
Stochastic Games with Synchronizing Objectives

Laurent Doyen
CNRS & LMF, ENS Paris-Saclay

Gif-sur-Yvette, France

doyen@lsv.fr

Abstract

We consider two-player stochastic games played on a finite

graph for infinitely many rounds. Stochastic games gener-

alize both Markov decision processes (MDP) by adding an

adversary player, and two-player deterministic games by

adding stochasticity. The outcome of the game is a sequence

of distributions over the states of the game graph. We con-

sider synchronizing objectives, which require the probabil-

ity mass to accumulate in a set of target states, either always,

once, infinitely often, or always after some point in the out-

come sequence; and the winning modes of sure winning (if

the accumulated probability is equal to 1) and almost-sure

winning (if the accumulated probability is arbitrarily close

to 1).

We present algorithms to compute the set of winning

distributions for each of these synchronizing modes, show-

ing that the corresponding decision problem is PSPACE-

complete for synchronizing once and infinitely often, and

PTIME-complete for synchronizing always and always af-

ter some point. These bounds are remarkably in line with

the special case of MDPs, while the algorithmic solution

and proof technique are considerably more involved, even

for deterministic games. This is because those games have

a flavour of imperfect information, in particular they are

not determined and randomized strategies need to be con-

sidered, even if there is no stochastic choice in the game

graph. Moreover, in combination with stochasticity in the

game graph, finite-memory strategies are not sufficient in

general (for synchronizing infinitely often).

CCSConcepts: •Mathematics of computing→ Stochas-

tic processes; • Theory of computation→ Algorithmic

game theory; Logic and verification.

Keywords: Stochastic games, Distributions, Synchroniza-

tion, Complexity

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9351-5/22/08. . . $15.00

h�ps://doi.org/10.1145/3531130.3532439

ACM Reference Format:

Laurent Doyen. 2022. Stochastic Games with Synchroniz-

ing Objectives. In 37th Annual ACM/IEEE Symposium on

Logic in Computer Science (LICS) (LICS ’22), August 2–5, 2022,

Be’er Sheva, Israel. ACM, New York, NY, USA, 14 pages.

h�ps://doi.org/10.1145/3531130.3532439

1 Introduction

Stochastic games are a centralmodel to solve synthesis prob-

lems for reactive systems [7, 12], which consist of a nonter-

minating finite-state program receiving input from an arbi-

trary, possibly stochastic, environment. The goal of synthe-

sis is to construct a program that satisfies with the largest

possible probability a given logical specification regardless

of the behaviour of the environment.

Synthesis naturally reduces to solving a two-player sto-

chastic game on a graph, where the logical specification de-

fines the objective of the game, as a language of infinite

words, representing the set of infinite paths through the

graph that are winning for one player. A wealth of results

are known for stochastic games with perfect information,

where the players are fully informed about the state of the

game graph [11], such as Martin’s determinacy result and

the existence of pure (non-randomized) ε-optimal strategies

for Borel objectives [26], as well as decidability forω-regular

objectives, see Chatterjee and Henzinger’s survey [11] for

details and references.

The assumption of perfect information is not realistic in

systems consisting of several components where each com-

ponent has no access to the internal state of the other com-

ponents. Models of games with imperfect information are

notoriously more complicated to solve [31], and, combined

with the probabilistic and adversarial aspects of stochastic

games in general lead to undecidability, even for the sim-

ple class of reachability objectives. For instance, distributed

games are undecidable, even without stochasticity [30, 32],

and partial-observation games are undecidable, even with-

out adversary, for quantitative analysis of finitary objec-

tives [25, 29] and for qualitative analysis of infinitary ob-

jectives [3]; randomized strategies are more powerful than

pure strategies [10], and determinacy no longer holds [6].

Recent works proposed new decidable models with a

flavour of imperfect information, for the control of a large

population of identical processes, modeled as a finite-state

machine. The global state of the game is a distribution over

the local states of the processes, and the specification de-

scribes which sequences of distributions are winning. The

https://orcid.org/0000-0003-3714-6145
https://doi.org/10.1145/3531130.3532439
https://doi.org/10.1145/3531130.3532439

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel Laurent Doyen

distributions can be discrete [1, 13] or continuous [2, 24].

The control may be applied uniformly, independently of

the local state of each process, as in non-deterministic [5],

and probabilistic automata [13], or it may depend on the

local history of states, as in Markov decision processes

(MDPs) [2, 18]. In both cases imperfect information arises:

either because the control is global, thus not aware of the

local state of individual processes, or because the control is

local, thus not aware of the global states on which the spec-

ification is defined.

In this paper, we consider the control problem for a con-

tinuous population of processes modeled as a stochastic

game with local control, and objective defined by finitary

and infinitary synchronization properties [5, 13, 18]. Infor-

mally, synchronization happens in a sequence of distribu-

tions when (almost) all processes are synchronously in a set

of designated target states, that is when, either for ε = 0, or

for all ε > 0, there is a distribution in the sequence where

the probability mass in the target states is at least 1 − ε . We

consider finitary synchronization objectives where synchro-

nization should happen once or forever along the sequence

of distributions, called respectively eventually and always

synchronizing; and infinitary objectives where synchroniza-

tion should happen infinitely often or eventually forever,

called respectively weakly and strongly synchronizing [18].

We distinguish the sure winning mode for ε = 0, and the

almost-sure winning mode for ε → 0 (where the synchro-

nization objective must be satisfied for all ε > 0).

The most interesting and challenging objectives are even-

tually and weakly synchronizing, analogous to reachability

and Büchi objectives. For those objectives, it is known that

finite memory is not sufficient for almost-sure winning, al-

ready in MDPs [18], and determinacy does not hold. There-

fore, both the construction of a winning strategy (to show

that player 1 is almost-sure winning), and the construc-

tion of a spoiling strategy for the adversary (to show that

player 1 is not almost-sure winning) are non trivial. In par-

ticular, the traditional approach of constructing a winning

strategy for player 2 for the complement of the objective to

obtain a spoiling strategy cannot work. The construction of

a spoiling strategy must be carried out after fixing an arbi-

trary infinite-memory strategy for player 1, which is a sub-

stantial complication. This is the main technical challenge

to prove the correctness of our algorithm.We show that the

control problem for eventually and weakly synchronizing

is PSPACE-complete. For always and strongly synchroniz-

ing, a simple reduction to traditional safety and coBüchi sto-

chastic games induces a polynomial-time solution. Omitted

proofs and additional material can be found in an extended

version of this paper [17].

Applications and Related Works. The main interest of this

contribution lies in the combination of adversarial, stochas-

tic, and infinitary aspects with a flavour of imperfect in-

formation in a decidable model. The works on (discrete)

parameterized control considered finitary synchronization

objectives (reachability of a synchronized distribution), ei-

ther with an adversary [5], or with stochasticity [13], but

not with both. With continuous distributions, the central

model that has been studied is MDPs, thus with stochastic-

ity but no adversary, either for finitary [2] or infinitary ob-

jectives [1, 18]. The solution of the control problem studied

in this paper is known for MDPs [18].

Like in all the above previous works, the main limita-

tion of this population model is the absence of communi-

cation between the processes. While communication plays

a central role in distributed programming applications [20],

self-organization and coordinated behaviour can emerge

from large crowds of individuals with limited sensing ability,

without signaling, and without centralized control [14, 15].

The highly developed local control necessary to achieve a

complex collective behaviour may emerge naturally [21] or

be engineered [27].

The line of work followed in this paper can also be viewed

as an attempt to propose decidable models that are still rich

enough to describe interesting natural phenomena. Many

systems in natural computing exhibit several instances of

the same anonymous process (without pre-defined identity

or hierarchy), from particle physics to flock of birds. Exam-

ples of biological systems such as yeast [2, 5], and simple

chemical systems [24] illustrate the synthesis applications

of this model. The same principle underlies synthetic biol-

ogy where a local control program is executed in every in-

stance of the process [19, 28]. In more complex systems, the

computational mechanisms behind local decision-making

towards global behaviours have multiple origins that re-

quire more sophisticated computational models [15].

2 Definitions

A probability distribution on a finite set S is a function d :

S → [0, 1] such that
∑

s ∈S d(s) = 1. The support of d is the

set Supp(d) = {s ∈ S | d(s) > 0}. We denote byD(S) the set

of all probability distributions on S .

Given a set T ⊆ S , let d(T) =
∑

s ∈T d(s). For T , ∅, the

uniform distribution on T assigns probability 1
|T |

to every

state inT . Given s ∈ S , we denote by 1s theDirac distribution

on s that assigns probability 1 to s (which we often identify

with s).

