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Abstract—Markov chains are the de facto finite-state model
for stochastic dynamical systems, and Markov decision pro-
cesses (MDPs) extend Markov chains by incorporating non-
deterministic behaviors. Given an MDP and rewards on states,
a classical optimization criterion is the maximal expected total
reward where the MDP stops after T steps, which can be com-
puted by a simple dynamic programming algorithm. We consider
a natural generalization of the problem where the stopping times
can be chosen according to a probability distribution, such that
the expected stopping time is T , to optimize the expected total
reward. Quite surprisingly we establish inter-reducibility of the
expected stopping-time problem for Markov chains with the
Positivity problem (which is related to the well-known Skolem
problem), for which establishing either decidability or undecid-
ability would be a major breakthrough. Given the hardness of
the exact problem, we consider the approximate version of the
problem: we show that it can be solved in exponential time for
Markov chains and in exponential space for MDPs.

I. INTRODUCTION

Stochastic models and optimization. The de facto model

for stochastic dynamical systems is finite-state Markov

chains [14], [15], [18], with several application domains [3].

In modeling optimization problems, rewards are associated

with states of the Markov chain, and the optimization criterion

is formalized as the expected total reward provided that the

Markov chain is stopped after T steps [24], [14]. The extension

of Markov chains to allow non-deterministic behavior gives

rise to Markov decision processes (MDPs), and the opti-

mization criterion is to maximize, over all non-deterministic

choices, the expected total reward for T steps. This notion of

optimization for fixed time is called finite-horizon planning,

which has many applications in logic and verification [12], [5]

and control problems in artificial intelligence and robotics [21,

Chapter 10, Chapter 25], [22, Chapter 6].

Optimization with expected stopping time. In the most basic

case the stopping time for collecting rewards in the stochastic

model is a fixed constant T . A natural generalization is to

consider that the stochastic model can be stopped at a random

time such that the expectation of the stopping time is T . We

consider the problem of optimizing (maximizing/minimizing)

the expected total reward, when the stopping-time probability

distribution can be chosen arbitrarily such that the expected

stopping time is T . In other words, we consider stochastic

models of Markov chains/MDPs with total reward, and instead

of fixed stopping time T , we consider expected stopping

time T .

Example and motivation. Consider the classical example where

a robot explores a region for natural resources (e.g., the well-

studied RockSample problem in AI literature [29]), and the

exploration of the robot is modeled as a Markov chain. The

success of the exploration is characterized by the expected total

reward, and the stopping time T denotes the expected duration

of the exploration. The expected stopping-time problem asks

to choose the probability distribution of the exploration dura-

tion to optimize the collected reward, satisfying the average

exploration time. A classical stopping-time distribution is the

exponential distribution where the stochastic model is stopped

at every instant with probability λ, called discount factor,

which entails that the expected stopping time is T = 1/λ [14].

The discount-factor model makes an assumption on the shape

of the stopping-time distribution, whereas in realistic scenarios

the discount factor is not precisely known, or time-varying

discount factors are considered [11]. When the discount fac-

tors are not known, then robust solutions require the worst-

case choice of the factors. Thus in many examples realistic

modeling requires complex stopping-time distributions, and if

the precise parameters are unknown, then a robust analysis

requires to consider the worst-case value of the discount factor.

Hence, when the stopping-time distribution is important yet

unknown, a conservative estimate (i.e., lower bound) of the

optimal value is obtained using the worst-case choices. Thus

we consider problems that represent robust extensions of the

classical finite-horizon planning.

Previous and our results. For fixed stopping time T , the

expected total reward for Markov chains and MDPs can be

computed via a simple dynamic programming (or backward

induction) approach [26, Chapter 4], [14], [17], [4]. Perhaps

surprisingly the optimization problem for Markov chains and

MDPs with expected stopping time has not been considered in

the literature (to the best of our knowledge). Our main results

are as follows:

• In contrast to the simple algorithm for fixed stopping time

T , we show that quite surprisingly the expected stopping-

time problem is Positivity-hard. The Positivity problem is

known to be at least as hard as the well-known Skolem

problem, whose decidability has been open for more

than eight decades [23]. Moreover, we establish inter-

reducibility between the expected stopping-time problem

and the Positivity problem, and thus show that for a

simple variant (adding expectation to stopping time) of

the classical Markov chain problem, establishing either

decidability or undecidability would be a major break-978-1-6654-4895-6/21/$31.00 c©2021 IEEE



through.

• We then consider approximating the optimal expected

total reward under the constraint that the expected stop-

ping time is T , and show that for every additive absolute

error ε > 0, the approximation can be achieved in time

logarithmic in 1/ε and exponential in the size of the

Markov chain.

• For MDPs we show that infinite-memory strategies are

required. While the expected stopping-time problem is

Positivity-hard for MDPs (since Markov chains are a

special case), we show that the approximation problem

can be solved in exponential space in the size of the MDP

and logarithm of 1/ε.

Comparison with related work. The optimization problem with

fixed expected stopping time has been considered for the

simple model of graphs [7], which is a model without stochas-

tic aspects. The graph problem can be solved in polynomial

time [7], while in sharp contrast, we show that the problem is

Positivity-hard for Markov chains.

Remark 1. The expected stopping-time problem for Markov

chains has a similar flavor as probabilistic automata (or

blind MDPs) [27]. In probabilistic automata a word (or

letter sequence) must be provided without the information

about how the probabilistic automaton executes. Similarly,

for the expected stopping-time problem for Markov chains

the probability distribution for stopping times must be chosen

without knowing the execution of the Markov chain (in contrast

to stopping criteria based on current state or accumulated

reward, which rely on knowing the execution of the Markov

chain). For probabilistic automata, even for basic reachability,

all problems related to approximation are undecidable [20].

In contrast, we show that while the exact problem for expected

stopping time in Markov chains is Positivity-hard, the approx-

imation problem can be solved in exponential time.

Detailed proofs are available in en extended version of this

paper [8].

II. PRELIMINARIES

A stopping-time distribution (or simply, a distribution) is a

function δ : N → [0, 1] such that
∑

t∈N
δ(t) = 1. The support

of δ is Supp(δ) = {t ∈ N | δ(t) 6= 0}. We denote by ∆
the set of all stopping-time distributions, and by ∆⇈ the set

of all distributions δ with |Supp(δ)| ≤ 2, called the bi-Dirac

distributions.

The expected utility of a sequence u = u0, u1, . . . of real

numbers under a distribution δ is Eδ(u) =
∑

t∈N
ut · δ(t). In

particular, the expected utility of the sequence 0, 1, 2, 3, . . . of

all natural numbers is called the expected time (of distribution

δ), denoted by Eδ.

We recall the definition of the Positivity problem and of the

related Skolem problem. In the sequel, we denote by M t
ij the

(i, j) entry of the t-th power of matrix M (we should write it

as (M t)i,j , but use this simpler notation when no ambiguity

can arise).

Positivity problem [23], [1]. Given a square integer matrix

M , decide whether there exists an integer t ≥ 1 such that

M t
1,2 > 0.

Skolem problem [23], [1]. Given a square integer matrix

M , decide whether there exists an integer t ≥ 1 such that

M t
1,2 = 0.

The decidability of the Positivity and Skolem problems is a

longstanding open question [23], and there is a reduction from

the Skolem problem to the Positivity problem that increases

the matrix dimension quadratically [16], [23].

