memory size at most |V | · ℓ.

Proof (Sketch). Since FWMP(ℓ) is a prefix-independent objective, so is FWMP(ℓ).
We have that ⟨⟨2⟩⟩G(FWMP(ℓ)) is a trap for Player 1 (Remark 1) and induces a

11



subgame, say H0, of G. Let there be k + 1 calls to the subroutine GoodWin from
Algorithm 2 (where k < |V |), and let Hi be the subgame corresponding to the ith

call of the subroutine. We denote by (Wi)i∈{1,...,k} the complement of Wgw in Hi,

where Wgw is returned by the ith call to the subroutine, and let Ai = Attr2(Wi).

The Ai’s are pairwise disjoint, and their union is
⋃k

i=1 Ai = ⟨⟨2⟩⟩G(FWMP(ℓ)).

We describe a winning strategy for the FWMP(ℓ) objective with memory
k · ℓ, which is at most |V | · ℓ. The strategy is always in either attractor mode
or window-open mode. When the game begins, it is in attractor mode. If the
strategy is in attractor mode and the token is on a vertex v ∈ Ai \Wi for some
i ∈ {1, . . . , k}, then the attractor strategy is to eventually reach Wi. If the token
reaches Wi, then the strategy switches to window-open mode. Since all vertices
in Wi are winning for Player 2 for the GW(ℓ) objective, he can keep the window
open for ℓ more steps, provided that Player 1 does not move the token out of
the subgame Hi. If, at some point, Player 1 moves the token out of the subgame
Hi to Aj for a smaller index j < i, then the strategy switches back to attractor
mode, this time trying to reach Wj in the bigger subgame Hj . Otherwise, if
Player 2 keeps the window open for ℓ steps, then the strategy switches back to
attractor mode until the token reaches a vertex in

⋃k
i=1 Wi. This strategy can

be defined by a Mealy machine MNS
2 with states {1, . . . , k} × {1, . . . , ℓ}, where

the first component tracks the smallest subgame Hi in which the window started
to remain open, and the second component indicates how many more steps the
window needs to be kept open for. A formal description of MNS

2 can be found
in [15]. ⊓⊔

Lower bound on memory requirement for Player 2. In [8], it was shown
that memoryless strategies do not suffice for Player 2. We improve upon this
lower bound. Given a window length ℓ ≥ 2, for every k ≥ 1, we construct a game
Gk,ℓ with 2k + ℓ− 1 vertices such that every winning strategy of Player 2 in Gk,ℓ

requires at least k + 1 memory.

Theorem 3. There exists a family of non-stochastic games {Gk,ℓ}k≥1,ℓ≥2 with
objective FWMP(ℓ) for Player 1 and edge weights in {−1, 0,+1} such that every
winning strategy of Player 2 requires at least 1

2 (|V | − ℓ+ 1) + 1 memory, where
|V | = 2k + ℓ− 1.

Proof (Sketch). Let A = {a1, . . . , ak}, B = {b1, . . . , bk}, and C = {c1, . . . , cℓ−1}
be pairwise disjoint sets. The vertices of Gk,ℓ are A∪B ∪C with V1 = A∪C and
V2 = B. Figure 1 shows the game G4,3. A more formal description of Gk,ℓ can be
found in [15].

Observe that the only open windows of length ℓ in the game Gk,ℓ are sequences
of the form apbrcℓ−1 · · · c1 for all p ≤ r. Also note that Player 2 has a winning
strategy that wins starting from every vertex in the game, as Player 2 can force
the token to eventually take a red edge followed by two black edges.

When the token reaches a vertex br ∈ B, Player 2 can either move the token
to ar ∈ A or to cℓ−1 ∈ C. Depending on which vertex the token was on before
reaching br, one of the two choices is good for Player 2. If the token reaches br
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Figure 1: Game G4,3 with parameter k = 4 and window length ℓ = 3. Red edges (from
ap to br for p ≤ r) have payoff −1, black edges (from br to c2) have payoff 0, and blue
edges (the remaining edges) have payoff +1.