Stochastic games. A two-player stochastic game (or simply, a

game) G = 〈Q,A, δ〉 consists of a finite set Q of states, a

finite nonempty set A of actions, and a probabilistic transi-

tion function δ : Q × A × A → D(Q). We typically denote

by n = |Q | the size of the state space, and by η the smallest

positive probability in the transitions of G.

Stochastic Games with Synchronizing Objectives LICS ’22, August 2–5, 2022, Be’er Sheva, Israel

From an initial state q0 ∈ Q , the game is played in (infin-

itely many) rounds as follows. Each round starts in a state

qi ∈ Q , the first round starts in the initial state q0. In each

round, player 1 chooses an action a ∈ A, and then given a,

player 2 chooses an action b ∈ A. Given the state qi in which

the round started, the next round starts in qi+1 with proba-

bility δ (qi ,a,b)(qi+1). Note that the game is turn-based as

player 2 sees the action chosen by player 1 before playing.

A state q is a player-1 state if δ (q,a,b) = δ (q,a,b ′) for all

a,b,b ′ ∈ A, and it is a player-2 state if δ (q,a,b) = δ (q,a′,b)

for all a,a′,b ∈ A. We write δ (q,a,−) or δ (q,−,b) to em-

phasize and recall that q is a player-1 or player-2 state. In

figures, player-1 states are shown as circles, player-2 states

as boxes. The value of the transition probabilities are not

shown on figures, but diamonds represent the probabilistic

choices (the main results of this paper are independent of

the exact value of transition probabilities).

Classical special cases of stochastic games include

Markov decision processes (MDPs), also called one-player

stochastic games, where all states are player-1 states; adver-

sarial MDPs where all states are player-2 states; and deter-

ministic games where δ (q,a,b) is a Dirac distribution for all

q ∈ Q and all a,b ∈ A.

A play in G is an infinite sequence π =

q0 a0b0 q1a1b1 q2 . . . ∈ (QAA)ω such that

δ (qi ,ai ,bi)(qi+1) > 0 for all i ≥ 0. The prefixq0 a0b0 q1 . . . qk
of the play π is denoted by π (k), its length is |π (k)| = k and

its last element is Last(π (k)) = qk . The set of all plays in G

is denoted by Play(G), and the set of corresponding finite

prefixes (or histories) is denoted by Pref(G).

Strategies. A strategy for player 1 in G is a function σ :

Pref(G) → D(A), and for player 2 it is a function τ :

Pref(G) ×A→ D(A). We denote by Σ, and Θ, the sets of all

player-1 strategies, and all player-2 strategies, respectively.

A strategyσ for player 1 is pure if σ (ρ) is a Dirac distribution

for all ρ ∈ Pref(G); it is counting if |ρ | = |ρ ′ | and Last(ρ) =

Last(ρ ′) implies σ (ρ) = σ (ρ ′) for all ρ, ρ ′ ∈ Pref(G); and

it is memoryless if Last(ρ) = Last(ρ ′) implies σ (ρ) = σ (ρ ′)

for all ρ, ρ ′ ∈ Pref(G). We view deterministic strategies for

player 1 as functions σ : Pref(G) → A, and counting strate-

gies as functions σ : N ×Q → D(A).

A strategy σ (for player 1) uses finite memory if there ex-

ists a right congruence ≈ of finite index (i.e., that can be

generated by a finite-state transducer) over Pref(G) such

that ρ ≈ ρ ′ implies σ (ρ) = σ (ρ ′). We omit analogous def-

initions of pure, counting, memoryless, and finite-memory

strategies for player 2.

State-based objectives. The traditional view is to consider the

semantics of probabilistic systems as a probability distribu-

tion over sequences (of interleaved states and actions), i.e.,

over plays.

We denote by Prσ ,τ
d0

the standard probability measure

on the sigma-algebra over the set of (infinite) plays, gener-

ated by the cylinder sets spanned by the (finite) prefixes of

plays [4]. Given a prefix ρ = q0 a0b0 q1 . . . qk , the cylinder

set Cyl(ρ) = {π ∈ Play(G) | π (k) = ρ} has probability:

Prσ ,τ
d0
(Cyl(ρ)) = d0(q0) ·

k−1∏

i=0

σ (ρ(i))(ai) · τ (ρ(i),ai)(bi) · δ (qi ,ai ,bi)(qi+1).

We say that ρ is compatible with σ (from d0) if

Prσ ,τ
d0
(Cyl(ρ)) > 0 for some player-2 strategy τ .

State-based objectives, in this traditional semantics, are

sets of plays. We consider the following state-based objec-

tives, expressed by LTL formulas [4] where T ⊆ Q is a set

of target states: the reachability and safety objectives ^T

and �T , their bounded variants ^=k T , ^≤k T , and �≤k T

(where k ∈ N), and the coBüchi objective ^�T . As each of

the above objectives φ is a measurable set, the probability

Prσ ,τ
d0
(φ) that φ is satisfied along a play with initial distribu-

tion d0 and strategies σ for player 1 and τ for player 2 is well

defined [34]. In particular, we say that player 1 is almost-sure

winning from an initial distribution d0 for a state-based ob-

jective φ if he has a strategy to win with probability 1, that

is ∃σ ∈ Σ · ∀τ ∈ Θ : Prσ ,τ
d0
(φ) = 1.

Distribution-based objectives. An alternative view is to con-

sider probabilistic systems as generators of sequences of

probability distributions (over states) [24]. We denote by

Gσ ,τ
d0

the outcome sequence d0,d1, . . . where di ∈ D(Q) is,

intuitively, the probability distribution over states after i

rounds defined, for all q ∈ Q , by:

di (q) = Prσ ,τ
d0
(^=i {q}) =

∑

ρ ∈Pref(G)

|ρ |=i

Last(ρ)=q

Prσ ,τ
d0
(Cyl(ρ)).

For a Dirac distribution d0 = 1q , we often write Gσ ,τq

instead of Gσ ,τ1q
. We also sometimes omit the subscript d0

when the initial distribution is clear from the context. We de-

note by Gσ ,τ
d0
(T) the sequence of numbers d0(T),d1(T),

Distribution-based objectives, in this alternative seman-

tics, are sets of infinite sequences of distributions over states.

In particular, given a set T ⊆ Q of target states, synchroniz-

ing objectives informally require that the probability mass

in T tends to 1 (or is equal to 1) in a sequence (dk)k ∈N, in

either all, some, infinitely many, or all but finitely many

positions [18]. For 0 ≤ ε ≤ 1, we say that a sequence

d̄ = d0d1 . . . of probability distributions is, always, even-

tually, weakly, or strongly (1 − ε)-synchronizing in T if

di (T) ≥ 1 − ε , respectively, for all i ≥ 0, for some i ≥ 0,

for infinitely many i’s, or for all but finitely many i’s.

For each synchronizing mode λ ∈ {always, event ,

weakly, stronдly}, we consider winning modes that require

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel Laurent Doyen

either that ε equals 0 (sure winning mode), or that ε tends

to 0 (almost-sure winning mode).

We say that player 1 is:

• sure winning for a synchronizing mode λ in T from

an initial distribution d0 if he has a strategy to ensure

1-synchronizing in T , or ∃σ ∈ Σ · ∀τ ∈ Θ : Gσ ,τ
d0

is

1-synchronizing in T in mode λ.

• almost-sure winning for a synchronizing mode λ in

T from an initial distribution d0 if he has a strategy

to ensure (1 − ε)-synchronizing in T for all ε > 0, or

∃σ ∈ Σ ·∀τ ∈ Θ ·∀ε > 0 : Gσ ,τ
d0

is (1−ε)-synchronizing

in T in mode λ.

We denote by 〈〈1〉〉λsure(G,T) (or simply 〈〈1〉〉λsure(T) when

the game G is clear from the context) the set of distributions

d from which player 1 is sure winning for synchronizing

mode λ in T ; we define analogously the set 〈〈1〉〉λ
almost
(G,T),

and we say that player 1 is (sure or almost-sure) winning

from d , or that d is (sure or almost-sure) winning. If d <

〈〈1〉〉λ
almost
(G,T), we say that player 2 can spoil player 1 from

d for almost-sure synchronizing in mode λ.

It immediately follows from the definitions that for all

λ ∈ {always, event ,weakly, stronдly}, and for all µ ∈ {sure,

almost}:

• 〈〈1〉〉
always
µ (T) ⊆ 〈〈1〉〉

strongly
µ (T) ⊆ 〈〈1〉〉

weakly
µ (T) ⊆

〈〈1〉〉eventµ (T), and

• 〈〈1〉〉λsure(T) ⊆ 〈〈1〉〉
λ
almost
(T).

In general, these inclusions cannot be strengthened to

equality even for MDPs [18], except for always synchroniz-

ing where we show that 〈〈1〉〉
always
sure (T) = 〈〈1〉〉

always

almost
(T) holds

in stochastic games.

