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We consider two-player stochastic games played on a finite graph for infinitely many rounds. Stochastic
games generalize both Markov decision processes (MDP) by adding an adversary player, and two-player
deterministic games by adding stochasticity. The outcome of the game is a sequence of distributions over
the graph states, representing the evolution of a population consisting of a continuum number of identical
copies of a process modeled by the game graph. We consider synchronization objectives, which require the
probability mass to accumulate in a set of target states, either always, once, infinitely often, or always after
some point in the outcome sequence; and the winning modes of sure winning (if the accumulated probability
is equal to 1) and almost-sure winning (if the accumulated probability is arbitrarily close to 1).

We present algorithms to compute the set ofwinning distributions for each of these synchronizationmodes,
showing that the corresponding decision problem is PSPACE-complete for synchronizing once and infinitely
often, and PTIME-complete for synchronizing always and always after some point. These bounds are remark-
ably in line with the special case ofMDPs, while the algorithmic solution and proof technique are considerably
more involved, even for deterministic games. This is because those games have a flavour of imperfect infor-
mation, in particular they are not determined and randomized strategies need to be considered, even if there
is no stochastic choice in the game graph. Moreover, in combination with stochasticity in the game graph,
finite-memory strategies are not sufficient in general.
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1 INTRODUCTION

Stochastic games are a central model to solve synthesis problems for reactive systems [11, 17],
which consist of a nonterminating finite-state program receiving input from an arbitrary, possibly
stochastic, environment. The goal of synthesis is to construct a program that satisfies with the
largest possible probability a given logical specification regardless of the behaviour of the environ-
ment. In this context, the qualitative analysis is to decide if the specification can be satisfied with
probability 1, also called almost-surely, and the quantitative analysis is to decide if the specification
can be satisfied with probability greater than a given threshold.
Synthesis naturally reduces to solving a two-player stochastic game on a graph, where the log-

ical specification defines the objective of the game as a language of infinite words, representing
the set of infinite paths through the graph that are winning for one player. A wealth of results
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2 Laurent Doyen

are known for stochastic games with perfect information, where the players are fully informed
about the state of the game graph [15], such as Martin’s determinacy result and the existence of
pure (non-randomized) ε-optimal strategies for Borel objectives [34], as well as decidability for
ω-regular objectives, see Chatterjee and Henzinger’s survey [15] for details and references.

The assumption of perfect information is not realistic in systems consisting of several compo-
nents where each component has no access to the internal state of the other components. Models
of gameswith imperfect information are notoriously more complicated to solve [39], and, combined
with the probabilistic and adversarial aspects of stochastic games in general lead to undecidability,
even for the simple class of reachability objectives. For instance, distributed games are undecidable,
even without stochasticity [38, 40], and partial-observation games are undecidable, even without
adversary, for quantitative analysis of finitary objectives [33, 37] and for qualitative analysis of
infinitary objectives [4]; randomized strategies are more powerful than pure strategies [14], and
determinacy no longer holds [7]. Undecidability and lack of determinacy also occur in stochastic
gameswith objective defined by a language of infinite trees, such as branching-time objectives [10]
and hyperproperties [1, 24], where the players can fully observe the current local execution but
not the course of branching concurrent executions.
Recent works proposed new decidable models with a flavour of imperfect information, for the

control of a large population of identical processes, modeled as a finite-state machine. The global
state of the game is a distribution over the local states of the processes, and the specification
describes which sequences of distributions are winning. The distributions can be discrete [2, 18]
or continuous [3, 32]. The control may be applied uniformly, independently of the local state of
each process, as in non-deterministic [6], and probabilistic automata [18], or it may depend on
the local history of states, as in Markov decision processes (MDPs) [3, 25] and branching-time
specifications [10]. In both cases imperfect information arises: either because the control is uniform
(global), thus not aware of the local state of individual processes, or because the control is local,
thus not aware of the global states on which the specification is defined.
In this paper, we consider the control problem for a continuous population of processes modeled

as a stochastic gamewith local control, and objective defined by finitary and infinitary synchroniza-
tion properties [6, 18, 25]. Informally, synchronization happens in a sequence of distributions when
(almost) all processes are synchronously in a set of designated target states, that is when, either for
ε = 0, or for all ε > 0, there is a distribution in the sequence where the probability mass in the tar-
get states is at least 1 − ε . We consider finitary synchronization objectives where synchronization
should happen once or forever along the sequence of distributions, called respectively eventually

and always synchronizing; and infinitary objectives where synchronization should happen infin-
itely often or eventually forever, called respectively weakly and strongly synchronizing [25]. We
distinguish the sure winning mode for ε = 0, and the almost-sure winning mode for ε → 0 (where
the synchronization objective must be satisfied for all ε > 0).
The most interesting and challenging objectives are eventually and weakly synchronizing, anal-

ogous to reachability and Büchi objectives. For those objectives, it is known that finite memory
is not sufficient for almost-sure winning, already in MDPs [25], and determinacy does not hold.
Therefore, both the construction of a winning strategy (to show that player 1 is almost-sure win-
ning), and the construction of a spoiling strategy for the adversary (to show that player 1 is not
almost-sure winning) are non trivial. In particular, the traditional approach of constructing a win-
ning strategy for player 2 for the complement of the objective to obtain a spoiling strategy cannot
work. The construction of a spoiling strategy must be carried out after fixing an arbitrary infinite-
memory strategy for player 1, which is a substantial complication. This is the main technical chal-
lenge to prove the correctness of our algorithm. We show that the control problem for eventually
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Stochastic Games with Synchronization Objectives 3

and weakly synchronizing is PSPACE-complete. For always and strongly synchronizing, a simple
reduction to traditional safety and coBüchi stochastic games induces a polynomial-time solution.