III. MARKOV CHAINS

We present the basic definitions related to Markov chains

and the decision problems for the optimal total reward with

expected stopping time.

A. Basic definitions

A Markov chain is a tuple 〈M,µ,w〉 consisting of:

• an n× n stochastic matrix M (in which all entries Mij

are nonnegative rationals1, and the sum
∑

j Mij of the

elements in each row i is 1),

• an initial distribution µ ∈ ([0, 1]∩Q)n (viewed as 1× n
row vector, and such that

∑

i µi = 1), and

• a vector w ∈ Qn of weights (or rewards).

We also view µ and w as functions V → Q where V =
{1, 2, . . . , n} is the set of vertices of the Markov chain. We

often abbreviate Markov chains as M , when µ and w are

clear from the context. We denote by ‖w‖ = maxv∈V |w(v)|
the largest absolute value in w.

A Markov chain induces a probability measure on sequences

of vertices of a fixed length, namely P(v0v1 . . . vk) = µ(v0) ·
∏k−1

i=0 Mvi,vi+1
. Analogously, we denote by E(f) the expected

value of the function f : V ∗ → Q defined over finite sequences

of vertices.

Given a stopping-time distribution δ : N → [0, 1], let Nδ be

a random variable whose distribution is δ. We are interested in

computing the optimal (worst-case) expected value (or simply

the value) of Markov chains with expected stopping time T ,

defined by:

val(M,T ) = inf
δ∈∆
Eδ=T

E

[
Nδ∑

i=0

w(vi)

]

= inf
δ∈∆
Eδ=T

E

[
Nδ∑

i=0

µ ·M i · w⊺

]

= inf
δ∈∆
Eδ=T

∞∑

t=0

δ(t) · ut,

where w⊺ is the transpose of w, and u is the sequence of

utilities defined by ut =
∑t

i=0 µ · M i · w⊺ for all t ≥ 0.

1For decidability and complexity results, we assume the numbers are
rationals encoded as two binary numbers.
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0 Tt1 t2 t

optimal value of the sequence

(a) When an optimal distribution exists

0 Tt1 t

optimal value of the sequence

(b) When no optimal distribution exists

Fig. 1: Geometric interpretation of the value of a sequence of utilities.

With this definition in mind, we also denote the optimal

expected value of a Markov chain M by val (u, T ). The best-

case expected value, defined using sup instead of inf in the

above definition, can be computed as the opposite of the worst-

case expected value for the Markov chain with all weights

multiplied by −1.

Exact value problem with expected stopping time. Given

a Markov chain 〈M,µ,w〉, a rational stopping time T , and

a rational threshold θ, decide whether the optimal expected

value of M with expected stopping time T is below θ, i.e.,

whether val(M,T ) < θ.

Approximation of the value with expected stopping time.

We also consider an approximate version of the exact value

problem, where the goal is to compute, given ε > 0, a value

vε such that |val(M,T ) − vε| ≤ ε. We say that vε is an

approximation with additive error ε of the optimal value.

B. Hardness of the exact value problem

This section is devoted to the proof of the following result,

which establishes the inter-reducibility of the exact value

problem, the Positivity problem, and the Markov Reachability

problem (defined in Section III-B3).

Theorem 1. The Positivity problem, the inequality variant of

the Markov Reachability problem, and the exact value problem

with expected stopping time are inter-reducible.

The decidability status of the Positivity problem is a long-

standing open question, although decidability is known for

dimension n ≤ 5 [23, Section 4]. Therefore, constructing

an algorithm to compute the exact value of a Markov chain

with expected stopping time T would require the significant

advances in number theory that are necessary to solve the

Positivity problem [23, Section 5].
We also show the converse reduction from the exact value

problem to the Positivity problem. Hence proving the unde-

cidability of the exact value problem would also be a major

breakthrough, as it would entail the undecidability of the

Positivity problem.
The proof of Theorem 1 is presented in the rest of this

section.

1) Geometric interpretation: A geometric interpretation for

(arbitrary) sequences of real numbers and expected stopping-

time was developed in previous work [7]. We recall the main

result in this section. The rest of our technical results is

independent from [7] (see also Comparison with related work

in Section I).

It is known that bi-Dirac distributions are sufficient for opti-

mal expected value, namely for all sequences u = u0, u1, . . .
of utilities, for all time bounds T , the following holds [7]:

inf{Eδ(u) | δ ∈ ∆ ∧ Eδ = T } =

inf{Eδ(u) | δ ∈ ∆⇈ ∧ Eδ = T }.

Moreover the value of the expected utility of the sequence

u under a bi-Dirac distribution with support {t1, t2} (where

t1 < T < t2) and expected time T is given by

ut1 +
T − t1
t2 − t1

· (ut2 − ut1). (1)

As illustrated in Fig. 1a, this value is obtained as the intersec-

tion of the vertical axis at T and the line that connects the two

points (t1, ut1) and (t2, ut2). Intuitively, the optimal value of

a sequence of utilities is obtained by choosing the two points

t1 and t2 such that the connecting line intersects the vertical

axis at T as low as possible.

It is always possible to fix a value of t1 such that it

is sufficient to consider bi-Dirac distributions with support

containing t1 to compute the optimal value (because t1 ≤ T
is to be chosen among a finite set of points), but the optimal

value of t2 may not exist, as in Fig. 1b. In that case, the value

of the sequence of utilities is obtained as t2 → ∞.

Given such a value of t1, let ν = inft2≥T
ut2

−ut1

t2−t1
, and

Lemma 1 shows that ut ≥ fu(t), for all t ≥ 0 where fu(t) =
ut1 + (t− t1) · ν. The optimal expected utility is

val(u, T ) = min
0≤t1≤T

inf
t2≥T

ut1 +
T − t1
t2 − t1

· (ut2 − ut1)

= min
0≤t1≤T

ut1 + (T − t1) · ν

= fu(T ),

hence fu(T ) is the optimal value.
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Lemma 1 (Geometric interpretation [7]). For all sequences u
of utilities:

• if ut ≥ a · t + b for all t ≥ 0, then the optimal value of

the sequence u is at least a · T + b;
• we have ut ≥ fu(t) for all t ≥ 0, and the optimal

expected value of u is fu(T ).

It follows from Lemma 1 that the optimal value of the

sequence u is the largest possible value at T of a line that

lies below u: val(u, T ) = sup{f(T ) | ∃a, b · ∀t : f(t) =
a · t+ b ≤ ut}.

2) Reduction of the Positivity problem to the exact value

problem: It is known that the Positivity problem can be

reduced to the inequality variant of [1, Problem A], defined

below as A>. A subsequent reduction of A> to the exact value

problem with expected stopping time establishes one direction

of Theorem 1. We present such a reduction in the proof of

Lemma 2 (see also Fig. 2).

Problem A= [1]. Given a n×n aperiodic2 stochastic matrix M
with rational entries, an initial distribution µ = (1, 0, . . . , 0),
and a vector z ∈ {0, 1, 2}n, decide whether there exists an

integer t ≥ 1 such that µ ·M t · z⊺ = 1.

Problem A> [1]. Given a n×n aperiodic stochastic matrix M
with rational entries, an initial distribution µ = (1, 0, . . . , 0),
and a vector z ∈ {0, 1, 2}n, decide whether there exists an

integer t ≥ 1 such that µ ·M t · z⊺ > 1.