We are interested in computing the sets 〈〈1〉〉λsure(G,T)

and 〈〈1〉〉λ
almost
(G,T) for the four synchronizing modes

λ ∈ {always, event ,weakly, stronдly}, which we generi-

cally call winning regions. It is sufficient to have an algo-

rithm that computes the set of states q such that 1q is win-

ning: to know if a distribution d is winning, consider a new

state qd with stochastic transitions δ (qd ,a,b)(q) = d(q)

for all q ∈ Q , and all a,b ∈ A. We consider the member-

ship problem, which is to decide, given a game G, a set T ,

and a state q, whether 1q ∈ 〈〈1〉〉
λ
sure(G,T) (resp., whether

1q ∈ 〈〈1〉〉
λ
almost
(G,T)).

Attractors and subgames. Let CPre : 2Q → 2Q be the

controllable predecessor operator defined for all s ⊆ Q by

CPre(s) = {q ∈ Q | ∃a ∈ A · ∀b ∈ A : Supp(δ (q,a,b)) ⊆ s}.

Intuitively, CPre(s) is the set of states from which player 1

can ensure to be in s after one round, regardless of the action

chosen by player 2 and of the outcome of the probabilistic

transition.

For a set T ⊆ Q , the attractor A�r(T ,G) is the least fixed

point of the operator x 7→ CPre(x) ∪T , that is A�r(T ,G) =
⋃

i≥0CPre
i (T) (whereCPre0(T) = T). It is the set of states in

G from which player 1 has a (pure memoryless) strategy to

ensure eventually reachingT [33]. We refer to such a mem-

oryless strategy as an attractor strategy.

Let PosPre1 : 2Q → 2Q be the positive predecessor op-

erator for player 1 defined for all s ⊆ Q by PosPre1(s) =

{q ∈ Q | ∃a ∈ A · ∀b ∈ A : Supp(δ (q,a,b)) ∩ s , ∅},

and let PosPre2 : 2Q → 2Q be defined symmetrically by

PosPre2(s) = {q ∈ Q | ∀a ∈ A·∃b ∈ A : Supp(δ (q,a,b))∩s ,

∅}.

For a set T ⊆ Q , the positive attractor PosA�ri (T ,G) for

player i (i = 1, 2) is the least fixed point of the operator

x 7→ PosPrei (x) ∪T . There exists a pure memoryless strat-

egy for player i (referred to as positive-attractor strategy) to

ensure, regardless of the strategy for player 3−i that from all

states in PosA�ri (T ,G), the set T is reached within n = |Q |

steps with positive probability (in fact, bounded probability,

at least ηn where η is the smallest positive probability in the

transitions of G).

A set S ⊆ Q induces a subgame of G if for all q ∈ S ,

there exist aq ,bq ∈ A such that δ (q,aq ,bq)(S) = 1. We

denote by G ↾ [S] = 〈S,A, δS 〉 the subgame induced by S ,

where for all q ∈ S and a ∈ A, if δ (q,a,ba)(S) = 1 for some

ba ∈ A (note that this condition holds for a = aq), then for

all b ∈ A we define δS (q,a,b) = δ (q,a,b) if δ (q,a,b)(S) =

1, and δS (q,a,b) = δ (q,a,ba) if δ (q,a,b)(S) < 1; other-

wise δ (q,a,b)(S) < 1 for all b ∈ A, and then we define

δS (q,a,b) = δS (q,aq ,b) for all b ∈ A. We use this defini-

tion of subgame to keep the same alphabet of actions in ev-

ery state. For instance, the set S = Q \ PosA�ri (T ,G) (for

i = 1, 2) induces a subgame of G.

A set S ⊆ Q is a trap for player 1 in G if for all states

q ∈ S and all actions a ∈ A, there exists b ∈ A such that

δ (q,a,b)(S) = 1. Intuitively, player 2 has a strategy to keep

player 1 trapped in S . Dually, the set S is a trap for player 2

in G if for all states q ∈ S , there exists a ∈ A such that for

all b ∈ A we have δ (q,a,b)(S) = 1. Note that S is a trap for

player 2 if and only if S ⊆ CPre(S). A key property of traps

is that if player i has no winning strategy for some state-

based objective from a state q in a trap S for player i , in the

subgame G ↾ [S], then for the same objective in G player i

has no winning strategy from q.

For deterministic games, the operators CPre and PosPre1
coincide, as well as the attractor A�r(T ,G) and positive

attractor PosA�r1(T ,G), and therefore the set U = Q \

A�r(T ,G) induces a subgame of G.

We recall basic properties derived from the definitions of

the positive attractor, and the analysis of stochastic games

with almost-sure reachability objective [9, 16].

Lemma 1. If a distribution d0 is almost-sure winning for a

reachability objective ^T in a game G, then there exists a

memoryless player-1 strategy σ such that for all ε > 0, there

exists an integer hε such that for all player-2 strategies σ ,

Prσ ,τ
d0
(^≤hεT) ≥ 1 − ε .

Stochastic Games with Synchronizing Objectives LICS ’22, August 2–5, 2022, Be’er Sheva, Israel

Lemma 2. If a distribution d0 is not almost-sure winning for

a reachability objective ^T in a game G, then there exists

a memoryless player-2 strategy τ such that for all player-1

strategies σ , for all i ≥ 0 we have Prσ ,τ
d0
(^=iT) ≤ 1 − η0 · η

n

where η0 = min{d0(q) | q ∈ Supp(d0)} is the smallest positive

probability in the initial distribution d0.

In Lemma 2 it is crucial to notice that the bound η · ηn is

independent of the number i of steps.

Strongly connected component. In a directed graph 〈V , E〉, a

strongly connected component (SCC) is a nonempty set s ⊆ V

such that for allv,v ′ ∈ s , there exists a nonempty path from

v tov ′. Our definition excludes singletons {v} to be an SCC

if there is no self-loop (v,v) in E. The period of an SCC is

the greatest common divisor of the lengths of all its cycles.

3 Sure Synchronizing

In the rest of this paper, when the initial distribution d0 is

irrelevant or clear from the context, we denote the i-th ele-

ment di in the sequence Gσ ,τ
d0
= d0,d1, . . . by G

σ ,τ
i .

For sure winning, only the support of distributions is im-

portant (not the exact value of probabilities). Intuitively for

player 1, the worst case that can happen is that player 2

uses the uniform strategy τu that plays all actions uniformly

at random, in order to scatter the probability mass in as

many states as possible, where τu(ρ)(a) =
1
|A |

for all ρ ∈

Pref(G) and a ∈ A. Formally, given a set T ⊆ Q and an

arbitrary player-1 strategy σ ∈ Σ it is easy to show that

Supp(Gσ ,τi (T)) ⊆ Supp(Gσ ,τui (T)), for all player-2 strategies

τ ∈ Θ and all i ≥ 0.

Therefore, in all synchronizing modes, player 1 is sure

winning if and only if player 1 is sure winning against the

uniform strategy τu for player 2, and computing the sure

winning distributions in stochastic games reduces to the

same problem in MDPs (obtained by fixing τu in G), which

is known [18]. We immediately derive the following results.

Theorem 1. The membership problem for sure always and

strongly synchronizing can be solved in polynomial time, and

pure memoryless strategies are sufficient for player 1.

The membership problem for sure eventually and weakly

synchronizing is PSPACE-complete, and pure strategies with

exponential memory are sufficient (and may be necessary) for

player 1.

Note that when the uniform strategy τu is fixed, the con-

trollable predecessor operator CPre coincides with the pre-

decessor operator used to solve themembership problem for

MDPs [18].

Also note that even in the case of deterministic games,

the winning regions for sure and almost-sure winning do

not coincide, for eventually and weakly synchronizing, as

illustrated by the game Gwin (Figure 1a). The state q1 is

almost-sure winning (as we show in the beginning of Sec-

tion 4.1), but not sure winning for weakly synchronizing in

T = {q1,q3} (e.g., against the uniform strategy for player 2).

We show in Section 4.3 that in deterministic games, the win-

ning regions for sure and almost-sure winning do coincide

for always and strongly synchronizing (even for all stochas-

tic games in the case of always synchronizing).

4 Almost-Sure Synchronizing

We first consider almost-sure weakly synchronizing, which

is the most interesting and challenging case. We present an

algorithm to compute the set 〈〈1〉〉
weakly

almost
(T) andwe show that

pure counting strategies are sufficient for player 1.

4.1 Weakly synchronizing in deterministic games

The key ideas of the algorithm are easier to present in the

special case of deterministic games, and with the assump-

tion that pure counting strategies are sufficient for player 1

(but player 2 is allowed to use an arbitrary strategy). We

show in Section 4.2 how to compute the winning region

for almost-sure weakly synchronizing in general stochas-

tic games, and without any assumption on the strategies of

player 1. It will follow from our results that pure counting

strategies are in fact sufficient for player 1.