Applications and Related Works. The main interest of this contribution lies in the combination of
adversarial, stochastic, and infinitary aspects with a flavour of imperfect information in a decidable
model. The works on (discrete) parameterized control considered finitary synchronization objec-
tives (reachability of a synchronized distribution), either with an adversary [6], or with stochastic-
ity [18], but notwith both.With continuous distributions, the centralmodel that has been studied is
MDPs, thuswith stochasticity but no adversary, either for finitary [3] or infinitary objectives [2, 25].
The solution of the control problem studied in this paper is known for MDPs [25].

Like in all the above previous works, the main limitation of this population model is the absence
of communication between the processes. While communication plays a central role in distributed
programming applications [27], self-organization and coordinated behaviour can emerge from
large crowds of individuals with limited sensing ability, without signaling, and without central-
ized control [20, 21]. The highly developed local control necessary to achieve a complex collective
behaviour may emerge naturally [28] or be engineered [35].
The line of work followed in this paper can also be viewed as an attempt to propose decidable

models that are still rich enough to describe interesting natural phenomena. Many systems in
natural computing exhibit several instances of the same anonymous process (without pre-defined
identity or hierarchy), from particle physics to flock of birds. Examples of biological systems such
as yeast [3, 6], and simple chemical systems [32] illustrate the synthesis applications of this model.
The same principle underlies synthetic biology where a local control program is executed in ev-
ery instance of the process [26, 36]. In more complex systems, the computational mechanisms
behind local decision-making towards global behaviours have multiple origins that require more
sophisticated computational models [21].

2 DEFINITIONS

A probability distribution on a finite set S is a function d : S → [0, 1] such that
∑

s ∈S d(s) = 1. The
support of d is the set Supp(d) = {s ∈ S | d(s) > 0}. We denote by D(S) the set of all probability
distributions on S .
Given a set T ⊆ S , let d(T ) =

∑

s ∈T d(s). For T , ∅, the uniform distribution on T assigns
probability 1

|T |
to every element inT . Given s ∈ S , we denote by 1s the Dirac distribution on s that

assigns probability 1 to s (which we often identify with s).

Stochastic games. A two-player stochastic game (or simply, a game) G = 〈Q,A, δ〉 consists of a
finite set Q of states, a finite nonempty set A of actions, and a probabilistic transition function
δ : Q × A × A → D(Q). We typically denote by n = |Q | the size of the state space, and by η the
smallest positive probability in the transitions of G.
From an initial state q0 ∈ Q , the game is played in (infinitely many) rounds as follows. Each

round starts in a state qi ∈ Q , the first round starts in the initial state q0. In each round, player 1
chooses an action a ∈ A, and then given a, player 2 chooses an action b ∈ A. Given the state qi in
which the round started, the next round starts in qi+1 with probability δ (qi ,a,b)(qi+1). Note that
the game is turn-based as player 2 sees the action chosen by player 1 before playing.
A state q is a player-1 state if δ (q,a,b) = δ (q,a,b ′) for all a,b,b ′ ∈ A, and it is a player-2 state

if δ (q,a,b) = δ (q,a′,b) for all a,a′,b ∈ A. We write δ (q,a,−) or δ (q,−,b) to emphasize and recall
that q is a player-1 or player-2 state. In figures, player-1 states are shown as circles, player-2 states
as boxes (except in Figure 1 where boxes emphasize the action choices of player 2 within a round).
The value of the transition probabilities are not shown on figures, but diamonds represent the
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4 Laurent Doyen

probabilistic choices (the main results of this paper are independent of the exact value of transition
probabilities).
Classical special cases of stochastic games include Markov decision processes (MDPs), also

called one-player stochastic games, where all states are player-1 states; adversarial MDPs where
all states are player-2 states; and deterministic games where δ (q,a,b) is a Dirac distribution for all
q ∈ Q and all a,b ∈ A.

Note that it is not important that the action set A is the same for both players. For example, given
two nonempty action sets A1 and A2, we can simulate a transition function δ12 : Q × A1 × A2 →

D(Q), by defining A = A1 ∪ A2 and, considering fixed actions a0 ∈ A1, and b0 ∈ A2, by defining
δ (q,a,b) = δ12(q,a

′,b ′) where a′ = a if a ∈ A1, and a′ = a0 otherwise, and b ′ = b if b ∈ A2, and
b ′ = b0 otherwise.

A play in G is an infinite sequence π = q0 a0b0 q1a1b1 q2 . . . ∈ (QAA)ω such that
δ (qi ,ai ,bi )(qi+1) > 0 for all i ≥ 0. The prefix q0 a0b0 q1 . . . qk of the play π is denoted by π (k),
its length is |π (k)| = k and its last element is Last(π (k)) = qk . The set of all plays in G is denoted
by Play(G), and the set of corresponding finite prefixes (or histories) is denoted by Pref(G).

Strategies. A strategy for player 1 in G is a function σ : Pref(G) → D(A), and for player 2 it is a
function τ : Pref(G) × A → D(A). We denote by Σ, and Θ, the sets of all player-1 strategies, and
all player-2 strategies, respectively. A strategy σ for player 1 is pure if σ (ρ) is a Dirac distribution
for all ρ ∈ Pref(G); it is counting if |ρ | = |ρ ′ | and Last(ρ) = Last(ρ ′) implies σ (ρ) = σ (ρ ′)

for all ρ, ρ ′ ∈ Pref(G); and it is memoryless if Last(ρ) = Last(ρ ′) implies σ (ρ) = σ (ρ ′) for all
ρ, ρ ′ ∈ Pref(G). We view deterministic strategies for player 1 as functions σ : Pref(G) → A, and
counting strategies as functions σ : N ×Q → D(A).
A strategy σ (for player 1) uses finite memory if there exists a right congruence ≈ of finite index

(i.e., that can be generated by a finite-state transducer) over Pref(G) such that ρ ≈ ρ ′ implies
σ (ρ) = σ (ρ ′). We omit analogous definitions of pure, counting, memoryless, and finite-memory
strategies for player 2.