Table 1: Good choices χ(u, br) for all u ∈ A ∪ {c1} and br ∈ B in the game G4,3
a1b1 → c2 a2b1 → a1

a1b2 → c2 a2b2 → c2 a3b2 → a2

a1b3 → c2 a2b3 → c2 a3b3 → c2 a4b3 → a3

a1b4 → c2 a2b4 → c2 a3b4 → c2 a4b4 → c2 c1b4 → a4

from ap for p ≤ r, then it is good for Player 2 to move the token to cℓ−1 ∈ C so
that the window starting at ap remains open for ℓ steps. Otherwise, if the token
reaches br from ar+1, then it is good for Player 2 to move the token to ar so that
an edge with negative payoff may eventually be taken. For all u ∈ A ∪ {c1}, for
all br ∈ B such that (u, br) is an edge in Gk,ℓ, we denote by χ(u, br) the vertex
ar or cℓ−1 that is good for Player 2. We list the good choices in the game G4,3 in
Table 1. The columns are indexed by u ∈ A ∪ {c1} and the rows are indexed by
br ∈ B.

We show that for each column in the table, there exists a distinct memory
state in every Mealy machine defining a winning strategy of Player 2. This gives
a lower bound of k + 1 on the number of states of such a Mealy machine. Since
Gk,ℓ has 2k + ℓ− 1 vertices, the memory requirement of a winning strategy of
Player 2 is at least 1

2 (|V | − ℓ+ 1) + 1. ⊓⊔

Given a winning strategy σNS
2 of Player 2 for the FWMP(ℓ) objective, the

following lemma gives an upper bound on the number of steps between consecutive
open windows of length ℓ in any play consistent with σNS

2 . This lemma is used in
Section 6, where we construct an almost-sure winning strategy of Player 2 for
the FWMP(ℓ) objective.

Lemma 2. Let G be a non-stochastic game such that ⟨⟨2⟩⟩G(FWMP(ℓ)) = V . Let
σNS
2 be a finite-memory strategy of Player 2 of memory size M that is winning

for FWMP(ℓ) from all vertices in G. Then, for every play π of G consistent with
σNS
2 , every infix of π of length M · |V | · ℓ contains an open window of length ℓ.

The proof is based on the pigeonhole principle and appears in [15].
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Figure 2: Büchi objective does not satisfy the SAS property in this game.

5 Reducing stochastic games to non-stochastic games

For a stochastic game G, let GNS = ((V,E), (V1, V2∪V♢,∅), w) be the (adversarial)
non-stochastic game corresponding to G, obtained by changing all probabilistic
vertices in G to Player 2 vertices. In [13], a property of finitary Streett objective
was used to solve stochastic games by reducing them to non-stochastic games
with the same objective. In this section, we generalize this property for arbitrary
prefix-independent objectives.

Definition 1 (Sure-almost-sure (SAS) property). A prefix-independent ob-
jective φ in a game G satisfies the SAS property if ⟨⟨2⟩⟩GNS

(φ) = V implies

⟨⟨2⟩⟩ASG (φ) = V , that is, if Player 2 wins the objective φ from every vertex in GNS,
then Player 2 almost-surely wins the same objective φ from every vertex in G.

Every prefix-independent objective satisfies the converse of the SAS property
since if Player 2 even wins positively from all vertices in G, then since he controls
all probabilistic vertices in GNS, he wins from all vertices in GNS by choosing
optimal successors of probabilistic vertices. We show in Section 6 that for all
stochastic games G, the objectives FWMP(ℓ) and BWMP satisfy the SAS property,
while in Example 1, we show that there exists a stochastic game in which Büchi
objective does not satisfy the SAS property.

Example 1. Consider the game G in Figure 2. The objective φ in this game is
a Büchi objective: a play π satisfies the Büchi objective if π visits vertex v1
infinitely often. Although from every vertex, with positive probability (in fact,
with probability 1), a play visits v1 infinitely often, from none of the vertices,
Player 1 can ensure the Büchi objective in the non-stochastic game GNS.

Theorem 4 gives complexity bounds for solving stochastic games with ob-
jectives satisfying the SAS property in terms of the complexity of solving non-
stochastic games with the same objective.

Theorem 4. Given G and φ, suppose in every subgame G′ of G, the objective φ
restricted to G′ satisfies the SAS property. Let NonStocWinφ(GNS) be an algorithm
computing ⟨⟨1⟩⟩GNS

(φ) in GNS in time C. Then, the positive and almost-sure
satisfaction of φ can be decided in time O(|V | · (C+ |E|)) and O(|V |2 · (C+ |E|))
respectively.