Given a deterministic game G = 〈Q,A, δ〉, a selector is

a function α : Q → A, and for a set s ⊆ Q , let δα (s) =

{δ (q,α(q),b) | q ∈ s∧b ∈ A} ⊆ Q . A pure counting strategy

can be viewed as an infinite sequence of selectors. The subset

construction for G is the graph P(G) = 〈V , E〉 where V =

2Q \ {∅} and E = {(s, δα (s)) | s ∈ V ∧α is a selector}. Given

a set T ⊆ Q of target states, and a set s ∈ V , we say that s is

accepting if s ⊆ T (for singletons {q} we simply say that q

is accepting).

The central property of the subset construction P(G) is

that for every sequence of selectors α1,α2, . . . ,αk , the se-

quence s1, s2, . . . , sk+1 such that si+1 = δαi (si) for all 1 ≤

i ≤ k , is a path in P(G) and that for every state q ∈ sk+1,

there exists a play prefix q1 a1b1 q2 . . . qk+1 in G such that

qk+1 = q and qi ∈ si for all 1 ≤ i ≤ k , that is compati-

ble with the given sequence of selectors, ai = αi (qi). The

central property is easily proved by induction on k [10]. Us-

ing König’s Lemma [23], the central property holds for in-

finite sequences, namely for every infinite path s1, s2, . . . in

P(G), there exists an infinite play q1 a1b1 q2 . . . in G such

that qi ∈ si and ai = αi (qi) for all i ≥ 1. We also mention a

simple monotonicity property: if s ⊆ s ′, then δα (s) ⊆ δα (s
′)

for all selectors α .

We illustrate the key technical insights with two exam-

ples. First consider the deterministic gameGwin in Figure 1a,

where the target set is T = {q1,q3}. Only state q2 has a rel-

evant choice for player 1, and only q1 has a relevant choice

for player 2 (for the sake of clarity, we denote by a1,a2 the

actions of player 1, and by b1,b2 the actions of player 2).

Player 1 is almost-sure weakly synchronizing in T from

every state. A winning strategy plays a1 at even rounds,

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel Laurent Doyen

q1

q2 q3

b2

a2

b1

a1

(a) Gwin

q13

q1

q12

q123

q23

q2

q3

a2a1

a1

a2

a1

a2

a2

a1

(b) Subset construction

Figure 1. The deterministic game Gwin where player 1 is

almost-sure weakly synchronizing (from all states), and its

subset construction.

and a2 at odd rounds. Note that without the self-loop on

q2, player 1 is no longer almost-sure weakly synchronizing

in T from q1 (but still from q2 and from q3).

Consider the subset construction in Figure 1b, obtained

by considering all subsets q12 = {q1,q2}, q13 = {q1,q3}, etc.

of Q , and with an edge from s to s ′ if there exists a selector

α : Q → A such that s ′ = δα (s). Intuitively, the selector

describes the actions played by a pure counting strategy of

player 1 at a given round. Figure 1b labels the edges (s, s ′)

with the action played inq2 by the corresponding selector in

s (if relevant, i.e., if q2 ∈ s). Accepting sets s ⊆ T are marked

by a double line.

An accepting strongly connected component is an SCC

containing an accepting set, such as C = {{q2}, {q3}} in

our example. This is a witness that player 1 is almost-sure

weakly synchronizing in T from all states q such that C is

reachable from {q} in P(G). This sufficient condition for

almost-sure winning is not necessary, as player 1 is almost-

sure winning from q1 as well, but the set {q1} cannot reach

an accepting SCC in P(G). However, we will show that if

there is no accepting SCC in the subset construction, then

q1

q2 q3

b2

a2

b1

a1

(a) Glose

q2

q3

q1

q123

q12

q23

q13

a2

a2 a1

a2
a1

a1

a2

a1

(b) Subset construction

Figure 2. The deterministic game Glose where player 1 is

not almost-sure weakly synchronizing (no matter the initial

state), and its subset construction.

there is no state from which player 1 is almost-sure weakly

synchronizing in T .

This situation is illustrated in Figure 2 where the subset

construction for the game Glose contains no accepting SCC,

and player 1 is not almost-sure weakly synchronizing in T

(no matter from which initial state). This is not trivial to see,

and we present the crux of the argument below. Although

player 1 is not almost-sure weakly synchronizing in T , it is

not true either that player 2 can fix a strategy τ in Glose to

prevent player 1 from almost-sure winning for weakly syn-

chronizing in T . This means that in general spoiling strate-

gies can be constructed only after a strategy for the other

player has been fixed, which brings technical difficulty in

the proofs.

Why player 1 can spoil player 2 in Glose . Given an arbitrary

strategy τ for player 2, we can construct a strategy σ for

player 1 such that the outcome sequence Gσ ,τ
lose

(from any ini-

tial distribution) is almost-sure weakly synchronizing in T .

Consider the strategy σloop that always plays a1 (to loop

through q2), and note that in the outcome G
σloop,τ

lose
=

d0,d1, . . . (from any initial distribution d0), the probability

Stochastic Games with Synchronizing Objectives LICS ’22, August 2–5, 2022, Be’er Sheva, Israel

1
···

1

2

··

·
· ·

·
1

2

··

·
· ·

·

1

2

3

·

·

·

·

·

·

1

2

··

·
·

·
·

1

2

··

·
· ·

·

1

2

··

·
· ·

·

1

2

3

·

·

·

·

·

·

1

2

3

·

·

·

·

·
·

1

2

3

·

·

·

·

·
·

1

2

··

·
·

·
·

1

2

··

·
· ·

·

0 1 2 3 4 5 6 7 8 9 10 11

2
3 b1

1
3 b2

b1

1
2 b1

1
2 b2

b1 b1 b1

1
2 b1

1
2 b2

b2 b2 b1 b1

Figure 3. Construction of a spoiling strategy for player 2

(in Glose).

mass in q2 is non-decreasing, hence limk→∞ dk (q2) exists,

which we denote by α(d0). We construct σ to play as fol-

lows, starting with ε = 1
2
: (1) Given ε > 0 and the current

distribution d , play σloop for nε rounds, where nε is such

that dnε (q2) ≥ α(d) − ε , then (2) play a2 in the next round,

and (3) repeat from (1) with ε := ε
2
. In the outcome Gσ ,τ

lose
,

after playing a2, the probability mass in q2 is the probability

mass transferred from q1 in the previous step, which is at

most ε . It follows that the probability mass inT = {q1,q3} is

at least 1− ε . The repetition of this pattern for ε → 0 entails

that Gσ ,τ
lose

is almost-sure weakly synchronizing in T .

Why player 2 can spoil player 1 in Glose . We sketch the crux

of the argument for initial state q1, showing that player 2

can spoil an arbitrary strategy σ : N × Q → A for player 1

(that is pure and counting), which is an infinite sequence of

selectors and thus corresponds to an infinite path from {q1}

in the subset construction (shown in Figure 2b).

Such an infinite path is shown in Figure 3 where an edge

(s, s ′) labeled by a selector α is drawn as the set of edges

(q,q′) such that q ∈ s and q′ = δ (q,α(q),b) for some b ∈ A.

Note that, from some point on, all sets in such a path contain

a non-target state q ∈ Q \ T , and a spoiling strategy for

player 2 must ensure a bounded probability mass in Q \ T ,

at every round from some point on.

In the example, player 2 can ensure a probability mass of
1
3
in state q2 ∈ Q \T from the second round on. In Figure 3,

we put three tokens, each carrying a probability mass of 1
3 ,

in the initial state q1 and we show how the three tokens can

move along the edges to always maintain one token in q2
(after the first round). The choice of which edge from q1 is

taken by a token is made by player 2 with the correspond-

ing action b1 or b2 (the corresponding randomized selector

is shown below the figure for each round – edges are drawn

in gray if no token flows through it). It is easy to show that

the pattern suggested in Figure 3 can be prolonged ad infini-

tum. A key insight is that player 2 should not move a token

from q1 to q2 at every round (which may cause a depletion

of tokens), but only in the rounds where player 1 sends the

probability mass from q2 to q3.

Each token follows a play that is compatible with the

strategy of player 1. The set of three plays that are followed

by the three tokens has the property that in every round

after round 1 at least one of the plays is in q2. We say that

the plays (or the tokens) cover the state q2 from round 2 on.