State-based objectives. The traditional view is to consider the semantics of probabilistic systems as
a probability distribution over sequences (of interleaved states and actions), i.e., over plays, where
the initial state is drawn from a distribution d0 ∈ D(Q).
We denote by Prσ ,τ

d0
the standard probability measure on the sigma-algebra over the set of (in-

finite) plays, generated by the cylinder sets spanned by the (finite) prefixes of plays [5]. Given a
prefix ρ = q0 a0b0 q1 . . . qk , the cylinder set Cyl(ρ) = {π ∈ Play(G) | π (k) = ρ} has probability:

Prσ ,τ
d0
(Cyl(ρ)) = d0(q0) ·

k−1∏

i=0

σ (ρ(i))(ai) · τ (ρ(i),ai )(bi ) · δ (qi ,ai ,bi )(qi+1).

We say that ρ is compatible with σ (from d0) if Pr
σ ,τ
d0
(Cyl(ρ)) > 0 for some player-2 strategy τ .

State-based objectives, in this traditional semantics, are sets of plays. We consider the following
state-based objectives, expressed by LTL formulas [5] where T ⊆ Q is a set of target states: the
reachability and safety objectives ^T and �T , their bounded variants ^=k T , ^≤k T , and �≤k T
(where k ∈ N), and the coBüchi objective ^�T . As each of the above objectives φ is a measurable
set, the probability Prσ ,τ

d0
(φ) thatφ is satisfied along a play with initial distribution d0 and strategies

σ for player 1 and τ for player 2 is well defined [44]. In particular, we say that player 1 is almost-

sure winning from an initial distribution d0 for a state-based objective φ if he has a strategy to win
with probability 1, that is ∃σ ∈ Σ · ∀τ ∈ Θ : Prσ ,τ

d0
(φ) = 1.

Distribution-based objectives. An alternative view is to consider probabilistic systems as generators
of sequences of probability distributions (over states) [32].We denote byGσ ,τ

d0
the outcome sequence
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Stochastic Games with Synchronization Objectives 5

d0,d1, . . . where di ∈ D(Q) is, intuitively, the probability distribution over states after i rounds
defined, for all q ∈ Q , by:

di (q) = Prσ ,τ
d0
(^=i {q}) =

∑

ρ ∈Pref(G)

|ρ |=i

Last(ρ )=q

Prσ ,τ
d0
(Cyl(ρ)).

For a Dirac distribution d0 = 1q , we often write Gσ ,τq instead of Gσ ,τ1q
. We also sometimes omit

the subscript d0 when the initial distribution is clear from the context. GivenT ⊆ Q , we denote by
Gσ ,τ
d0
(T ) the sequence of numbers d0(T ),d1(T ), . . ..

Distribution-based objectives, in this alternative semantics, are sets of infinite sequences of dis-
tributions over states. In particular, given a set T ⊆ Q of target states, synchronization objectives

informally require that the probability mass inT tends to 1 (or is equal to 1) in a sequence (dk )k ∈N,
in either all, some, infinitely many, or all but finitely many positions [25]. For 0 ≤ ε ≤ 1, we say
that a sequence d̄ = d0d1 . . . of probability distributions is, always, eventually, weakly, or strongly
(1 − ε)-synchronizing in T if di (T ) ≥ 1 − ε , respectively, for all i ≥ 0, for some i ≥ 0, for infinitely
many i’s, or for all but finitely many i’s.
For each synchronization mode λ ∈ {always, event ,weakly, stronдly}, we consider winning

modes that require either that ε equals 0 (sure winning mode), or that ε tends to 0 (almost-sure
winning mode).

We say that player 1 is:

• sure winning for a synchronization mode λ in T from an initial distribution d0 if he has a
strategy to ensure 1-synchronizing in T , or ∃σ ∈ Σ · ∀τ ∈ Θ : Gσ ,τ

d0
is 1-synchronizing in T

in mode λ.
• almost-sure winning for a synchronization mode λ in T from an initial distribution d0 if he
has a strategy to ensure (1− ε)-synchronizing inT for all ε > 0, or ∃σ ∈ Σ ·∀τ ∈ Θ · ∀ε > 0 :
Gσ ,τ
d0

is (1 − ε)-synchronizing in T in mode λ.

We denote by 〈〈1〉〉λsure(G,T ) (or simply 〈〈1〉〉λsure(T ) when the game G is clear from the context)
the set of distributions d from which player 1 is sure winning for synchronization mode λ in T ;
we define analogously the set 〈〈1〉〉λ

almost
(G,T ), and we say that player 1 is (sure or almost-sure)

winning from d , or that d is (sure or almost-sure) winning. If d < 〈〈1〉〉λ
almost
(G,T ), we say that

player 2 can spoil player 1 from d for almost-sure synchronizing in mode λ.
It immediately follows from the definitions that for all λ ∈ {always, event ,weakly, stronдly},

and for all µ ∈ {sure,almost}:

• 〈〈1〉〉alwaysµ (T ) ⊆ 〈〈1〉〉stronglyµ (T ) ⊆ 〈〈1〉〉weaklyµ (T ) ⊆ 〈〈1〉〉eventµ (T ), and

• 〈〈1〉〉λsure(T ) ⊆ 〈〈1〉〉
λ
almost
(T ).

In general, these inclusions cannot be strengthened to equality even for MDPs [25], except for

always synchronizing where we show that 〈〈1〉〉alwayssure (T ) = 〈〈1〉〉
always

almost
(T ) holds in stochastic games

(Lemma 11 in Section 4.3).
We are interested in computing the sets 〈〈1〉〉λsure(G,T ) and 〈〈1〉〉

λ
almost
(G,T ) for the four syn-

chronization modes λ ∈ {always, event ,weakly, stronдly}, which we generically call winning
regions. It is sufficient to have an algorithm that computes the set of states q such that 1q is win-
ning: to know if a distribution d is winning, consider a new state qd with stochastic transitions
δ (qd ,a,b)(q) = d(q) for all q ∈ Q , and all a,b ∈ A. We consider the membership problem, which
is to decide, given a game G, a set T , and a state q, whether 1q ∈ 〈〈1〉〉λsure(G,T ) (resp., whether
1q ∈ 〈〈1〉〉λalmost

(G,T )).
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6 Laurent Doyen

s

q

(a) q ∈ CPre(s)

s

q

(b) q ∈ PosPre1(s)

s

q

(c) q ∈ PosPre2(s)

Fig. 1. The predecessor operators.