Moreover, for positive and almost-sure satisfaction of φ, the memory require-
ment for Player 1 to play optimally in stochastic games is no more than that for
non-stochastic games.
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Algorithm 4 PosWinφ(G)
In: G = ((V,E), (V1, V2, V♢),P, w) and φ
Out: ⟨⟨1⟩⟩PosG (φ)
1: W1 ← NonStocWinφ(GNS)
2: if W1 = ∅ then
3: return ∅
4: else
5: A1 ← PosAttr1(W1)
6: return A1∪PosWinφ(G ↾ (V \A1))

Algorithm 5 ASWinφ(G)
In: G = ((V,E), (V1, V2, V♢),P, w) and φ
Out: ⟨⟨1⟩⟩ASG (φ)
1: W2 ← V \ PosWinφ(G)
2: if W2 = ∅ then
3: return V
4: else
5: A2 ← PosAttr2(W2)
6: return ASWinφ(G ↾ (V \A2))

Theorem 4 does not give bounds on the memory requirement for winning strategies
of Player 2 for objective φ in the stochastic game, but we provide such bounds
specifically for FWMP(ℓ) and BWMP in Section 6. We give a sketch of the proof
of Theorem 4 below. The complete proof appears in [15].

The algorithms to compute the positive and almost-sure winning regions
in G, and their proofs of correctness are the same as in the case of finitary
Streett objectives described in [13]. The PosWinφ algorithm (Algorithm 4) uses
NonStocWinφ as a subroutine to compute ⟨⟨1⟩⟩PosG (φ). The fact that φ satisfies
the SAS property is used to show the correctness of this algorithm. The depth
of recursive calls of this algorithm is bounded above by |V |, which gives the
complexity bound. The ASWinφ algorithm (Algorithm 5) in turn uses PosWinφ
as a subroutine to compute the ⟨⟨1⟩⟩ASG (φ). The depth of recursive calls of this
algorithm is also bounded above by |V |, which gives the complexity bound. The
following lemma, which is a special case of Theorem 1 in [7], is used to show the
correctness of this algorithm.

Lemma 3. [7, Theorem 1] For a stochastic game G with prefix-independent
objective φ, if ⟨⟨2⟩⟩PosG (φ) = V , then ⟨⟨2⟩⟩ASG (φ) = V .

For both positive and almost-sure winning, Player 1 does not require any
additional memory in the stochastic game compared to the non-stochastic game.
We describe a strategy σPos

1 of Player 1 that is positive winning from all vertices
in ⟨⟨1⟩⟩PosG (φ). In each recursive call to PosWinφ algorithm, from every vertex in
W1, the strategy σPos

1 mimics a winning strategy of Player 1 in GNS, while for
vertices in A1 \W1, it follows a memoryless attractor strategy to reach W1. The
same strategy is almost-sure winning for Player 1 from all vertices in ⟨⟨1⟩⟩ASG (φ).

Finally, we look at the quantitative decision problem. The quantitative sat-
isfaction for φ can be decided in NPB ([13, Theorem 6]), where B is an oracle
deciding positive and almost-sure satisfaction problems for φ. It is not difficult
to see that the quantitative satisfaction for φ can be decided in NPB ∩ coNPB.
Moreover, from the proof of [13, Theorem 6], it follows that the memory require-
ment of winning strategies for both players for the quantitative decision problem
is no greater than that for the qualitative decision problem.
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Corollary 1. Given G and φ as described in Theorem 4, let B be an oracle
deciding the qualitative satisfaction of φ. Then, the quantitative satisfaction of φ
is in NPB ∩ coNPB. Moreover, the memory requirement of optimal strategies for
both players is no greater than that for the positive and almost-sure satisfaction
of φ.

6 Reducing stochastic window mean-payoff games: A
special case

In this section, we show that for all stochastic games G and for all ℓ ≥ 1, the
objectives FWMPG(ℓ) and BWMPG , which are prefix-independent, satisfy the
SAS property of Definition 1. Thus, by Theorem 4, we obtain bounds on the
complexity and memory requirements of Player 1 for the positive and almost-sure
satisfaction of these objectives. We also show that for both these objectives, the
memory requirements of Player 2 to play optimally for positive and almost-sure
winning in stochastic games is no more than that of the non-stochastic games. The
algorithms to compute the positive and almost-sure winning regions of Player 1
for both FWMP(ℓ) and BWMP objectives are obtained by instantiating φ equal
to FWMP(ℓ) and BWMP in Algorithms 4 and 5. Thus, we obtain the algorithms
PosWinFWMP(ℓ), ASWinFWMP(ℓ), PosWinBWMP, and ASWinBWMP.

6.1 Fixed window mean-payoff objective

We first discuss the SAS property for the FWMP(ℓ) objective.

Lemma 4. In stochastic games, for all ℓ ≥ 1, the FWMP(ℓ) objective satisfies
the SAS property.