Note that it would be easy to cover q2 from some round n0
on by using plays of the form (q1)

nq2Q
ω (n = n0,n0+1, . . .),

but this is an infinite set of plays, which would require in-

finitely many tokens and would not allow a positive lower

bound on the probability mass of each token. The key to

cover q2 with a finite number of plays is to reuse the tokens

when possible. It is however not obvious in general how to

construct finitely many such plays, given an arbitrary strat-

egy of player 1.

We show in Lemma 3 that in deterministic games, a fixed

number K of tokens (each representing a probability mass
1
K
) is sufficient for player 2 to spoil any pure counting strat-

egy of player 1, where K = 2 |Q | .

Lemma 3. The following equivalence holds in deterministic

games: there exists a state q from which player 1 has a pure

counting strategy that is almost-sure winning for weakly syn-

chronizing in T if and only if there exist a strongly connected

component C in P(G) and a set s ∈ C that is accepting.

Proof. First, if there exists a strongly connected component

C in P(G) and an accepting set s ∈ C, then there exists an

infinite path s0s1 . . . in P(G) from s0 = s that visits s infin-

itely often. Consider the corresponding sequence of selec-

tors α0α1 . . . (such that si+1 = δαi (si)). It is easy to see that

from all states q ∈ s , the pure counting strategy σ defined

by σ (i,q) = αi (q) is sure (thus also almost-sure) winning for

weakly synchronizing in s ⊆ T .

For the second direction, we prove the contrapositive. As-

sume that no SCC in P(G) contains an accepting set, and

show that from all states q0 no pure counting strategy for

player 1 is almost-sure winning for weakly synchronizing

in T .

Let σ : N → (Q → A) be a pure counting strategy for

player 1, and we construct a spoiling strategy for player 2

from q0. First, consider the sequence s0, s1, . . . defined by

s0 = {q0} and si+1 = δσ (i)(si), and as this sequence is a path

in the subset construction P(G), by our assumption there

exists an index i0 such that si is non-accepting for all i ≥ i0.

Let Reject = Q \T . We have:

si ∩ Reject , ∅ for all i ≥ i0.

By the central property of the subset construction, for every

set si and every state qi ∈ si (in particular for qi ∈ si ∩

Reject if i ≥ i0), there exists a play of length i from q0 to qi
that is compatible with the strategy σ . Player 2 can use such

plays to inject positive probability into qi at every position i .

However, if all those plays form an infinite set (as illustrated

by the plays (q1)
nq2Q

ω in the example of Figure 2a), then

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel Laurent Doyen

player 2 may not be able to guarantee a bounded probability

mass in qi at every round i from some point on.

Now we construct a data structure that will help player 2

to determine their strategy and to construct a finite set Π of

plays compatible with σ in G such that, for all i ≥ i0, there

exists a play π ∈ Π with Last(π (i)) ∈ Reject.

The data structure consists, for each position i ≥ i0, of a

tuple ui = 〈r1, . . . , rk〉 of registers, each storing a nonempty

subset of Q . The number of registers is not fixed (but will

never decrease along the sequence ui0 ,ui0+1, . . .), and for

i = i0 let ui0 = 〈r1〉, thus ui0 consists of one register, and

let r1 = {qi0} where qi0 ∈ si0 ∩ Reject. Each register r in

ui corresponds to one token, and stores the possible states

in which the token can be after i steps by following a play

compatible with σ .

Given ui = 〈r1, . . . , rk 〉, define ui+1 as follows: first, let

r ′j = σ (i)(r j) be the set obtained from r j by following the

selector σ (i) at position i (which is the same selector used

to define si+1 from si). We consider two cases:

1. if all registers are accepting, that is r ′j ∩ Reject =

∅ for all 1 ≤ j ≤ k: let qi+1 ∈ si+1 ∩ Reject and

create a new register r ′
k+1
= {qi+1}, define ui+1 =

〈r ′1, . . . , r
′
k

︸ ︷︷ ︸

accepting

, r ′
k+1
〉;

2. otherwise, some register is non-accepting, and let

j be the largest index such that r ′j ∩ Reject , ∅.

Let qi+1 ∈ r ′j ∩ Reject and we remove the regis-

ter at position j , and replace it by a new register

r ′
k+1
= {qi+1} at the end of the tuple. Define ui+1 =

〈r ′1, . . . , r
′
j−1, r

′
j+1, . . . , r

′
k

︸ ︷︷ ︸

accepting

, r ′
k+1
〉.

In both cases, we say that the parent of a register r ′
l
(for

l ≤ k) that occurs inui+1 is the register rl inui , and that r
′
k+1

has no parent (in the second case above, we say that r ′
k+1

is a

clone child of r j). An ancestor of a register r in ui is either r

or an ancestor of the parent of r (but not of the clone parent

of r). In the sequel, we assume that the registers in a tuple

ui are called r1, r2, . . . with consecutive indices in the order

they appear in ui .

We now state key invariant properties of the sequence

ui0 ,ui0+1, . . . , for all i ≥ i0:

• (consistency property) in every ui , for every register r

in ui we have r ⊆ si ;

• (singleton property) in every ui , the rightmost register

is a singleton containing a non-accepting state;

• (chain property) for all j ≥ i , every chain of regis-

ters (with order defined by the parent relation) from

an ancestor register r in ui to a register r ′ in uj is a

path in the subset construction labeled by the selec-

tors σ (i), . . . ,σ (j);

• (key property) in every ui , if there are k registers at

the right of a register r , then r has at least k ancestors

that are accepting.

It is easy to verify that these properties hold by construction

of ui0 , and of ui+1 from ui (by induction). In particular the

key property holds because whenever a register is appended

(or moved) to the right of a register r , then r is accepting.

By our initial assumption, a register r cannot have more

than 2 |Q | ancestors that are accepting (using the chain prop-

erty). Then it follows from the key property that a tuple ui
cannot have more than 2 |Q | registers, and since the number

of registers is not decreasing, there is an index i∗0 such that

all ui , for i ≥ i∗0 , contain the same number K ≤ 2 |Q | of reg-

isters. We are now ready to construct the set Π, containing

K plays.

For each i > i∗0 , consider the permutation fi on {1, . . . ,K}

that maps index j to k = fi (j) such that rk in ui−1 is the

parent of r j in ui (or clone parent if r j has no parent).

ui−1 = 〈r1, r2, r3, r4, r5〉

ui = 〈r
′
1, r
′
2, r
′
3, r
′
4, r
′
5〉

Figure 4. A permutation on registers.

Following the permutation fi at position i (for i > i∗0), we

can define K equivalence classesC1, . . . ,Ck of registers that

contain exactly one register from each ui : the register r j in

the tuple ui belongs to the class Ck with k = (fi∗0+1 ◦ fi
∗
0+2
◦

· · · ◦ fi)(j), see the illustration in Figure 5. Note in particular

that every rightmost register rK (highlighted in Figure 5),

which is a singleton, belongs to some class.

C1 C2 C3 C4 C5
i∗0

i∗0 + 1

i∗0 + 2

i∗0 + 3

i∗0 + 4

i∗0 + 5

i∗0 + 6

i∗0 + 7

Figure 5. A sequence of permutations on registers.

Using the central property of the subset construction,

from those K classes we construct K infinite plays in G,

all compatible with σ (i∗0),σ (i
∗
0 + 1), . . . , and such that for

all i ≥ i∗0 , for all registers r j in ui , one of the plays is in a

Stochastic Games with Synchronizing Objectives LICS ’22, August 2–5, 2022, Be’er Sheva, Israel

state of r j at position i . In particular, since rK is always a

non-accepting singleton, the constructed plays cover a non-

accepting state at every position i ≥ i∗0.

Given an equivalence class C , consider the register r of

ui inC , and the register r
′ of ui+1 inC . Then, by the central

property of the subset construction, for all states q′ ∈ r ′,

there exists a state q ∈ r such that q′ = δ (q,αi (q),b) for

some action b ∈ A of player 2 (no matter whether r is the

parent or clone parent of r ′). Now consider all singular po-

sitions i where rK (the rightmost, singleton, register) is the

register of ui in C . Between any such two positions i1 < i2,

there exists a (segment of) play in G from the state in the

register rK at position i1 to the state in the register rK at po-

sition i2, that is compatible with the strategy σ (at the corre-

sponding positions i1, i1+1, . . . , i2) using the chain property.

Analogously, from some state in si∗0 (using the consistency

property) there is a segment of play to the state in register

rK at the first singular position i0. The constructed segments

can be concatenated to form a single play, and if this play

is finite, we can prolong it to an infinite play compatible

with σ .