Problems A= and A> are difficult to solve only in the case

where µ · M t · z⊺ converges to 1 as t → ∞. Otherwise, an

argument based on the definition of convergence to a limit

shows that the problems are decidable [19, Theorem 1]. Note

that limt→∞ µ·M t exists since M is aperiodic, and the limit is

the steady-state vector π, which is algorithmically computable.

Hence we can assume that the instances of Problem A> are

such that

π · z⊺ = 1. (2)

Moreover, without loss of generality, we can modify M
such that there is no incoming transition to the initial vertex 1
(remember that µ(1) = 1) by creating a copy of the initial

vertex, and redirecting the transitions to 1 towards the copy

vertex. Thus we require the matrix M in Problem A> to

define a Markov chain consisting of an initial vertex 1 with no

incoming transition. This may however increase the dimension

of the matrix by 1.

Lemma 2. Problem A> can be reduced to the exact value

problem with expected stopping time.

Corollary 1. The Positivity problem can be reduced to the

exact value problem with expected stopping time.

The proof of Lemma 2 is organized as follows: we first

recall basic results from the theory of Markov chains, then

2Although in the original formulation of Problem A, the stochastic matrix
M need not be aperiodic, the reduction of the Positivity problem to Problem A
produces stochastic matrices that define aperiodic Markov chains (even
ergodic unichains) [1].

Positivity Problem A> Markov Reachability>

Exact value problem

with expected stopping time

[1] [1]

Lemma 4

Lemma 2 Lemma 3

Fig. 2: Known reductions (solid lines), and reductions estab-

lished in this paper (dashed lines).

present a reduction of Problem A> to the exact value problem

with expected stopping time, and establish its correctness.

Basic results. First we show that, given an aperiodic Markov

chain 〈M,µ,w〉 that has a single recurrent class, there exist

vectors x, y such that the expected utility after t steps tends

to µ · x⊺ · t+ µ · y⊺ as t → ∞, formally:

lim
t→∞

∣
∣
∣
∣
∣

t−1∑

i=0

µ ·M i · w⊺ − µ · (x⊺ · t+ y⊺)

∣
∣
∣
∣
∣
= 0. (3)

The vector x is called the gain per time unit, and y is the

relative-gain vector. They can be computed by solving the

following equations (following [15, Section 4.5]):







xi = π · w⊺ for all vertices i ∈ V

y⊺ = M · (y − x)⊺ + w⊺

π · y⊺ = 0

(4)

The number g = π ·w⊺ is the gain per time unit. Note that

x = g ·e where e = (1, 1, . . . , 1), and that M ·x⊺ = x⊺ = g ·e⊺

because M is stochastic and the sum of the elements in each

of its row is 1. It follows that Equation (4) can be written as

y⊺ = M · y⊺ +w⊺ − x⊺, and by t− 1 successive substitutions

of y⊺, we get

y⊺ = M t · y⊺ +

t−1∑

i=0

M i · w⊺ −

t−1∑

i=0

M i · x⊺

= M t · y⊺ +

t−1∑

i=0

M i · w⊺ − t · x⊺

4
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a

start simulating

Markov chain M

asymptotic

reward

optimal value if total reward always remains above asymptote

Fig. 3: Reduction of the Positivity problem to the exact value

problem.

Then, the rate of convergence of the expected utility evalu-

ates as follows, for all t ≥ 1:

t−1∑

i=0

µ ·M i · w⊺ − µ · (x⊺ · t+ y⊺)

=

t−1∑

i=0

µ ·M i · w⊺ − µ · x⊺ · t

− µ ·M t · y⊺ − µ ·

t−1∑

i=0

M i · w⊺ + t · µ · x⊺

=− µ ·M t · y⊺ (5)

which tends to −π · y⊺ = 0 as t → ∞, establishing (3).

In the case of an aperiodic Markov chain with multi-

ple recurrent classes, the gain and relative gain satisfying

Equation (3) can be computed as the linear combination of

the vectors x, y obtained for each recurrent class, where the

coefficient in the linear combination is the mass of probability

that reaches (in the limit) the recurrent class from the initial

distribution µ.

Reduction. The reduction from Problem A> to the exact value

problem with expected stopping time is as follows. Given an

instance (M,µ, z) of Problem A>, we construct an instance

of the exact value problem in two stages. First, let w⊺ = z⊺−
M ·z⊺ be a reward vector defining a Markov chain 〈M,µ,w〉.
We explain later why w is defined in this way.

We proceed to the second stage of the construction, and

define the instance of the exact value problem, namely the

Markov chain 〈M ′, µ′, w′〉, the expected time T , and the

threshold θ. The key idea of the construction is illustrated

in Fig. 3. Given the Markov chain 〈M,µ,w〉, we can com-

pute its asymptotic expected utility, shown as the dashed

line µ · (x⊺ · t + y⊺) in Fig. 3 which also plots the se-

quence ut−1 for t ≥ 1. Note that by Equation (3) we have

limt→∞ |ut−1 − µ · (x⊺ · t+ y⊺)| = 0 and by Equations (4)

x = π · z⊺ − π ·M · z⊺ = 0.

We construct an instance of the exact value problem in

such a way that, if the utility of M always remains above

its asymptote, then the optimal value is the value of the

asymptote at time T , and otherwise, the optimal value is

strictly smaller. We achieve this by having an initial vertex

with weight a such that, if the Markov chain 〈M,µ,w〉 is

executed (simulated) after the initial vertex, then the weight a
lies exactly on the asymptote of 〈M,µ,w〉 (see Fig. 3 and the

geometric interpretation in Section III-B1). Since we simulate

〈M,µ,w〉 after one time step, the value of a is chosen such

that the point (0, a) belongs to the line µ · (x⊺ · t+ y⊺). Since

µ = (1, 0, . . . , 0) in Problem A>, we have a = y(1). To

recover the original behavior of the Markov chain 〈M,µ,w〉,
we subtract a from the weight of the initial vertex of M ,

thus w′(1) = w(1)− a. As we assumed that the initial vertex

in M has no incoming transition, it is never re-visited later.

We take T = 1 and the value of the asymptote at time T is

µ · (x⊺ + y⊺) = x(1) + y(1) = a, which we define as the

threshold θ of the exact value problem, thus θ = a.

Formally, the instance of the exact value problem is defined

as follows:

w′ =










a
w(1)− a
w(2)

...

w(n)










, M ′ =

(
0 µ
0 M

)

,
µ′ = (1, 0, . . . , 0),
T = 1,
θ = a

where a = y(1) and y is the relative-gain vector of the

Markov chain 〈M,µ,w〉. Note that the initial vertex of M
has no incoming transition (in M ), and thus the sequence

of expected utilities in M ′ indeed simulates the sequence of

expected utilities in M , and the asymptotic expected utilities as

well as the steady-state vectors of 〈M,µ,w〉 and 〈M ′, µ′, w′〉
coincide.

Correctness of the reduction. To establish the correctness of

the reduction, we show the following equivalences:

1) the optimal expected value of M ′ with expected stopping

time T is smaller than θ (i.e., the answer to the exact

value problem is YES) if and only if the utility sequence

of M eventually drops below its asymptote;

2) the utility sequence of M eventually drops below its

asymptote if and only if µ ·M t · z⊺ > 1 for some t ≥ 1
(i.e., the answer to Problem A> is YES).