Proof (Sketch). We show that for all stochastic games G, if ⟨⟨2⟩⟩GNS
(FWMP(ℓ)) =

V , then ⟨⟨2⟩⟩ASG (FWMP(ℓ)) = V . If ⟨⟨2⟩⟩GNS
(FWMP(ℓ)) = V , then from Theorem 2,

there exists a finite-memory strategy σNS
2 (say, with memory M) of Player 2

that is winning for objective FWMP(ℓ) from every vertex in GNS. Given such a
strategy, we construct below a strategy σAS

2 of Player 2 in the stochastic game G
that is almost-sure winning for FWMP(ℓ) from every vertex in G.

In GNS, Player 2 controls vertices in V2∪V♢, while in G, Player 2 only controls
vertices in V2 and the probability function P determines the successors of vertices
in V♢. While the strategy σNS

2 is winning for FWMP(ℓ) from all vertices in GNS,
it may not be almost-sure winning for FWMP(ℓ) in G. This is because each time
the token is on a probabilistic vertex, a deviation occurs with positive probability,
i.e., the successor chosen by the distribution is not consistent with σNS

2 , resulting
in a potentially worse outcome for Player 2. For example, in Figure 3, we see
a stochastic game G and a Mealy machine MNS

2 defining a strategy σNS
2 that

is winning for Player 2 from all vertices in the non-stochastic game GNS. In all
outcomes in GNS that are consistent with σNS

2 , the token never moves from v6
to v7. However, in G, a deviation may lead the token to move along (v6, v7). This
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Figure 3: (top) Stochastic game G with objective FWMP(3) for Player 2. All unlabelled
edges have payoff 0. (middle) Mealy machine MNS

2 defining a strategy σNS
2 that is

winning from all vertices in GNS for FWMP(3). (bottom) Part of the Mealy machine
MAS

2 defining a reset strategy that is almost-sure winning from all vertices in G.

results in a losing outcome for Player 2 as the token gets trapped in v8, and
subsequently no window remains open for ℓ steps. Such harmful deviations can
be detected, and starting with the strategy σNS

2 , we construct a strategy σAS
2 that

mimics σNS
2 as long as harmful deviations do not occur, and resets otherwise, i.e.,

the strategy forgets the prefix of the play before the deviation. For instance, when
the token moves from v6 to v7 in G, the strategy resets and the play continues as
if the game began from v7. We call σAS

2 a reset strategy. Figure 3 shows a part
of a Mealy machine MAS

2 defining a reset strategy for the game G. The figure
contains all reset transitions out of q4, but reset transitions out of q1, q2 and q3
have been omitted for space. More details on how to obtain a Mealy machine
that defines σAS

2 from a Mealy machine that defines σNS
2 without adding any new

states can be found in [15].
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Now, we argue that the reset strategy is almost-sure winning for Player 2 from
all vertices in G. If a play in G continues for M · |V | · ℓ steps without deviating,
then by Lemma 2, it contains an open window of length ℓ. From any point in
the play, the probability that σAS

2 successfully copies σNS
2 for i steps (that is, no

deviations occur) is at least pi, where p is the minimum probability over all the
edges in G. It follows that from every point in the play, the probability that an
open window of length ℓ occurs in the next M · |V | · ℓ steps is at least pM·|V |·ℓ.
Therefore, from every position in the play, the probability that an open window of
length ℓ occurs eventually is at least

∑
i≥0(1− pM·|V |·ℓ)i · pM·|V |·ℓ = 1. Thus, with

probability 1, infinitely many open windows of length ℓ occur in the outcome, and
the outcome satisfies FWMP(ℓ). Thus, all vertices in G are almost-sure winning
for Player 2 for FWMP(ℓ). For all stochastic games G, the objective FWMP(ℓ)
satisfies the SAS property. ⊓⊔

We now construct a strategy σPos
2 of Player 2 that is positive winning from

all vertices in ⟨⟨2⟩⟩PosG (FWMP(ℓ)). Let W i
2 and Ai

2 denote the sets W2 and A2

computed in the ith recursive call of the ASWinFWMP(ℓ) algorithm respectively. If

the token is in
⋃

i W
i
2, then σPos

2 mimics σAS
2 ; if the token is in

⋃
i A

i
2 \W i

2, then
σPos
2 is a positive-attractor strategy to W i

2 which is memoryless. Then, σPos
2 is

a positive winning strategy for Player 2 from all vertices in ⟨⟨2⟩⟩PosG (FWMP(ℓ)).
Using Theorem 4, Corollary 1, and Lemma 4, we have the following.