Given the K plays in G constructed in this way from

C1, . . . ,Ck , it is easy to construct a strategy for player 2 that

ensures a probability mass of 1
K

(a token) will move along

each of the K plays (possibly using randomization), and

therefore a probability mass of at least 1
K in a non-accepting

state at every round i ≥ i∗0 , showing that the strategy σ of

player 1 is not almost-sure winning for weakly synchroniz-

ing in T , which concludes the proof. �

In the deterministic game Gwin of Figure 1a, the strongly

connected component C = {{q2}, {q3}} in the subset con-

struction P(Gwin), which contains the accepting set U =

{q2}, shows that player 1 is almost-sure winning from

some state (Lemma 3), namely from q2 and from q3. This

holds even if there is no self-loop on q2. However, whether

player 1 is almost-sure winning fromq1 depends on the pres-

ence of that self-loop: with the self-loop on q2, the period of

the SCC C isp = 1 (see Figure 1b) and player 1 is almost-sure

winning from q1, whereas without the self-loop, the period

of C isp = 2 and player 1 is not almost-sure winning fromq1
(player 2 can inject an equal mass of probability from q1 to

q2 in two successive rounds, and as those masses can never

merge, the probability mass in q2 is always bounded away

from 1). In fact, player 1 needs to ensure that any probabil-

ity mass injected in C is always injected at the same round

(modulo p), where p is the period of C.

To track the number of rounds modulop, define the game

G × [p] that follows the transitions of G and decrements a

tracking counter (modulop) along each transition (Figure 6).

Formally, let G × [p] = 〈Q ′,A, δ ′〉 where Q ′ = Q × {p −

1, . . . , 1, 0} and δ ′ is defined as follows, for all 〈q, i〉, 〈q′, j〉 ∈

q1, 0

q2, 0

q3, 0

b2

b1

(a) Gwin × [1]

q1, 0 q1, 1

q2, 1 q2, 0

q3, 0 q3, 1

b1

b1
b2 b2

(b) G′
win
× [2]

Figure 6. Removal of positive attractor in Gwin × [1] and

G′win × [2], where G
′
win is the variant of Gwin without a self-

loop on q2.

Q ′ and a ∈ A:

δ ′(〈q, i〉,a)(〈q′, j〉) =

{

δ (q,a)(q′) if j = i − 1 mod p,

0 otherwise.

A simple property relating the game G with the games

G × [p] is that player 1 can fix (in advance, regardless of the

strategy of player 2) the value of the counter when synchro-

nization occurs in T .

Lemma 4. Player 1 is almost-sure weakly synchronizing in

T from q in the game G if and only if for all p ≥ 0, there

exists 0 ≤ i ≤ p − 1 such that player 1 is almost-sure weakly

synchronizing inT × {0} from 〈q, i〉 in G × [p].

Given an accepting set U ⊆ T that belongs to an SCC

with period p in P(G), we solve the game G by removing

from G × [p] the attractorW ofU × {0}, and by recursively

solving the subgame of G×[p] induced byQ \W , with target

set T × {0}.

In Gwin, the set U = {q3} belongs to an SCC of period 1,

and its attractor is W = {q2,q3}. After removal of the at-

tractor, the subgame is winning for player 1 (Figure 6a). In

the variant G′win of Gwin without a self-loop on q2, the set

U = {q3} is also in an SCC, but with period 2. After removal

of the attractor to U × [0] in G′win × [2], the subgame is not

winning for player 1 (Figure 6b).

By Lemma 4, solving G with target set T is equivalent to

solving G × [p]with target setT × {0}. However, in general

combining two almost-sure winning strategies constructed

in two different subgames may not give an almost-sure win-

ning strategy (if, for instance, one strategy ensures the prob-

ability mass in T × {0} tends to 1 at even rounds, and the

other strategy at odd rounds). To establish the correctness

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel Laurent Doyen

q

r

s

t

u

x y

b1 b2a1

a2

a1

a2

Figure 7. A deterministic game.

of our solution, note that all states in U × {0} belong to

the (controllable predecessor of the) attractor of U × {0}

in G × [p], and since the period of the SCC containing U

is p, in P(G × [p]) there is a path from U × {0} to itself of

length ℓ = k ·p for all sufficiently large k . See the Frobenius

problem [22] for questions related to computing the largest

k0 such that there is no such path of length ℓ = k0 · p. It

follows that, forW = A�r(U × {0},G × [p]), given a state

〈q, i〉 ∈W and an arbitrary length ℓ0 = i + k · p for k ≥ k0,

player 1 has a strategy to get eventually synchronized in

U × {0} ⊆ T × {0} at round ℓ0 (where the tracking counter

is 0), and by the same argument at any round ℓ1 = ℓ0+k
′ ·p

for k ′ ≥ k0, and so on. That is, for any sequence i0, i1, . . .

such that i j − i j−1 ≥ k0 · p (where i−1 = 0) and i j = i

mod p for all j ≥ 0, player 1 has a strategy from 〈q, i〉 such

that for all outcomes d0,d1, . . . of a strategy of player 2 in

G × [p], we have lim infk→∞ dik (T × {0}) = 1 (thus also

lim supk→∞ dik (T × {0}) = 1).

Intuitively, we can choose the sequence i0, i1, . . . in order

to synchronize the probability mass inW with the outcome

of the strategy constructed in the subgame ofG×[p] induced

by the complement ofW .

Lemma 5. Given a setU in a strongly connected component

of period p in the subset construction P(G) that is accepting

(U ⊆ T), letW = A�r(U × {0},G × [p]) and H = G × [p] ↾

[Q × [p] \W]. We have:

〈〈1〉〉
weakly

almost
(G,T) =

{q ∈ Q | ∃i : 〈q, i〉 ∈W ∪ 〈〈1〉〉
weakly

almost
(H ,T × {0})}.

Lemma 5 suggests a recursive procedure to compute the

almost-sure winning set forweakly synchronizing objective,

shown as Algorithm 1. We illustrate the execution on the

example of Figure 7. First the set U = {y} is accepting and

belongs to an SCC of period p = 2 (line 2) in the subset

construction (line 1). The game H = G × [p] with tracking

counter modulo p = 2 is shown in Figure 8, with the at-

tractorW to U × {0} = {〈y, 0〉} shaded (lines 3-4). In the

q, 0 q, 1

r , 0

r , 1 s, 0

s, 1

t , 0

t , 1 u, 0

u, 1 x , 0

x , 1y, 0

y, 1
a1

a1

b1

b2

a2

a2

b1

b2

a1

a2

a1

a2

Figure 8. The gameHsub computed by Algorithm 1 (line 5)

for the game of Figure 7, where the shaded region is the set

W (line 4), and the setU = {〈y, 0〉} is self-recurrent.

induced subgame (line 5), all states except 〈x , 0〉 and 〈y, 1〉

are winning, which is found in the recursive call (line 6). It

follows that all states (all Dirac distributions) are winning

for player 1, and in fact all distributions that do not contain

both x and y in their support are winning.

We establish the correctness and termination of Algo-

rithm 1 as follows. The correctness straightforwardly fol-

lows from Lemma 5, and we show that the depth of the re-

cursive calls in Solve(G0,T) is bounded by the size |QG0 |

of the state space of G0. This is not immediately obvious,

since the size of the first argument G in a recursive call

may increase (the gameHsub is a subgame ofH , which is p

times bigger than G). However, we claim that an invariant

of the execution of Solve(G0,T0) is that, in all recursive calls

Solve(G,T), the algorithm only needs to consider states of

the first argument G that form a subgame (isomorphic to

a subgame) of G0 × [k] for some k . This holds in the ini-

tial call (take k = 1), and if G is a subgame of G0 × [k],

then the period p computed at line 2 is a multiple of k , and

therefore in all states 〈〈q, i〉, j〉 in (G0 × [k]) × [p] the value

j − i mod k is constant along the transitions. Given the tar-

get states (T × {0}) × {0} we only need to consider states

〈〈q, i〉, j〉 with j−i = 0 mod k , and we can project 〈〈q, i〉, j〉

to 〈q, j〉 without loss. It follows thatH (and alsoHsub used

in the recursive call) can be viewed as a subgame of G0×[p].

Moreover, the attractorW contains at least one state for ev-

ery value of the tracking counter, and therefore the size of

the game G measured as maxi |{q ∈ QG0 | 〈q, i〉 ∈ QG}|

is strictly decreasing. It follows that there are at most |QG0 |

recursive calls in Solve(G0,T).

Given 0 ≤ i ≤ p − 1, the slice at i of a setW ⊆ Q × [p] is

the set {q ∈ Q | 〈q, i〉 ∈W }.

Stochastic Games with Synchronizing Objectives LICS ’22, August 2–5, 2022, Be’er Sheva, Israel

Algorithm 1: Solve(G,T)

Input :G = 〈Q,A, δ〉 is a deterministic game,

T ⊆ Q is a target set.