Superposition of strategies. We use the following property in MDPs: given two strategies σ1, σ2 in
an MDPM, for all 0 ≤ α ≤ 1, there exists a strategy σ such thatMσ

= α · Mσ1
+ (1 − α) · Mσ2

(for MDPs, we omit the strategy of the second player in all notations). We say that σ is obtained
by superposition of σ1 and σ2, and we denote it by α · σ1 + (1 − α) · σ2. This notation is slightly
misleading, in the sense that in general σ (ρ)(a) , α ·σ1(ρ)(a)+ (1−α) ·σ2(ρ)(a). In fact, σ (ρ)(a) =
α ·Prσ1 (Cyl(ρ ))·σ1(ρ )(a)+(1−α )·Prσ2 (Cyl(ρ ))·σ2(ρ )(a)

α ·Prσ1 (Cyl(ρ ))+(1−α )·Prσ2 (Cyl(ρ )) . This property will be useful in the (infinite-state) MDPs
obtained from games after fixing a strategy of player 1.

Attractors and subgames. Let CPre : 2Q → 2Q be the controllable predecessor operator defined for
all s ⊆ Q by CPre(s) = {q ∈ Q | ∃a ∈ A · ∀b ∈ A : Supp(δ (q,a,b)) ⊆ s}. Intuitively, CPre(s) is
the set of states from which player 1 can ensure to be in s after one round, regardless of the action
chosen by player 2 and of the outcome of the probabilistic transition (Figure 1a).
For a setT ⊆ Q , the attractor A�r(T ,G) is the least fixed point of the operator x 7→ CPre(x) ∪T ,

that is A�r(T ,G) =
⋃

i≥0CPre
i (T ) (where CPre0(T ) = T ). It is the set of states in G from which

player 1 has a (pure memoryless) strategy to ensure eventually reaching T [43]. We refer to such
a memoryless strategy as an attractor strategy.
Let PosPre1 : 2Q → 2Q be the positive predecessor operator for player 1 defined for all s ⊆ Q by

PosPre1(s) = {q ∈ Q | ∃a ∈ A · ∀b ∈ A : Supp(δ (q,a,b)) ∩ s , ∅}, and let PosPre2 : 2Q → 2Q

be defined symmetrically by PosPre2(s) = {q ∈ Q | ∀a ∈ A · ∃b ∈ A : Supp(δ (q,a,b)) ∩ s , ∅}
(Figure 1b and Figure 1c).

For a setT ⊆ Q , the positive attractor PosA�ri (T ,G) for player i (i = 1, 2) is the least fixed point
of the operator x 7→ PosPrei (x) ∪T . There exists a pure memoryless strategy for player i (referred
to as positive-attractor strategy) to ensure, regardless of the strategy for player 3−i that from all
states in PosA�ri (T ,G), the setT is reached within n = |Q | steps with positive probability (in fact,
bounded probability, at least ηn where η is the smallest positive probability in the transitions of
G).
A set S ⊆ Q induces a subgame of G if for all q ∈ S , there exist aq ,bq ∈ A such that

δ (q,aq ,bq)(S) = 1, that is, the players can cooperate to keep the play forever in S . In the sub-
game, we disallow actions that would leave S from a state q by overriding them with aq or bq (to
keep the same alphabet of actions in every state). We denote by G ↾ [S] = 〈S,A, δS 〉 the subgame
induced by S , where for all q ∈ S and a ∈ A, if δ (q,a,ba)(S) = 1 for some ba ∈ A (note that this
condition holds for a = aq ), then for all b ∈ A we define δS (q,a,b) = δ (q,a,b) if δ (q,a,b)(S) = 1,
and δS (q,a,b) = δ (q,a,ba) if δ (q,a,b)(S) < 1; otherwise δ (q,a,b)(S) < 1 for all b ∈ A, and then
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we define δS (q,a,b) = δS (q,aq ,b) for all b ∈ A. For instance, the set S = Q \ PosA�ri (T ,G) (for
i = 1, 2) induces a subgame of G.

A set S ⊆ Q is a trap for player 1 in G if for all states q ∈ S and all actions a ∈ A, there exists
b ∈ A such that δ (q,a,b)(S) = 1. Intuitively, player 2 has a strategy to keep player 1 trapped in S .
Dually, the set S is a trap for player 2 in G if for all states q ∈ S , there exists a ∈ A such that for
all b ∈ A we have δ (q,a,b)(S) = 1. Note that S is a trap for player 2 if and only if S ⊆ CPre(S). A
key property of traps is that if, in the subgame G ↾ [S] where S is a trap for player i , player i has
no winning strategy for some state-based objective from a state q, then, in G, player i also has no
winning strategy for the same objective from q.

In deterministic games, the operators CPre and PosPre1 coincide, as well as the attractor
A�r(T ,G) and positive attractor PosA�r1(T ,G), and therefore the set U = Q \ A�r(T ,G) induces
a subgame of G.
We recall basic properties derived from the definitions of the positive attractor, and from the

analysis of stochastic games with almost-sure reachability objective [13, 23]. As before, we denote
by n the size of the state space and by η the smallest positive probability in the transitions.

Lemma 1. If a distribution d0 is almost-sure winning for a reachability objective ^T in a game G,

then there exists a memoryless player-1 strategy σ such that for all ε > 0, there exists an integer hε
such that for all player-2 strategies σ , Prσ ,τ

d0
(^≤hεT ) ≥ 1 − ε .