To show the first equivalence, consider the first direction

and assume that the value of M ′ is smaller than θ. Given that

the line µ · (x⊺ · t+ y⊺) has value θ at t = T , it follows from

Lemma 1 that the utility sequence of M ′ does not always

remain above that line, and thus the utility sequence of M
eventually drops below its asymptote.

Now consider the second direction of the first equivalence

and assume that the utility sequence of M eventually drops

below its asymptote. Then the utility sequence of M ′ drops

below the line µ·(x⊺ ·t+y⊺), say at time t2 ≥ 1. We construct a

distribution δ with Eδ = T such that the value of the expected

reward under δ is less than µ · (x⊺ · T + y⊺) = θ (which

implies that the optimal value, obtained as the infimum over

all distributions, is also below θ).

We consider two cases: (1) if t2 = 1 (i.e., t2 = T ), consider

the distribution δ such that δ(t2) = 1 (note that Eδ = T ) and

5



0 T

t

ν

value is at least ν if the sequence of utilities

remains above the bottom line

?

Fig. 4: Solving the exact value problem using an oracle for

Problem A>.

the result follows immediately; (2) otherwise, t2 > 1 and

consider the bi-Dirac distribution with support {t1, t2} where

t1 = 0. Note that t1 < T < t2 and the value of the expected

reward under this distribution is given by the value at time

T of the line connecting the point (t1, a) and a point below

the asymptote (at t2), see Equation (1). This value is below

the value θ of the asymptote at time T since (t1, a) is on

the asymptote, and the other point (at t2) is strictly below the

asymptote.

To show the second equivalence, note that by Equation (5)

the utility sequence of M eventually drops below its asymptote

if and only if −µ ·M t ·y⊺ < 0 for some t ≥ 1. Hence we can

establish the second equivalence by showing that −µ·M t·y⊺ <
0 if and only if µ ·M t · z⊺ > 1. This is where the value of w
is important. The result holds if y = z − e, and we just need

to show that y = z − e satisfies Equations (4), namely that

(z − e)⊺ = M · (z − e− x)⊺ + w⊺

π · (z − e)⊺ = 0

that is

(z − e)⊺ = M · z⊺ − e⊺ − x⊺ + z⊺ −M · z⊺

π · z⊺ − π · e⊺ = 0

which hold since x = 0 and π ·z⊺ = 1 = π ·e⊺ (Equation (2)).

This concludes the proof of Lemma 2.

Using the reduction of the Positivity problem to Prob-

lem A> [1], we obtain Corollary 1, showing that a decidability

result for the exact value problem would imply the decidability

of the Positivity problem, which is a longstanding open

question.

3) Reduction of the exact value problem to the Positivity

problem: We present the converse reduction of Section III-B2,

showing that to potentially prove the exact value problem

is undecidable would require such a proof for the Positivity

problem as well. We sketch the reduction by showing how

the exact value problem can be solved using an oracle for

Problem A>, illustrated in Fig. 4, and then present a reduction

of Problem A> to the Positivity problem.

Lemma 3. The exact value problem with expected stopping

time can be reduced to Problem A>.

Proof sketch. Given a Markov chain 〈M,µ,w〉 with expected

stopping time T and threshold θ, we solve the exact value

problem using an oracle for Problem A> as follows. First, if

uT < θ then the answer to the exact value problem is YES.

Otherwise, we compute the value of utilities ut =
∑t

i=0 µ ·
M i · w⊺ for all 0 ≤ t < T , and let b = max0≤t<T

ut−θ
t−T .

Consider the bottom line of equation b ·(t−T )+θ and observe

that ut ≥ b · (t − T ) + θ for all 0 ≤ t ≤ T (see Fig. 4). By

the geometric interpretation lemma (Lemma 1), it suffices to

determine whether the sequence of utilities ever drops below

the bottom line to answer the exact value problem.

This question is simple if the asymptotic behaviour of

the Markov chain differs from the bottom line (e.g., if the

asymptote given by Equations (4) does not coincide with the

bottom line), as there is a time from which the sequence of

utilities will remain either always above or always below the

bottom line, and such a time point is computable. The difficult

case is when the bottom line coincides with the asymptotic

behaviour of the sequence of utilities. Then the condition for

the sequence of utilities to eventually drop below the bottom

line is that −µ · M t · y⊺ < 0 for some t ≥ 1 (Equation (5))

which, up to an elementary transformation can be stated as

an equivalent question of the form “does µ ·M t · z⊺ > 1 for

some t ≥ 1 ?” where z ∈ {0, 1, 2}n, and thus solvable using

an oracle for Problem A>.

To obtain the inter-reducibility result of Theorem 1, we need

to show that Problem A> can be reduced to the Positivity

problem, which we establish by showing that the inequality

version of the Markov reachability problem (defined below)

can be reduced to the Positivity problem, as it is known that

Problem A> can be reduced to the inequality variant of the

Markov reachability problem [1] (see also Fig. 2). This is a

straightforward result established in Lemma 4.

Markov reachability> problem [1]. Given a square

stochastic matrix M with rational entries and a rational

number r > 0, decide whether there exists an integer t ≥ 1
such that M t

1,2 > r.

Markov reachability= problem [1]. Given a square

stochastic matrix M with rational entries and a rational

number r > 0, decide whether there exists an integer t ≥ 1
such that M t

1,2 = r.

Lemma 4. The Markov reachability> problem can be reduced

to the Positivity problem.

The reduction in Lemma 4 increases by 3 the dimension of

the matrix (given a n × n stochastic matrix for the Markov

reachability> problem, we construct a (n+3)×(n+3) matrix

for the Positivity problem).

The results of Lemma 2, 3 and 4 establish Theorem 1.

The reduction in Lemma 4 can easily be adapted to show

6



that the Markov reachability= problem can be reduced to the

Skolem problem and thus these problems are inter-reducible

with Problem A=.

Theorem 2. The Skolem problem, Problem A=, and the

Markov reachability= problem are inter-reducible.

C. Approximation of the optimal value

We can compute an approximation of the optimal value

with additive error by considering an approximation u′ of the

exact sequence u of expected utilities of the Markov chain as

follows: for a large number of time steps, let the approximate

sequence u′ be equal to u, and then from some point on it

switches to the value of the limit (asymptotic, and possibly

periodic) sequence of expected utilities at the steady-state

distribution(s). By taking the switching point large enough, the

approximation sequence u′ can be made arbitrarily close to the

exact sequence u. We show that the value of the sequences u′

approximates arbitrarily closely the (exact) optimal value of

u.

By the results of Section III-B1, the optimal expected value

of any sequence u′ of utilities is given by the expression

val(u′, T ) = min
0≤t1≤T

inf
t2≥T

u′
t1(t2 − T ) + u′

t2(T − t1)

t2 − t1
. (6)

We can effectively compute the value of val(u′, T ) when

u′ is an ultimately periodic sequence, i.e. u′ = A.Cω where

A,C are finite sequences (with C nonempty): we show in

Lemma 5 that the infinite range of t2 in the expression (6)

can be replaced by a finite range, because the optimal value

is obtained either by taking t2 before the first repetition of

the cycle C, or by taking t2 → ∞ (i.e., if repeating the cycle

once improves the value, then repeating the cycle infinitely

often improves the value even more). Let SA and SC be the

sum of the weights in A and C respectively, let MC = SC

|C| be

the average weight of the cycle C.