Output :The set {q ∈ Q | 1q ∈ 〈〈1〉〉
weakly

almost
(G,T)}.

begin

1 if there is an SCC C of P(G) containing a set

U ∈ C with U ⊆ T then
2 p ← period of C ;

3 H ← G × [p] ;

4 W ← A�r(U × {0},H) ;

5 Hsub ←H ↾ [Q × [p] \W] ;

6 return {q ∈ Q | ∃i : 〈q, i〉 ∈

W ∪ Solve(Hsub ,T × {0} \W)} ;

else

7 return ∅ ;

Lemma 6. Algorithm 1 computes the almost-sure winning

Dirac distributions for weakly synchronizing in deterministic

games. It can be implemented in PSPACE.

Theorem 2. The membership problem for almost-sure

weakly synchronizing in deterministic games is PSPACE-

complete.

4.2 Weakly synchronizing in stochastic games

We present an algorithm to compute the almost-sure win-

ning region for weakly synchronizing objectives in stochas-

tic games, which generalizes the result of Section 4.1. This

algorithm has the flavor of the algorithm for deterministic

games, with additional complications due to the probabilis-

tic transitions in the game. The proof is also more technical

because we no longer assume that pure counting strategies

are sufficient for player 1 (but we show that such strategies

are indeed always sufficient for almost-sure winning).

Recall that throughout this section we consider a stochas-

tic game G = 〈Q,A, δ〉 and we denote by n = |Q | the size

of the state space, and by η the smallest positive probability

in the transitions of G. We consider the almost-sure weakly

synchronizing objective defined by a setT ⊆ Q of accepting

states.

Given a setU ⊆ Q , consider the sequenceUi = CPrei (U)

for i ≥ 1 (and U0 = U). Since Ui ⊆ Q , this sequence is ul-

timately periodic. Consider the least k ≥ 0 for which there

exists r > 1 such that Uk = Uk+r , and consider the least

such r , called the period. It is easy to see that k, r ≤ 2n . For

R = Uk we call 〈R, r ,k〉 the periodic scheme of U and we

refer to its elements as R(U) = Uk , r(U) = r , and k(U) = k .

The setU is self-recurrent ifU , ∅ and there exists an index

0 ≤ t < r such that all states inU × {t} are almost-sure win-

ning for the (state-based) reachability objective ^(R × {0})

q s t

x y

a1 a1

b2

a2 a2

b1

Figure 9. A stochastic game G.

in G × [r]. The intuitive meaning of being self-recurrent ap-

pears in Lemma 7 below. Note that in deterministic gamesG,

an accepting set U ⊆ T contained in a strongly connected

component C of P(G) is self-recurrent. Self-recurrent sets

are the key to generalize the result of Lemma 3 to stochas-

tic games. The argument of the proof is more involved, and

presented in the following three lemmas.

Lemma 7. If there exists a self-recurrent set U ⊆ T , then

there exists a state fromwhich player 1 is almost-sure winning

for weakly synchronizing in T .

The almost-sure winning strategy for player 1 con-

structed in the proof of Lemma 7 is pure and counting.

For the converse of Lemma 7, the structure of the argu-

ment is similar to the proof of Lemma 3 for deterministic

games and pure strategies. However, the technical details

are more involved due to stochasticity (in the game graph,

and in the strategy of player 1).

Lemma 8. Let G be a stochastic game. There exists εw > 0

and Nw ∈ N such that the following holds: if there exists no

set U ⊆ T that is self-recurrent, then in G for all player-1

strategies σ , for all but at most Nw rounds i , there exists a

player-2 strategy τ such that Gσ ,τi (T) ≤ 1 − εw .

The proof of Lemma 8 constructs a set of cardinality Nw

containing the positions that player 2 does not cover from

initial distributiond0. Note the order of the quantifiers in the

statement of Lemma 8: player 2 may use different strategies

to cover different positions. We use the structure of argu-

ment of the proof of Lemma 3 to show that a single strategy

of player 2 can cover all but finitely many positions, and we

obtain the generalization of Lemma 3 to stochastic games.

Lemma 9. Let G be a stochastic game. The following equiv-

alence holds: there exists a self-recurrent set U ⊆ T , if and

only if there exists a state from which player 1 is almost-sure

winning for weakly synchronizing in T .

We present Algorithm 2 to compute the almost-sure win-

ning set for weakly synchronizing objectives. We use the

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel Laurent Doyen

Algorithm 2: Solve(H ,p,T)

Input :G = 〈Q,A, δ〉 is a stochastic game, T ⊆ Q is

a target set.

Output :The set {Supp(d) | d ∈ 〈〈1〉〉
weakly

almost
(G,T)}.

begin

1 r ← 1

2 H ← G × [r]

3 S ← Q × [r]

4 K ← S

5 repeat
6 if there is a self-recurrent setU ⊆ T inH ↾ [K]

then

7 Let 〈R, r ,k〉 be the periodic scheme of U

8 H ← G × [r]

9 K , S ← expand(r ,K , S)

10 LetW be the almost-sure winning

region for the (state-based) reachability

objective ^(R × {k mod r }) inH ↾ [K]

11 X ← PosA�r1(W ,H ↾ [K])

12 K ← K \ X

else

13 L← PosA�r2(K ,H ↾ [S])

14 S ← S \ L

15 K ← S

until K = ∅

16 return {s ⊆ Q | ∃i : s × {i} ⊆ S}

game of Figure 9 for illustration. The game contains a self-

recurrent set U = {y} (with period 2), thus player 1 is win-

ning from x and from y. Player 1 is also winning from the

other states: the mass of probability that eventually stays

in t is winning, and the remaining mass of probability can

be injected in U by player 1 at the correct times to be syn-

chronized modulo the period 2, thanks to the consecutive

transitions on a2 from q and from s .

Given the game G as input, the algorithm considers sub-

games ofH = G × [r] where r = 1 initially (lines 1-2), with

state space S , initially S = Q × [1] (line 3). The working vari-

able K (line 4) is used to compute losing states for player 1.

The algorithm proceeds iteratively to construct K , by re-

moving states from S . In the loop of line 5, as long as there is

a self-recurrent setU in the subgameH ↾ [K], we expand the

game H to track the number of rounds modulo the period

ofU (which must be a multiple of r). Given a set S ⊆ Q×[p],

and a period r that is a multiple of p, the r -expansion of S

is the set {〈q, i〉 | 0 ≤ i ≤ r − 1 ∧ 〈q, i mod p〉 ∈ S}. The

expand function computes the r -expansion of S and K at

line 9 (where p = |{i | 〈q, i〉 ∈ S}| can be derived from the

set S). In the expanded game H (line 8), we compute the

q, 0

q, 1

s, 0

s, 1 t , 0

t , 1

x , 0

y, 0x , 1

y, 1

a1

a1

b2

a1

a1

b2

b1 b1

a2

a2

a2

a2

Figure 10.The gameH = G×[2] for the gameG of Figure 9

with the shaded regionX computed by Algorithm 2 (line 11).

almost-sure winning regionW for the (state-based) reacha-

bility objective ^(R × {k}), which we call a core winning re-

gion, where k = k(U) mod r . From the states inW player 1

is almost-sure weakly synchronizing inT×{0} (see the proof

of Lemma 7). Figure 10 shows the 2-expansion of the game

of Figure 9. The value k is such that fromR×{k} player 1 can

inject all the probability mass intoT×{0} (in fact, inU ×{0}).

The next iteration starts after removing from the state

space K the positive attractor for player 1 to W (lines 11-

12), thus ensuringH ↾ [K] is again a subgame (the dark part

of Figure 10). Whenever there is no set U in H ↾ [K] satis-

fying the conditions of Lemma 9, the whole state space K

is losing for player 1 and we remove its positive attractor

for player 2 (lines 13-15). This part of the algorithm is il-

lustrated in the game of Figure 11, where the self-recurrent

set U = {y} (with period 1) induces a core winning region

W = {x ,y}, and in the subgame obtained by removing the

positive attractor for player 1 toW , the set U = {q} is self-

recurrent. The remaining subgame with state space {s} has

q s

x y

b2

a2

a1

b1

Figure 11. A stochastic game.

Stochastic Games with Synchronizing Objectives LICS ’22, August 2–5, 2022, Be’er Sheva, Israel

no self-recurrent set, thus we remove s and its positive at-

tractor {q, s} for player 2, showing that q and s are losing

for player 1.

The loop (line 5) terminates when K = ∅, which can hap-

pen if either the state space S can be partitioned by positive

attractors to core winning regions, and then the whole state

space S is winning for player 1, or if all states in S are losing

(L = S), and then the winning region for player 1 is empty.

The algorithm then returns the slices of the winning region,

which correspond to the support of the winning distribu-

tions.

The correctness of Algorithm 2 is established in

Lemma 10, which also shows PSPACE upper bound for the

membership problem.