Proof. Consider thememoryless almost-sure winning strategy for player 1 that plays according
to a positive-attractor strategy to reachT (while staying in the almost-sure winning region). Then
within n rounds, the probability to reach T is at least ηn . Therefore the probability of not having
reached T is a most 1 − x where x = ηn > 0, and within k · n rounds it is at most (1 − x)k . Since
1 − x < 1, we get (1 − x)kε ≤ ε by taking kε sufficiently large. Taking hε = kε · n concludes the
proof. �

Lemma 2. If a distribution d0 is not almost-sure winning for a reachability objective ^T in a game

G, then there exists a memoryless player-2 strategy τ such that for all player-1 strategies σ , for all

i ≥ 0 we have Prσ ,τ
d0
(^=iT ) ≤ 1 − η0 · ηn where η0 = min{d0(q) | q ∈ Supp(d0)} is the smallest

positive probability in the initial distribution d0.

In Lemma 2 it is crucial to notice that the bound η0 · ηn is independent of the number i of steps.

Proof. The set of almost-sure winning states for the reachability objective^T can be computed
by graph-theoretic algorithms [23], and can be expressed succinctly by the µ-calculus fixpoint
formula φAS = νY .µX .T ∪ APre(Y ,X ) [22] where, given X ,Y ⊆ Q :

APre(Y ,X ) = {q ∈ Q | ∃a ∈ A · ∀b ∈ A : Supp(δ (q,a,b)) ⊆ Y ∧ Supp(δ (q,a,b)) ∩ X , ∅}

is the set of states from which there is an action to ensure that all successor states are in Y and
that with positive probability the successor state is in X . Note that CPre(Y ) = APre(Y ,Q).
We briefly recall the interpretation of µ-calculus formulas [8, 9] based on the Knaster-Tarski

theorem. Given a monotonic function ψ : 2Q → 2Q (i.e., such that X ⊆ Y implies ψ (X ) ⊆ ψ (Y )),
the expression νY .ψ (Y ) is the (unique) greatest fixpoint ofψ , which can be computed as the limit
of the sequence (Yi )i ∈N defined by Y0 = Q , and Yi = ψ (Yi−1) for all i ≥ 1. Dually, the expression
µX . ψ (X ) is the (unique) least fixpoint of ψ , and the limit of the sequence (Xi )i ∈N defined by
X0 = ∅, and Xi = ψ (Xi−1) for all i ≥ 1. If |Q | = n, then it is not difficult to see that the limit of
those sequences is reached after at most n iterations, Xn = Xn+1 and Yn = Yn+1.
Intuitively, the formula φAS computes the largest set S of states such that every state q ∈ S has

a strategy to ensure reachingT with positive probability, while at the same time staying in S with
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probability 1. It follows that S is the set of all states from which there exists a strategy to reach T
with probability 1.

Now consider the states q0 < φAS that are not almost-sure winning, and let the rank of q0 be the
least integer i such that q0 ∈ Yi and q0 < Yi+1. Let Ωi = Yi \ Yi+1 for all i ≥ 0 be the set of states
of rank i , and for ∼∈ {<, ≤} let Ω∼i =

⋃

j∼i Ωj . It is easy to show by induction that Q \ Yi = Ω<i

since Ω<i = (Y0 \ Y1) ∪ (Y1 \ Y2) ∪ · · · ∪ (Yi−1 \ Yi ) and Y0 = Q . Moreover since T ⊆ Yi we have
Ωi ∩T = ∅.
For q ∈ Ωi , we show that there exists a player-2 strategy τ such that for all player-1 strategies σ

we have Prσ ,τq (�Ωi ∪^Ω<i ) ≥ η. Since q < Yi+1 = µX .T ∪APre(Yi ,X ), we have q < APre(Yi ,Yi+1).
Then for all actions a ∈ A, there exists b ∈ A such that:

either Supp(δ (q,a,b)) * Yi , or Supp(δ (q,a,b)) ∩ Yi+1 = ∅,

that is

either Supp(δ (q,a,b)) ∩ Ω<i , ∅, or Supp(δ (q,a,b)) ⊆ Ω≤i .

Consider the memoryless strategy τ for player-2 that, given a state q ∈ Ωi and action a of
player 1, plays such an action b.
It follows in both cases that if not all successors of a state q0 ∈ Ωi on action a are in Ωi , then at

least one of them is in Ω<i , which entails that Prσ ,τq0 (�Ωi ∪ ^Ω<i ) ≥ η for all player 1 strategies
σ . For i = 0, since Ω<0 = ∅, we have Prσ ,τq0 (�Ω0) = 1 and thus Prσ ,τq0 (�(Q \T )) = 1 for all q0 ∈ Ω0

and all strategies σ ∈ Σ. Inductively, if Prσ ,τq0 (�(Q \ T )) ≥ pi for all q0 ∈ Ω<i and all σ ∈ Σ, then
Prσ ,τq0 (�(Q \T )) ≥ η · pi for all q0 ∈ Ωi and all σ ∈ Σ.
It follows that if q0 < φAS is not almost-sure winning for the reachability objective ^T , then

q0 ∈ Ω<n and Prσ ,τq0 (�(Q \T )) ≥ η
n for all σ ∈ Σ. The result of the lemma follows. �

Strongly connected component. In a directed graph 〈V , E〉, a strongly connected component (SCC) is
a nonempty set s ⊆ V such that for all v,v ′ ∈ s , there exists a nonempty path from v to v ′. Our
definition excludes singletons {v} to be an SCC if there is no self-loop (v,v) in E. The period of an
SCC is the greatest common divisor of the lengths of all its cycles.

Overview of the results.We present the solution of themembership problem for sure winning in Sec-
tion 3 and for almost-sure winning in Section 4. The most challenging case is almost-sure weakly
synchronizing, which we solve first for deterministic games (Section 4.1), and then in the general
case of stochastic games (Section 4.2). The other synchronization modes for almost-sure winning
are considered in Section 4.3. We also present tight complexity bounds and memory requirement
for all winning modes.

3 SURE SYNCHRONIZING

In the rest of this paper, when the initial distribution d0 is irrelevant or clear from the context, we
denote the i-th element di in the sequence Gσ ,τ

d0
= d0,d1, . . . by G

σ ,τ
i .