Lemma 5. The optimal value of an ultimately periodic

sequence u = A.Cω is val(u, T ) = min{E1, E2} where

E1 = min
0≤t1≤T

min
T≤t2≤|A|+|C|

ut1(t2 − T ) + ut2(T − t1)

t2 − t1
, and

E2 = min
0≤t1≤T

ut1 +MC · (T − t1).

If T ≥ |A| + |C|, then val(u, T ) = min0≤t1≤|A|+|C| ut1 +
MC · (T − t1).

We show that for a sequence u′ of utilities that approximates

the sequence u, the value of u′ approximates the value of u
and the error can be bounded. Precisely, if the weights in

a Markov chain are shifted by at most η, then the optimal

expected value of the Markov chain with expected stopping

time T is shifted by at most η · (T +1). Consider w′ such that

|w′(v) − w(v)| ≤ η for all vertices v ∈ V , and consider the

sequences u and u′ of utilities of a path according to w and

w′ respectively. Then we have |u′
t − ut| ≤ (t + 1) · η for all

t ≥ 0, and for all distributions δ with Eδ = T :
∣
∣
∣

∑

i

δ(i) · u′
i −
∑

i

δ(i) · ui

∣
∣
∣ ≤

∑

i

δ(i) · |u′
i − ui|

≤
∑

i

δ(i) · (i+ 1) · η

= (T + 1) · η.

It follows that |val(u′, T )−val(u, T )| ≤ (T +1) ·η, that is the

value of the sequence is shifted by at most (T+1)·η (it is easy

to see that if ∀δ : |f(δ)− g(δ)| ≤ K , then |infδ f − infδ g| ≤
K).

Lemma 6. Given η ≥ 0 and two sequences u and u′ of utilities

such that |u′
t − ut| ≤ (t + 1) · η for all t ≥ 0, we have

|val(u′, T )−val(u, T )| ≤ (T+1)·η. Analogously, if u′
t = ut+

(t+1)·η for all t ≥ 0, then val(u′, T ) = val (u, T )+(T+1)·η.

We recall a result about Markov chains, which states that

for Markov chains with only aperiodic recurrent classes, the

vector µ · M t converges to a steady-state vector π, and the

rate of convergence is bounded by an exponential in n [15,

Theorem 4.3.7]. For all j ∈ V :

|(µ ·M t)j − πj | ≤ K1 ·K
t
2

where K1,K2 are constants with K2 < 1, namely K2 =
(1 − αn2

)1/3n
2

where α is the smallest non-zero probability

in M (i.e., α = min{Mij | Mij > 0}) and n is the number

of vertices of M .

For general Markov chains (with possibly periodic recur-

rent classes), we adapt the above result as follows. Con-

sider the set T of transient vertices, each recurrent class

C1, C2, . . . , Cl with their respective period d1, d2, . . . , dl, and

let d = lcm{d1, . . . , dl} be their least common multiple. Note

that di ≤ n for all 1 ≤ i ≤ l and d is at most the product

of all prime numbers smaller than n, thus at most exponential

in n [13]. Then Md can be viewed as the transition matrix

of a Markov chain with aperiodic recurrent classes, and thus

µ · Md·t converges to a steady-state vector π as t → ∞.

Considering a recurrent class Ci, and the vertices j ∈ Ci ∪ T
the rate of convergence can be bounded as follows, where αdi

is a lower bound on the smallest non-zero probability in Mdi :

|(µ ·Md·t)j − πj | = |(µ · (Mdi)
d·t

di )j − πj |

≤ K1 · (1− αdi·n
2

)
d·t

di·3n
2

≤ K1 · (1− αn3

)
t

3n2 ,

which is independent of i, and thus holds for all j ∈ V . Let

K3 = (1 − αn3

)1/3n
2

.

It follows that |µ · Md·t · w⊺ − π · w⊺| ≤ n · W · K1 ·
Kt

3 where W = ‖w‖ is the largest absolute weight in w.

Then for all ε > 0, for all t ≥
ln( ε

n·W ·K1
)

ln(K3)
=: B, we have

|µ · Md·t · w⊺ − π · w⊺| ≤ ε, and by the same reasoning

with initial distributions µ ·M,µ ·M2, . . . , µ ·Md−1 we get

|µ ·Md·t+k · w⊺ − π ·Mk · w⊺| ≤ ε for all 0 ≤ k < d.
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Consider the sequence u′ defined by

u′
t =

{

ut for all t ≤ d ·B

ud·B +
∑t

k=d·B+2 π ·Mk%d · w⊺ for all t > d ·B

where k%d is the remainder of the division of k by d.

Intuitively, u′
t approximates ut after time t = d · B by

considering the (expected) weight at time t to be given by

the limit (expected) weight at the steady-state distribution.

Then |u′
t − ut| ≤ (t + 1) · ε for all t ≥ 0, and therefore

|val (u′, T ) − val (u, T )| ≤ ε · (T + 1) (by Lemma 6). The

sequence u′ is an ultimately periodic sequence of the form

A.Cω where |A| = d·B and |C| = d. Hence the optimal value

of u′ is given by Lemma 5 and can be obtained by computing

the first d · B + d terms of the sequence u′, the steady-state

vector π, the number d, and the average weight MC = SC

|C|

where SC =
∑d−1

i=0 π·M i·w⊺. This provides a way to compute

an approximation with additive error ε of the optimal value of

a Markov chain in time O(P (n) · T · B · d) where P (n) is a

polynomial in the size of the Markov chain (that accounts for

matrix multiplication, steady-state vector computation, etc.).

Using the fact that (1 − 1
x)

x ∈ O(1), and that ln
(
1− 1

x

)
∈

O(−1/x), we obtain the bounds in Theorem 3 in the special

cases where α or n is constant.

Theorem 3. The optimal expected value of a Markov chain

with expected stopping time T can be computed to an arbitrary

level of precision ε > 0, in time

O

(

P (n) · T ·
ln
(

ε
n·W

)

ln(K3)
· 2O(n)

)

where K3 = (1 − αn3

)1/3n
2

and P (·) is a polynomial.

If α (the smallest non-zero probability) is constant, then the

computation time is in

O

(
P (n) · 2O(n)

αn3
· T · ln

(
n ·W

ε

))

(as n → ∞).

If n (the number of vertices) is constant, then the compu-

tation time is in

O

(
1

αO(1)
· T · ln

(
W

ε

))

(as α → 0).

There is a family of Markov chains on which the approx-

imation algorithm of Theorem 3 runs in time exponential in

the number of vertices of the Markov chains, showing that

the complexity analysis of our algorithm cannot be improved

to eliminate the exponential dependency in the number of

vertices. However, whether there exists a polynomial-time

algorithm for the approximation problem is an open question.

Proposition 1. There exists a family of aperiodic Markov

chains M(n, α) with 2n vertices (n ∈ N) and smallest

probability α (α ≤ 1
2 ) such that, for the initial distribution

µ = (1, 0, . . . , 0), we have

max
j

|(µ ·M(n, α)t)j − πj | ≥ (1− αn)
t

n ,

where π is the steady-state vector of M(n, α), and the com-

putation time of the approximation algorithm (of Theorem 3)

for M(n, α) is at least

n · ln(1/ε)

αn
.