Lemma 10. Given a stochastic game and a set T of tar-

get states, Algorithm 2 computes the supports of the distribu-

tions from which player 1 is almost-sure winning for weakly

synchronizing in T . This algorithm can be implemented in

PSPACE.

We obtain the following theorem, where the PSPACE up-

per bound is given by Lemma 10, and the lower bound and

memory requirement hold in the special case of MDPs [18,

Theorem 6].

Theorem 3. The membership problem for almost-sure

weakly synchronizing in stochastic games is PSPACE-

complete, and pure counting strategies are sufficient for

player 1. Infinite memory is necessary in general.

4.3 Other synchronizing objectives

The almost-sure winning region for the other synchronizing

objectives can be computed relatively easily.

Theorem 4. The membership problem for almost-sure al-

ways and strongly synchronizing can be solved in polyno-

mial time, and pure memoryless strategies are sufficient for

player 1.

The membership problem for almost-sure eventually and

weakly synchronizing is PSPACE-complete, and pure count-

ing strategies are sufficient for player 1. Infinite memory is

necessary in general.

5 Conclusion

Stochastic games with synchronizing objectives combine

stochasticitywith the presence of an adversary and a flavour

of imperfect information, which together tend to bring un-

decidability in a continuous setting [25, 29]. The form of

imperfect information in these games differs from the tradi-

tional setting where the strategy of player 1 is uniform (the

same action is played in all states) [3, 13]. Here, player 1

can see the local state of the game, but needs to enforce a

global objective defined on state distributions, which are not

visible to player 1. Beyond decidability, it is perhaps surpris-

ing that the membership problem for games is no harder

than forMDPs (PSPACE-complete), although the proof tech-

niques are significantly more involved, mainly due to the

presence of an adversary, and the lack of determinacy.

The main question raised by this model is whether it is

possible to extend it with a form of communication, while

remaining decidable. This would bring us closer to a wide

range of applications in synthetic biology [28, 35] and chem-

ical reaction networks [8].

Acknowledgment. The author is grateful to Matthias

Függer for pointing out relevant references in the literature

on synthetic biology, and to Mahsa Shirmohammadi and

Marie van den Bogaard for preliminary discussions about

games with synchronizing objectives and for inspiring the

example of Figure 2.

References
[1] M. Agrawal, S. Akshay, B. Genest, and P. S. Thiagarajan. 2012. Ap-

proximate Verification of the Symbolic Dynamics of Markov Chains.

In Proc. of LICS: Logic in Computer Science. IEEE, 55–64.

[2] S. Akshay, B. Genest, and N. Vyas. 2018. Distribution-based objectives

for Markov Decision Processes. In Proc. of LICS: Logic in Computer

Science. ACM, 36–45.

[3] C. Baier, M. Größer, and N. Bertrand. 2012. Probabilistic ω-automata.

Journal of the ACM 59, 1 (2012), 1:1–1:52.

[4] C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. MIT.

[5] N. Bertrand, M. Dewaskar, B. Genest, and H. Gimbert. 2017. Control-

ling a Population. In Proc. of CONCUR: Concurrency Theory (LIPIcs,

Vol. 85). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 12:1–

12:16.

[6] N. Bertrand, B. Genest, and H. Gimbert. 2017. Qualitative Determi-

nacy and Decidability of Stochastic Games with Signals. Journal of

the ACM 64, 5 (2017), 33:1–33:48.

[7] J. R. Büchi. 1962. On a decision method in restricted second order

arithmetic. In Proc. of International Congress of Logic, Methodology and

Philisophical Science 1960. Stanford University Press, 1–11.

[8] L. Cardelli, M. Kwiatkowska, and L. Laurenti. 2018. Programming

discrete distributions with chemical reaction networks. Nat. Comput.

17, 1 (2018), 131–145.

[9] K. Chatterjee. 2007. Stochastic ω-regular Games. Ph. D. Dissertation.

University of California, Berkeley.

[10] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. 2007. Algo-

rithms for Omega-regular Games of Incomplete Information. Logical

Methods in Computer Science 3, 3:4 (2007).

[11] K. Chatterjee and T. A. Henzinger. 2012. A survey of stochastic ω-

regular games. J. Comput. System Sci. 78, 2 (2012), 394–413.

[12] A. Church. 1963. Logic, arithmetics, and automata. In Proc. of Interna-

tional Congress ofMathematicians, 1962. InstitutMittag-Leffler, 23–35.

[13] T. Colcombet, N. Fijalkow, and P. Ohlmann. 2020. Controlling a Ran-

dom Population. In Proc. of FoSSaCS: Foundations of Software Science

and Computation Structures (LNCS 12077). Springer, 119–135.

[14] I. D. Couzin. 2009. Collective cognition in animal groups. Trends in

cognitive sciences 13, 1 (2009), 36–43.

[15] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. 2005. Effective

leadership and decision-making in animal groups on themove. Nature

433 (2005), 513–516.

[16] L. de Alfaro, T. A. Henzinger, and O. Kupferman. 2007. Concurrent

reachability games. Theoretical Computer Science 386, 3 (2007), 188–

217.

[17] L. Doyen. 2022. Stochastic Games with Synchronizing Objectives.

CoRR abs/2202.12767 (2022).

LICS ’22, August 2–5, 2022, Be’er Sheva, Israel Laurent Doyen

[18] L. Doyen, T. Massart, and M. Shirmohammadi. 2019. The Complexity

of Synchronizing Markov Decision Processes. J. Comput. System Sci.

100 (2019), 96–129.

[19] M. Elowitz and S. Leibler. 2000. A synthetic oscillatory network of

transcriptional regulators. Nature 403, 335-338 (2000).

[20] J. Esparza. 2014. Keeping a Crowd Safe: On the Complexity of Pa-

rameterized Verification (Invited Talk). In Proc. of STACS: Symposium

on Theoretical Aspects of Computer Science (LIPIcs, Vol. 25). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 1–10.

[21] V. V. Isaeva. 2012. Self-organization in biological systems. Biology

Bulletin of the Russian Academy of Sciences 39 (2012), 110–118.

[22] R. Kannan. 1992. Lattice translates of a polytope and the Frobenius

problem. Combinatorica 12 (1992), 161–177.

[23] D. König. 1936. Theorie der endlichen und unendlichen Graphen.

Akademische Verlagsgesellschaft, Leipzig.

[24] V. A. Korthikanti, M. Viswanathan, G. Agha, and Y. Kwon. 2010. Rea-

soning about MDPs as Transformers of Probability Distributions. In

Proc. of QEST: Quantitative Evaluation of Systems. IEEE Computer So-

ciety, 199–208.

[25] O. Madani, S. Hanks, and A. Condon. 2003. On the undecidability of

probabilistic planning and related stochastic optimization problems.

Artif. Intell. 147, 1-2 (2003), 5–34.

[26] D. A. Martin. 1998. The determinacy of Blackwell games. The Journal

of Symbolic Logic 63, 4 (1998), 1565–1581.

[27] C. J. Myers. 2016. Engineering genetic circuits. CRC Press.

[28] A. A. K. Nielsen, B. S. Der, J. Singh, P. Vaidyanathan, V. Paralanov,

E. A. Strychalski, D. Ross, D. Densmore, and C. A. Voigt. 2016. Genetic

circuit design automation. Science 352(6281), aac7341 (2016).

[29] A. Paz. 1971. Introduction to probabilistic automata. Academic Press.

[30] A. Pnueli and R. Rosner. 1990. Distributed Reactive Systems are hard

to Synthesize. In Proc. of FOCS: Foundation of Computer Science. 746–

757.

[31] John H. Reif. 1984. The complexity of two-player games of incomplete

information. J. Comput. System Sci. 29, 2 (1984), 274–301.

[32] S. Schewe. 2014. Distributed synthesis is simply undecidable. Inf.

Process. Lett. 114, 4 (2014), 203–207.

[33] W. Thomas. 1997. Languages, Automata, and Logic. In Handbook of

Formal Languages. Vol. 3, Beyond Words. Springer, Chapter 7, 389–

455.

[34] M. Y. Vardi. 1985. Automatic Verification of Probabilistic Concurrent

Finite-State Programs. In Proc. of FOCS: Foundations of Computer Sci-

ence. IEEE Computer Society, 327–338.

[35] O. Vo, H.-M. Lee, and D. Na. 2019. Synthetic Bacteria for Therapeutics.

Journal of Microbiology and Biotechnology 29, 6 (2019), 845–855.

	Abstract
	1 Introduction
	2 Definitions
	3 Sure Synchronizing
	4 Almost-Sure Synchronizing
	4.1 Weakly synchronizing in deterministic games
	4.2 Weakly synchronizing in stochastic games
	4.3 Other synchronizing objectives

	5 Conclusion
	References