For sure winning, only the support of distributions is important (not the exact value of probabil-
ities). Intuitively for player 1, the worst case that can happen is that player 2 uses the uniform strat-

egy τu that plays all actions uniformly at random, in order to scatter the probability mass in asmany
states as possible, where τu(ρ)(a) =

1
|A | for all ρ ∈ Pref(G) and a ∈ A. Formally, given a set T ⊆ Q

and an arbitrary player-1 strategy σ ∈ Σ it is easy to show that Supp(Gσ ,τi (T )) ⊆ Supp(Gσ ,τui (T )),
for all player-2 strategies τ ∈ Θ and all i ≥ 0.
Therefore, in all synchronization modes, player 1 is sure winning if and only if player 1 is sure

winning against the uniform strategy τu for player 2, and computing the sure winning distributions
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in stochastic games reduces to the same problem in MDPs (obtained by fixing τu in G), which is
known [25]. We immediately derive the following results.

Theorem 1. The membership problem for sure always and strongly synchronizing can be solved

in polynomial time, and pure memoryless strategies are sufficient for player 1.
The membership problem for sure eventually and weakly synchronizing is PSPACE-complete, and

pure strategies with exponential memory are sufficient (and may be necessary) for player 1.

Note that when the uniform strategy τu is fixed, the controllable predecessor operator CPre
coincides with the predecessor operator used to solve the membership problem for MDPs [25].
Also note that even in the case of deterministic games, the winning regions for sure and almost-

sure winning do not coincide, for eventually and weakly synchronizing, as illustrated by the game
Gwin (Figure 2a). The state q1 is almost-sure winning (as we show in the beginning of Section 4.1),
but not sure winning for weakly synchronizing in T = {q1,q3} (e.g., against the uniform strategy
for player 2). We show in Section 4.3 that in deterministic games, the winning regions for sure and
almost-sure winning do coincide for always and strongly synchronizing (even for all stochastic
games in the case of always synchronizing).

4 ALMOST-SURE SYNCHRONIZING

We first consider almost-sure weakly synchronizing, which is the most interesting and challenging

case. We present an algorithm to compute the set 〈〈1〉〉weakly
almost

(T ) and we show that pure counting
strategies are sufficient for player 1.

4.1 Weakly synchronizing in deterministic games

The key ideas of the algorithm are easier to present in the special case of deterministic games,
and with the assumption that pure counting strategies are sufficient for player 1 (but player 2 is
allowed to use an arbitrary strategy). We show in Section 4.2 how to compute the winning region
for almost-sure weakly synchronizing in general stochastic games, and without any assumption
on the strategies of player 1. It will follow from our results that pure counting strategies are in fact
sufficient for player 1.
Given a deterministic game G = 〈Q,A, δ〉, a selector is a function α : Q → A, and for a set

s ⊆ Q , let δα (s) = {δ (q,α(q),b) | q ∈ s ∧ b ∈ A} ⊆ Q . A pure counting strategy can be viewed as
an infinite sequence of selectors. The subset construction for G is the graph P(G) = 〈V , E〉 where
V = 2Q \ {∅} and E = {(s, δα (s)) | s ∈ V ∧α is a selector}. Given a setT ⊆ Q of target states, and a
set s ∈ V , we say that s is accepting if s ⊆ T (for singletons {q} we simply say that q is accepting).
The central property of the subset construction P(G) is that for every sequence of selectors

α1,α2, . . . ,αk , the sequence s1, s2, . . . , sk+1 such that si+1 = δαi (si ) for all 1 ≤ i ≤ k is a path in
P(G), and that for every state q ∈ sk+1, there exists a play prefix q1 a1b1 q2 . . . qk+1 in G such that
qk+1 = q and qi ∈ si for all 1 ≤ i ≤ k , that is compatible with the given sequence of selectors,
ai = αi (qi ). The central property is easily proved by induction onk [14]. Using König’s Lemma [31],
the central property holds for infinite sequences, namely for every infinite path s1, s2, . . . in P(G),
there exists an infinite play q1 a1b1 q2 . . . in G such that qi ∈ si and ai = αi (qi ) for all i ≥ 1. We
also mention a simple monotonicity property: if s ⊆ s ′, then δα (s) ⊆ δα (s ′) for all selectors α .

We illustrate the key technical insights with two examples. First consider the deterministic game
Gwin in Figure 2a, where the target set is T = {q1,q3}. Only state q2 has a relevant choice for
player 1, and only q1 has a relevant choice for player 2 (for the sake of clarity, we denote by a1,a2
the actions of player 1, and by b1,b2 the actions of player 2).
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q1

q2 q3

b2

a2

b1

a1

(a) Gwin

q13

q1

q12

q123

q23

q2

q3

a2a1

a1

a2

a1

a2

a2

a1

(b) Subset construction

Fig. 2. The deterministic game Gwin where player 1 is almost-sure weakly synchronizing (from all states),

and its subset construction.

Player 1 is almost-sure weakly synchronizing inT from every state. A winning strategy plays a1
at even rounds, and a2 at odd rounds. Note that without the self-loop on q2, player 1 is no longer
almost-sure weakly synchronizing in T from q1 (but still from q2 and from q3).
Consider the subset construction in Figure 2b, obtained by considering all subsets q12 = {q1,q2},

q13 = {q1,q3}, etc. of Q , and with an edge from s to s ′ if there exists a selector α : Q → A such
that s ′ = δα (s). Intuitively, the selector describes the actions played by a pure counting strategy
of player 1 at a given round. Figure 2b labels the edges (s, s ′) with the action played in q2 by the
corresponding selector in s (if relevant, i.e., if q2 ∈ s). Accepting sets s ⊆ T are marked by a double
line.
An accepting strongly connected component is an SCC containing an accepting set, such as C =
{{q2}, {q3}} in our example. This is a witness that player 1 is almost-sure weakly synchronizing in
T from all states q such that C is reachable from {q} in P(G). This sufficient condition for almost-
sure winning is not necessary, as player 1 is almost-sure winning from q1 as well, but the set
{q1} cannot reach an accepting SCC in P(G). However, we will show that if there is no accepting
SCC in the subset construction, then there is no state from which player 1 is almost-sure weakly
synchronizing in T .
This situation is illustrated in Figure 3 where the subset construction for the game Glose contains

no accepting SCC, and player 1 is not almost-sure weakly synchronizing in T (no matter from
which initial state). This is not trivial to see, and we present the crux of the argument below.
Although player 1 is not almost-sure weakly synchronizing in T , it is not true either that player 2
can fix a strategy τ in Glose to prevent player 1 from almost-sure winning for weakly synchronizing
inT . This means that in general spoiling strategies can be constructed only after a strategy for the
other player has been fixed, which brings technical difficulty in the proofs.