IV. MARKOV DECISION PROCESSES

Markov decision processes (MDPs) extend Markov chains

with transition choices determined by control actions. We give

the basic definitions of MDPs and of the optimal expected

value of an MDP with expected stopping time T .

A. Basic definitions

A Markov decision process is a tuple M = 〈V,A, θ, µ, w〉
consisting of:

• a finite set V of vertices and a finite set A of actions,

• a transition function θ : V × A → (V → [0, 1]) such

that θ(v, a) is a probability distribution over V , that is
∑

v′∈V θ(v, a)(v′) = 1 for all v ∈ V and a ∈ A.

• µ : V → [0, 1] is an initial distribution and w : V → Q

is a vector of weights, as in Markov chains.

Given a vertex v ∈ V and a set U ⊆ V , let AU (v) be the set

of all actions a ∈ A such that Supp(θ(v, a)) ⊆ U . A closed set

in an MDP is a set U ⊆ V such that AU (v) 6= ∅ for all v ∈ U .

A set U ⊆ V is an end-component [10], [3] if (i) U is closed,

and (ii) the graph (U,EU ) is strongly connected where EU =
{(v, v′) ∈ U × U | θ(v, a)(v′) > 0 for some a ∈ AU (v)}
denote the set of edges given the actions. In the sequel, end-

components should be considered maximal, that is such that

no strict superset is an end-component.
A strategy in M is a function σ : V + → (A → [0, 1]) such

that σ(ρ) is a probability distribution over A, for all sequences

ρ ∈ V +. A strategy σ is pure if for all ρ ∈ V +, there exists

an action a ∈ A such that σ(ρ)(a) = 1; σ is memoryless if

σ(ρv) = σ(ρ′v) for all ρ, ρ′ ∈ V ∗ and v ∈ V ; σ uses finite

memory if there exists a right congruence ≈ over V + (i.e., if

ρ ≈ ρ′, then ρ · v ≈ ρ′ · v for all ρ, ρ′ ∈ V + and v ∈ V ) of

finite index such that ρ ≈ ρ′ implies σ(ρ) = σ(ρ′).
Given the initial distribution µ, and a strategy σ, a prob-

ability can be assigned to every finite path ρ = v0 · · · vn as

follows:

Pσ
µ(v0v1 . . . vk) =

µ(v0) ·

k−1∏

i=0

∑

a∈A

σ(v0 · · · vi)(a) · θ(vi, a)(vi+1).

Analogously, we denote by Eσ
µ(f) the expected value of the

function f : V ∗ → Q defined over finite sequences of vertices.

Let ut = Eσ
µ(
∑t

i=0 w(vi)) and define the optimal expected

value of M with expected stopping time T ∈ Q as follows:

val(M, T ) = sup
σ

inf
δ∈∆
Eδ=T

∞∑

t=0

δ(t) · ut.

The strategy σ is ε-optimal if the sequence u = (ut)t∈N it

induces is such that val (u, T ) ≥ val (M, T ) − ε. For ε = 0,

we simply say that σ is optimal (instead of 0-optimal).

8



v0

v1

v2

v3

v4

−1

v5 2

v6 −1

v′1

v′2

v′3

v′4

1

v′5 −2

v′6 1

1
3

2
3

1
2

Fig. 5: An MDP where infinite memory is required for optimal

expected value.

For an arbitrary strategy σ, with probability 1 the set of

states visited infinitely often along an (infinite) path is an end-

component [9], [10]. Let the limit-probability of a (maximal)

end-component U be the probability that the set of states

visited infinitely often along a path is a subset of U . A limit

distribution under σ is a distribution δ∗ such that, for every

end-component U , the limit-probability of U is
∑

v∈U δ∗(v).

B. Infinite memory is necessary

Since MDPs are an extension of Markov chains, the prob-

lem of computing the optimal expected value val(M, T ) is

Positivity-hard (by Corollary 1). Another source of hardness

for this problem is that infinite memory is required for optimal

strategies, as illustrated in the following example.

Example. We show in Fig. 5 an MDP where infinite memory

is required for optimal expected value. The only strategic

choice is in vertex v′1 (we omit the actions in the figure, and

all weights not shown are 0). In particular, the upper part

{v1, . . . , v6} is a Markov chain and after 3k + 2 steps, the

probability mass in v4 is pk = 1
3 · (1 − 1

2k+1 ). For instance

p0 = 1
6 . Note that one step before, the probability mass in v1

is 1
3 · 1

2k
.

We claim that the optimal expected value of the MDP is 0,

which can be obtained by a strategy σopt that ensures utility

0 at every step: let mk be the mass of probability in v′1 after

3k + 1 steps (thus m0 = 2
3 , and m1,m2, . . . depend on the

strategy). In v′1, after 3k + 1 steps, the strategy σopt chooses

v′4 with probability αk such that m0 · α0 = p0, thus α0 = 1
4 ,

and mk · αk = pk − pk−1 for all k ≥ 1. It is easy to see that

mk = 1
3 + 1

3 · 1
2k

and αk = 1
2+2k+1 ensure this as well as

mk+1 = mk · (1 − αk) for all k ≥ 0. Therefore the strategy

σopt maintains always the same probability in v′4 as in v4, and

the expected total reward is 0 at every step.
It is easy to show that any other strategy (with a different

value of some αk) produces a negative total utility at some

time step (either by putting too much probability into v′4, and

thus too much probability for weight −2 in v′5, as compared to

the weight 2 in v5, or by putting too little probability into v′4,

and thus too little probability for weight 1 in v′4, as compared

to the weight −1 in v4), and that it entails a negative expected

value of the MDP.
The strategy σopt requires infinite memory, since the se-

quence αk is strictly decreasing, and the vertex v′1 is reached

after 3k + 1 steps along a unique path ρk = v0v
′
1(v

′
2v

′
3v

′
1)

k.

It follows that for all right congruences ≈ over V + such that

ρ ≈ ρ′ implies σopt(ρ) = σopt(ρ
′), we have ρk 6≈ ρl for k 6= l

since αk 6= αl for k 6= l, thus ≈ cannot have finite index.

As the above example illustrates, infinite-memory strategies

are required in MDPs. The expected stopping-time problem

can be formulated as a game between a player that controls the

transition choice and the opponent that chooses the stopping

times. However, the game is not a perfect-information game

as the opponent chooses the stopping times without knowing

the execution of the MDP (in particular, the stopping-time

distribution cannot be adapted according to the outcome of

the probabilistic choices in the MDP). As a consequence,

while finite-memory strategies are sufficient in finite-horizon

planning (even in perfect-information stochastic games), in

contrast we show infinite-memory strategies are required. In

general, in imperfect-information probabilistic models such as

probabilistic automata [25], [27], [28], infinite-memory strate-

gies are required [2], and the basic computational problems

(such as optimal reachability probability) as well as their

approximation are undecidable [20]. However, our setting only

represents limited imperfect information for the opponent, and

we establish in the rest of this section that the approximation

problem is decidable.

C. Approximation of the optimal value

The problem of computing val(M, T ) up to an additive

error ε can be solved as follows. We show that there exist

ε-optimal strategies of a simple form: after some time t∗ (that

depends on ε), it is sufficient to play a (memoryless) strategy

that maximizes the mean-payoff expected reward, defined as

follows for a strategy σ in M:

MP(M, σ) = lim sup
t→∞

1

t

t−1∑

i=0

Eσ
µ(w(vi)),

and the optimal mean-payoff value is

val
MP(M) = sup

σ
MP(M, σ).