Theorem 5. Given a stochastic game G, a window length ℓ ≥ 1, and a threshold
p ∈ [0, 1], for FWMPG(ℓ), the positive and almost-sure satisfaction for Player 1
are in PTIME, and the quantitative satisfaction is in NP ∩ coNP. Moreover for
optimal strategies, memory of size ℓ is sufficient for Player 1 and memory of size
|V | · ℓ is sufficient for Player 2.

6.2 Bounded window mean-payoff objective

We show that the SAS property holds for the BWMP objective for all stochastic
games G.

Lemma 5. In stochastic games, the BWMP objective satisfies the SAS property.

Proof (Sketch). We show that for all stochastic games G, if ⟨⟨2⟩⟩GNS
(BWMP) = V ,

then ⟨⟨2⟩⟩ASG (BWMP) = V . Since every play that satisfies BWMP also satisfies

FWMP(ℓ) for all ℓ ≥ 1, if ⟨⟨2⟩⟩GNS
(BWMP) = V , then ⟨⟨2⟩⟩GNS

(FWMP(ℓ)) = V . It
follows that for each ℓ ≥ 1, Player 2 has a finite-memory strategy (say, with
memory Mℓ), that is winning for the FWMP(ℓ) objective from all vertices in GNS.
For every such strategy, we construct a reset strategy σℓ

2 of memory size at most
Mℓ as described in the proof of Lemma 4 that is almost-sure winning for the
FWMP(ℓ) objective from all vertices. We use these strategies to construct an
infinite-memory strategy σAS

2 of Player 2 that is almost-sure winning for BWMP
from all vertices in the stochastic game G.

Let p be the minimum probability over all edges in the game, and for all ℓ ≥ 1,
let q(ℓ) denote pMℓ·|V |·ℓ. We partition a play of the game into phases 1, 2, . . . such
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that for all ℓ ≥ 1, the length of phase ℓ is equal to Mℓ · |V | · ℓ · ⌈1/q(ℓ)⌉. We define
the strategy σAS

2 as follows: if the game is in phase ℓ, then σAS
2 is σℓ

2, the reset
strategy that is almost-sure winning for FWMP(ℓ) in G.

We show that σAS
2 is almost-sure winning for Player 2 for BWMP in G. Let Eℓ

denote the event that phase ℓ contains an open window of length ℓ. Given a play π,
if Eℓ occurs in π for infinitely many ℓ ≥ 1, then for every suffix of π and for all
ℓ ≥ 1, the suffix contains an open window of length ℓ, and π satisfies BWMP. For
all ℓ ≥ 1, we compute the probability that Eℓ occurs in the outcome. For all ℓ ≥ 1,
we can divide phase ℓ into ⌈1/q(ℓ)⌉ blocks of length Mℓ · |V | ·ℓ each. If at least one
of these blocks contains an open window of length ℓ, then the event Eℓ occurs. It
follows from the proof of Lemma 4 that if Player 2 follows σℓ

2, then the probability
that there exists an open window of length ℓ in the next Mℓ · |V | · ℓ steps is at
least q(ℓ). Hence, the probability that none of the blocks in the phase contains
an open window of length ℓ is at most (1− q(ℓ))⌈1/q(ℓ)⌉. Thus, the probability
that Eℓ occurs in phase ℓ is at least 1− (1− q(ℓ))⌈1/q(ℓ)⌉ > 1− 1

e ≈ 0.63 > 0. It
follows that with probability 1, for infinitely many values of ℓ ≥ 1, the event Eℓ

occurs in π. ⊓⊔

Note that solving a non-stochastic game with the BWMP objective is in
NP ∩ coNP [8]. Thus by Corollary 1, quantitative satisfaction for BWMP is in
NPNP∩coNP ∩ coNPNP∩coNP, which is the same as NP ∩ coNP [25].

Moreover, from [8], Player 1 has a memoryless strategy and Player 2 needs
infinite memory to play optimally in non-stochastic games with the BWMP
objective. From the proof of Lemma 5, by using the strategy σAS

2 , Player 2
almost-surely wins BWMP from all vertices in ⟨⟨2⟩⟩ASG (BWMP). We can construct

a positive winning strategy σPos
2 for Player 2 from all vertices in ⟨⟨2⟩⟩PosG (BWMP)

in a similar manner as done for the positive winning strategy for FWMP(ℓ) in
Section 6.1. We summarize the results in the following theorem:

Theorem 6. Given a stochastic game G and a threshold p ∈ [0, 1], for BWMPG,
the positive, almost-sure, and quantitative satisfaction for Player 1 are in NP ∩
coNP. Moreover, a memoryless strategy suffices for Player 1, while Player 2
requires an infinite memory strategy to play optimally.
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