Why player 1 can spoil player 2 in Glose .Given an arbitrary strategy τ for player 2, we can construct
a strategy σ for player 1 such that the outcome sequence Gσ ,τ

lose
(from any initial distribution) is

almost-sure weakly synchronizing in T .
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(b) Subset construction

Fig. 3. The deterministic game Glose where player 1 is not almost-sure weakly synchronizing (no ma�er the

initial state), and its subset construction.
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Fig. 4. Construction of a spoiling strategy for player 2 (in Glose).

Consider the strategy σloop that always plays a1 (to loop through q2), and note that in the out-

come G
σloop,τ

lose
= d0,d1, . . . (from any initial distribution d0), the probability mass in q2 is non-

decreasing, hence limk→∞ dk (q2) exists, which we denote by α(d0). We construct σ to play as fol-
lows, starting with ε = 1

2 : (1) Given ε > 0 and the current distribution d , play σloop for nε rounds,
where nε is such that dnε (q2) ≥ α(d) − ε , then (2) play a2 in the next round, and (3) repeat from
(1) with ε := ε

2 . In the outcome Gσ ,τ
lose

, after playing a2, the probability mass in q2 is the probability
mass transferred from q1 in the previous step, which is at most ε . It follows that the probability
mass in T = {q1,q3} is at least 1 − ε . The repetition of this pattern for ε → 0 entails that Gσ ,τ

lose
is

almost-sure weakly synchronizing in T .

Why player 2 can spoil player 1 in Glose . We sketch the crux of the argument for initial state q1,
showing that player 2 can spoil an arbitrary strategy σ : N ×Q → A for player 1 (that is pure and
counting), which is an infinite sequence of selectors and thus corresponds to an infinite path from
{q1} in the subset construction (shown in Figure 3b).
Such an infinite path is shown in Figure 4 where an edge (s, s ′) labeled by a selector α is drawn

as the set of edges (q,q′) such that q ∈ s and q′ = δ (q,α(q),b) for some b ∈ A. Note that, from
some point on, all sets in such a path contain a non-target state q ∈ Q \T , and a spoiling strategy
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for player 2 must ensure a probability mass in Q \T bounded away from 0, at every round from
some point on.
In the example, player 2 can ensure a probability mass of 1

3 in state q2 ∈ Q \T from the second
round on. In Figure 4, we put three tokens, each carrying a probability mass of 1

3 , in the initial state
q1 and we show how the three tokens can move along the edges to always maintain one token in
q2 (after the first round). The choice of which edge from q1 is taken by a token is made by player 2
with the corresponding action b1 or b2 (the corresponding randomized selector is shown below the
figure for each round – edges are drawn in gray if no token flows through it). It is easy to show
that the pattern suggested in Figure 4 can be prolonged ad infinitum. A key insight is that player 2
should not move a token from q1 to q2 at every round (which may cause a depletion of tokens),
but only in the rounds where player 1 sends the probability mass from q2 to q3.
Each token follows a play that is compatible with the strategy of player 1. The set of three plays

that are followed by the three tokens has the property that in every round after round 1 at least
one of the plays is in q2. We say that the plays (or the tokens) cover the state q2 from round 2 on.
Note that it would be easy to cover q2 from some round n0 on by using plays of the form (q1)nq2Qω

(n = n0,n0 + 1, . . . ), but this is an infinite set of plays, which would require infinitely many tokens
andwould not allow a positive lower bound on the probability mass of each token. The key to cover
q2 with a finite number of plays is to reuse the tokens when possible. It is however not obvious in
general how to construct finitely many such plays, given an arbitrary strategy of player 1.
We show in Lemma 3 that in deterministic games, a fixed numberK of tokens (each representing

a probability mass 1
K
) is sufficient for player 2 to spoil any pure counting strategy of player 1, where

K = 2 |Q | .

Lemma 3. The following equivalence holds in deterministic games: there exists a state q from which

player 1 has a pure counting strategy that is almost-sure winning for weakly synchronizing in T if

and only if there exist a strongly connected component C in P(G) and a set s ∈ C that is accepting.

Proof. First, if there exists a strongly connected component C in P(G) and an accepting set
s ∈ C, then there exists an infinite path s0s1 . . . in P(G) from s0 = s that visits s infinitely often.
Consider the corresponding sequence of selectors α0α1 . . . (such that si+1 = δαi (si )). It is easy to
see that from all states q ∈ s , the pure counting strategy σ defined by σ (i,q) = αi (q) is sure (thus
also almost-sure) winning for weakly synchronizing in s ⊆ T .
For the second direction, we prove the contrapositive. Assume that no SCC in P(G) contains an

accepting set, and show that from all states q0 no pure counting strategy for player 1 is almost-sure
winning for weakly synchronizing in T .

Let σ : N → (Q → A) be a pure counting strategy for player 1, and we construct a spoiling
strategy for player 2 from q0. First, consider the sequence s0, s1, . . . defined by s0 = {q0} and
si+1 = δσ (i )(si ), and as this sequence is a path in the subset construction P(G), by our assumption
there exists an index i0 such that si is non-accepting for all i ≥ i0. Let Reject = Q \T . We have:

si ∩ Reject , ∅ for all i ≥ i0.