Remark 2. It is known that (see e.g. [26]):

• pure memoryless strategies are sufficient for mean-payoff

optimality, that is there exists a pure memoryless strategy

σ such that valMP(M) = MP(M, σ);
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Markov chains

val
MP(·)= 0

Lemma 7

MDP, single EC

with val
MP(·)≤ 0

Lemma 8

reduction to MC

MDP, all EC

have val
MP(·)≤ 0

Lemma 9

back-edge transform.

Uniform MDP

val
MP(·)≤ 0

Lemma 10

reduction to all EC ≤ 0

Arbitrary MDP

val
MP(·)≤ 0

Lemma 11

uniformization

Fig. 6: Main steps towards the proof that the supremum of total expected reward is bounded in MDPs with mean-payoff value

at most 0 (Theorem 4).

• for variants of the definition of mean-payoff expected

reward (using lim inf instead of lim sup), or where the

lim sup and E(·) operators are swapped (also known as

the expected mean-payoff value), the same pure memory-

less strategy is optimal;

• all vertices in an end-component have the same optimal

mean-payoff value.

Intuitively, a strategy σ that plays according to an optimal

mean-payoff strategy after some time t∗ has an asymptotic

behaviour that is at least as good as any strategy, in particular

any ε-optimal strategy; up to time t∗ (thus for finitely many

steps), if the strategy σ plays like an ε-optimal strategy, then

the sequence of expected reward (defined above as ut) is also

good enough; the only question is whether switching to an

optimal mean-payoff strategy may induce a transient loss of

reward after t∗ that could impede ε-optimality. In fact, we

show that (1) the loss is bounded, and (2) the impact of a

bounded loss on the expected value is negligible if t∗ is large

enough. That the loss is bounded, namely:

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) is bounded if valMP(M) ≤ 0,

may appear intuitively true, but is not simple to prove even in

the special case where the mean-payoff value is 0. The proof

has several steps, summarized in Fig. 6, leading to Theorem 4.

We start by proving that the loss is bounded in the simple

case of Markov chains with mean-payoff value 0, then for

larger classes of MDPs, using reductions that transform an

MDP M of a larger class into an MDP M′ of a smaller

class for which a bound on the loss is already established.

The transformations may increase the total expected reward

(as then, an upper bound for M′ gives an upper bound for

M).

Lemma 7. In aperiodic Markov chains 〈M,µ,w〉, if the mean-

payoff value, defined as lim supt→∞
1
t

∑t−1
i=0 E(w(vi)), is 0,

then

sup
t

∣
∣
∣
∣
∣

t∑

i=0

E(w(vi))

∣
∣
∣
∣
∣
≤ 4nW · t0(α)

where α is the smallest positive transition probability, t0(α) =

3 ·n5 ·
(
1
α

)n2

, and W is the largest absolute weight according

to w.

To prove a similar result for MDPs (Theorem 4), we first

consider the case of MDPs that consist of a single end-

component, and show by contradiction that if it has mean-

payoff value 0 and a large expected total reward could be

accumulated from a vertex v0 using some strategy σ0, then

by reaching v0 again (which is possible since the MDP is

strongly connected) and repeating the same strategy σ0, we

could get a strictly positive mean-payoff value. A technical

difficulty in this proof is that v0 may be reached by paths of

different lengths, but the large expected total reward that can

be accumulated from v0 is obtained in a fixed number of steps.

Lemma 8. In an MDP M that is an end-component (i.e., V
is an end-component), if valMP(M) ≤ 0 and |V | = n, then

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) ≤ 12 · n6 ·W ·

(
1

α

)n3

where α is the smallest positive transition probability in M,

and W its largest absolute weight.

We can easily extend the result to MDPs with several end-

components, if all of them have mean-payoff value at most 0.

Lemma 9. In an MDP M with n vertices in which all end-

components have an optimal mean-payoff value at most 0, we

have

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) ≤ 12 · n8 ·W ·

(
1

α

)n3+n

where α is the smallest positive transition probability in M,

and W its largest absolute weight.

In an arbitrary MDP with mean-payoff value at most 0,

some end-components may have positive value, and others

negative value, as in the example of Fig. 7: the three end-

components {v0}, {v1, v2}, {v3} have respective mean-payoff

value −1, 1, and −2. From the initial distribution µ where

µ(v0) = µ(v1) = 1
2 , the mean-payoff value is 0. The case

where the MDP has some end-components with positive mean-

payoff value requires a slightly more technical proof (see also

Fig. 6): we first show in Lemma 10 that the supremum of ex-

pected total reward in MDPs is bounded if all end-components

are uniform (an end-component is uniform if all its vertices

have the same weight); then we present uniformization in

Lemma 11 to transform arbitrary MDPs into uniform MDPs.
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Fig. 7: An MDP with positive and negative end-components.

Its mean-payoff value is 0.

Given an MDP with weight vector w, let E be the union

of all its end-components. Define the vector wtrans and wec as

follows:

wtrans(v) =

{
w(v) if v ∈ V \ E
0 if v ∈ E

wec(v) =

{
0 if v ∈ V \ E
w(v) if v ∈ E

It follows that w = wtrans + wec and by the triangular

inequality, we have

sup
k

k∑

i=0

Eσ
µ(w(vi)) ≤

sup
k

k∑

i=0

Eσ
µ(wtrans(vi)) + sup

k

k∑

i=0

Eσ
µ(wec(vi)).

Using Lemma 9, it is easy to bound the supremum of expected

total reward for wtrans, and we present a bound on the

supremum of expected total reward for wec in uniform MDPs

as follows.

Lemma 10. Given an MDP M with n vertices, let wtrans and

wec be the weight vectors of the transient vertices and of the

end-components, respectively. We have

sup
σ

sup
t

t∑

i=0

Eσ
µ(wtrans(vi)) ≤ 12 · n8 ·W ·

(
1

α

)n3+n

,

and if val
MP(M) ≤ 0 and all end-components of M are

uniform, then

sup
σ

sup
t

t∑

i=0

Eσ
µ(wec(vi)) ≤ 12 · n8 ·W ·

(
1

α

)n3+n

,

where α is the smallest positive transition probability in M,

and W its largest absolute weight.

We present a uniformization procedure that, given an MDP

M with mean-payoff value at most 0, constructs an MDP

M′ with the same mean-payoff value as M, with a larger

supremum of expected total reward, and in which all end-

components are uniform (an end-component is uniform if all

its vertices have the same weight).

Lemma 11. Given an MDP M with n vertices, we can

construct an MDP M′ with the following properties:

1) all end-components of M′ are uniform.

2) M and M′ have the same mean-payoff value;

3) the number of vertices in M′ is at most 3n;

4) the supremum of expected total reward in M is less than

half the supremum of expected total reward in M′;

We finally obtain an analogue of Lemma 7 for MDPs: the

expected total reward is bounded in MDPs with non-positive

mean-payoff value.

Theorem 4. Given an MDP M with n vertices and

val
MP(M) ≤ 0, we have:

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) ∈ O

(

n16 ·W ·

(
1

α

)O(n3)
)

where α is the smallest positive transition probability in M,

and W its largest absolute weight.

Using Theorem 4, for all ε > 0 we can compute a bound

t∗ such that there exists an ε-optimal strategy (for expected

value) that plays according to an optimal mean-payoff strategy

after time t∗.

Lemma 12. Given an MDP M and ε > 0, there exists

an ε-optimal strategy that plays, after time t∗ = T ·(2B∗+ε)
ε

(where B∗ is the bound given by Theorem 4), according to a

memoryless optimal strategy σMP for the mean-payoff value.

Proof. Consider an arbitrary strategy σ in M (under expected

stopping time T ), and given t∗ ≥ T , consider a strategy σ∗ that

plays like σ up to time t∗, and then switches to a memoryless

mean-payoff optimal strategy σMP, in the MDP M with initial

distribution µ∗ = δσt∗ (the vertex distribution of M after t∗

steps under strategy σ). Let η∗ be the optimal mean-payoff

value from µ∗ in M, and let w′ = w − η∗ (where w′(v) =
w(v)− η∗ for all v ∈ V ). With weight vector w′, the optimal

mean-payoff value of M is 0 from µ∗.

Using Lemma 7 in the Markov chain obtained by fixing the

strategy σMP in M with initial distribution µ∗, we obtain:

sup
t

∣
∣
∣
∣
∣

t∑

i=0

E
σMP

µ∗ (w′(vi))

∣
∣
∣
∣
∣
≤ 12 · n6 ·W ·

(
1

α

)n2

︸ ︷︷ ︸

C∗

. (7)

Let ut =
∑t

i=0 E
σ
µ(w(vi)) and let u∗

t =
∑t

i=0 E
σ∗

µ (w(vi))
be the sequence of expected total reward under strategy σ
and σ∗ respectively. To show ε-optimality of σ∗, take t∗ ≥
T ·(2B∗+ε)

ε and show that:

val(u∗, T ) ≥ val (u, T )− ε

11



The proof is in two steps. First we bound the difference

ut − u∗
t as follows, for all t ≥ 1:

ut − u∗
t =

t∑

i=0

Eσ
µ(w(vi))−

t∑

i=0

Eσ∗

µ (w(vi))

=

t∑

i=0

Eσ
µ(w

′(vi))−

t∑

i=0

Eσ∗

µ (w′(vi))

(since E(w(·)) = E(w′(·)) + η∗)

=
t∑

i=t∗

Eσ
µ(w

′(vi))−
t∑

i=t∗

Eσ∗

µ (w′(vi))

(σ and σ∗ agree in the first t∗ steps)

≤ B∗ + C∗ ≤ 2B∗

(triangular inequality and bounds

given by Theorem 4 and (7))

In a second step, consider an arbitrary bi-Dirac distribution

δ with support {t1, t2} and expected stopping-time T , and

consider the difference between the value of sequences ut and

u∗
t under δ, if t2 ≥ t∗ (the difference is 0 if t2 < t∗):

Eδ(u)− Eδ(u
∗)

=
ut1(t2 − T ) + ut2(T − t1)

t2 − t1
−

u∗
t1(t2 − T ) + u∗

t2(T − t1)

t2 − t1

=
T − t1
t2 − t1

· (ut2 − u∗
t2)

(since σ and σ∗ agree in the first t∗ steps,

and thus ut1 = u∗
t1 )

≤
T − t1
t2 − t1

· 2B∗ ≤
T

t∗ − T
· 2B∗ ≤ ε

(since 0 ≤ t1 ≤ T )

It follows that under all bi-Dirac distributions δ with ex-

pected stopping-time T , the expected value of the sequence u∗
t

is, up to additive error ε, greater than the expected value of ut.

Therefore, since bi-Dirac distributions are sufficient for opti-

mality (Section III-B1), we have val(u∗, T ) ≥ val (u, T )− ε.

Hence σ∗ is ε-optimal.

We can express in the existential theory of the reals that the

value of a strategy that eventually plays according to a mem-

oryless strategy (as in Lemma 12) is above a given threshold,

which entails decidability of computing an approximation of

the optimal value up to an additive error ε.

Lemma 13. Given an MDP M and a time t∗, we can compute

to an arbitrary level of precision ε > 0 the optimal value

among the strategies that play after time t∗ according to a

memoryless strategy.

Proof. We describe the choices of an arbitrary strategy up to

time t∗ using variables xv,t,a for every v ∈ V , 0 ≤ t ≤ t∗, and

a ∈ A, where xv,t,a is the probability to play action a at time t
in vertex v. Note that we ignore the history of vertices, which

is no loss of generality since the utility achieved by a strategy

at time t only depends on the probability mass in each vertex

at time t, and if a sequence of distribution can be achieved by

some strategy, then it can be achieved by a Markov strategy

(in which the choice depends only on the time and the current

vertex). It is easy to express the probability mass in v at time

t (and therefore the utility ut) as a function of the variables

xv,t,a.

After time t∗, consider a memoryless strategy and we can

express its mean-payoff value η∗ as a function of the vertex

distribution at time t∗, thus as a function of the variables

xv,t,a. Then for t = t∗ + 1, t∗ + 2, . . . , t̂, we compute the

utility ut at time t as a function of the variables xv,t,a, and

consider the utility sequence u0, . . . , ut̂, ut̂+ η∗, ut̂+2η∗, . . .
(corresponding to an ultimately periodic path) using Lemma 5

and by an argument similar to the proof of Lemma 6 using

the bound of Lemma 7 for Markov chains, we get a bound on

the approximation error as follows: the value after t̂ differ by

at most D = n ·W ·K1 ·K
t̂−t∗

3 from the actual utility, thus

the error on the value is at most

D · (T − t1)

t2 − t1
≤ D · T

which is at most ε for t̂ ≥ t∗ + B where B =
ln( ε

n·W ·T ·K1
)

ln(K3)
(Lemma 6)

By Lemma 12 and Lemma 13, we can compute up to error
ε
2 the value of an ε

2 -optimal strategy, and since the error is ad-

ditive (ε = ε
2+

ε
2 ), it follows from the proof of Lemma 13 that,

by computing (as a symbolic expression in variables xv,t,a) the

sequence of utilities up to time t̂ = T ·(4B∗+ε)
ε +

ln( ε

2n·W ·T ·K1
)

ln(K3)
and then considering an increment of η∗ at every step, we can

compute the value of optimal expected value of the MDP up

to error ε in exponential space (since t̂ is exponential and the

existential theory of the reals can be decided in PSPACE [6]).

In this way, we obtain the main result of this section: an

approximation of the value with expected stopping time can

be computed for MDPs up to an arbitrary additive error.

Theorem 5. The optimal expected value of an MDP with

expected stopping time T can be computed to an arbitrary

level of precision ε > 0, in exponential space.

V. CONCLUSION

We studied Markov chains and MDPs with expected stop-

ping time, and showed the hardness of computing the exact

value, as the associated decision problem for Markov chains

is inter-reducible with the Positivity problem, thus at least as

hard as the Skolem problem. Approximation of the value can

be computed in exponential time for Markov chains, and ex-

ponential space for MDPs (thus the approximation problem is

decidable although optimal strategies require infinite memory).

It is an open question to determine the exact complexity

of the approximation problem, and whether approximations

can be computed in polynomial time, or if any complexity-

theoretic lower bound can be established. We are not aware

of any complexity lower bounds for approximation of the

12



Positivity problem. Another direction for future work is to

determine the memory requirement for pure strategies in

MDPs.
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