By the central property of the subset construction, for every set si and every state qi ∈ si
(in particular for qi ∈ si ∩ Reject if i ≥ i0), there exists a play of length i from q0 to qi that
is compatible with the strategy σ . Player 2 can use such plays to inject positive probability into
qi at every position i . However, if all those plays form an infinite set (as illustrated by the plays
(q1)

nq2Q
ω in the example of Figure 3a), then player 2 may not be able to guarantee a probability

mass bounded away from 0 in qi at every round i from some point on.

J. ACM, Vol. 1, No. 1, Article . Publication date: March 2023.



Stochastic Games with Synchronization Objectives 13

Now we construct a data structure that will help player 2 to determine their strategy and to
construct a finite set Π of plays compatible with σ in G such that, for all i ≥ i0, there exists a play
π ∈ Π with Last(π (i)) ∈ Reject.

The data structure consists, for each position i ≥ i0, of a tuple ui = 〈r1, . . . , rk〉 of registers,
each storing a nonempty subset ofQ . The number of registers is not fixed (but will never decrease
along the sequence ui0 ,ui0+1, . . . ), and for i = i0 let ui0 = 〈r1〉, thus ui0 consists of one register, and
let r1 = {qi0} where qi0 ∈ si0 ∩ Reject. Each register r in ui corresponds to one token, and stores
the possible states in which the token can be after i steps by following a play compatible with σ .
Given ui = 〈r1, . . . , rk〉, define ui+1 as follows: first, let r ′j = σ (i)(r j) be the set obtained from r j

by following the selector σ (i) at position i (which is the same selector used to define si+1 from si ).
We consider two cases:

(1) if all registers are accepting, that is r ′j ∩ Reject = ∅ for all 1 ≤ j ≤ k: let qi+1 ∈ si+1 ∩ Reject
and create a new register r ′

k+1 = {qi+1}, define ui+1 = 〈r
′
1, . . . , r

′
k

︸     ︷︷     ︸

accepting

, r ′
k+1〉;

(2) otherwise, some register is non-accepting, and let j be the largest index such that r ′j∩Reject ,
∅. Let qi+1 ∈ r ′j ∩ Reject and we remove the register at position j , and replace it by a new
register r ′

k+1 = {qi+1} at the end of the tuple. Define ui+1 = 〈r
′
1, . . . , r

′
j−1, r

′
j+1, . . . , r

′
k

︸       ︷︷       ︸

accepting

, r ′
k+1〉.

In both cases, we say that the parent of a register r ′
l
(for l ≤ k) that occurs in ui+1 is the register

rl in ui , and that r ′
k+1 has no parent (in the second case above, we say that r ′

k+1 is a clone child
of r j ). An ancestor of a register r in ui is either r or an ancestor of the parent of r (but not of the
clone parent of r ). In the sequel, we assume that the registers in a tupleui are called r1, r2, . . . with
consecutive indices in the order they appear in ui .
We now state key invariant properties of the sequence ui0 ,ui0+1, . . . , for all i ≥ i0:

• (consistency property) in every ui , for every register r in ui we have r ⊆ si ;
• (singleton property) in every ui , the rightmost register is a singleton containing a non-
accepting state;
• (chain property) for all j ≥ i , every chain of registers (with order defined by the parent rela-
tion) from an ancestor register r inui to a register r ′ in uj is a path in the subset construction
labeled by the selectors σ (i), . . . ,σ (j);
• (key property) in every ui , if there are k registers at the right of a register r , then r has at
least k ancestors that are accepting.

It is easy to verify that these properties hold by construction of ui0 , and of ui+1 from ui (by induc-
tion). In particular the key property holds because whenever a register is appended (or moved) to
the right of a register r , then r is accepting.
By our initial assumption (no SCC in P(G) contains an accepting set), a register r cannot have

more than 2 |Q | ancestors that are accepting (using the chain property). Then it follows from the
key property that a tupleui cannot have more than 2 |Q | registers, and since the number of registers
is not decreasing, there is an index i∗0 such that all ui , for i ≥ i∗0 , contain the same numberK ≤ 2 |Q |

of registers. We are now ready to construct the set Π, containing K plays.
For each i > i∗0 , consider the permutation fi on {1, . . . ,K} that maps index j to k = fi (j) such

that rk in ui−1 is the parent of r j in ui (or clone parent if r j has no parent).
Following the permutation fi at position i (for i > i∗0), we can define K equivalence classes

C1, . . . ,CK of registers that contain exactly one register from eachui : the register r j in the tupleui
belongs to the classCk with k = (fi∗0+1 ◦ fi∗0+2 ◦ · · · ◦ fi )(j), see the illustration in Figure 6. Note in
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ui−1 = 〈r1, r2, r3, r4, r5〉

ui = 〈r
′
1, r
′
2, r
′
3, r
′
4, r
′
5〉

Fig. 5. A permutation on registers.

particular that every rightmost register rK (highlighted in Figure 6), which is a singleton, belongs
to some class.

C1 C2 C3 C4 C5
i∗0

i∗0 + 1

i∗0 + 2

i∗0 + 3

i∗0 + 4

i∗0 + 5

i∗0 + 6

i∗0 + 7

Fig. 6. A sequence of permutations on registers.

Using the central property of the subset construction, from those K classes we construct K
infinite plays in G, all compatible with σ (i∗0),σ (i

∗
0 + 1), . . . , and such that for all i ≥ i∗0 , for all

registers r j in ui , one of the plays is in a state of r j at position i . In particular, since rK is always a
non-accepting singleton, the constructed plays cover a non-accepting state at every position i ≥ i∗0 .
Given an equivalence class C , consider the register r of ui in C , and the register r ′ of ui+1 in

C . Then, by the central property of the subset construction, for all states q′ ∈ r ′, there exists a
state q ∈ r such that q′ = δ (q,αi (q),b) for some action b ∈ A of player 2 (no matter whether r
is the parent or clone parent of r ′). Now consider all singular positions i where rK (the rightmost,
singleton, register) is the register of ui inC . Between any such two positions i1 < i2, there exists a
(segment of) play in G from the state in the register rK at position i1 to the state in the register rK at
position i2, that is compatible with the strategy σ (at the corresponding positions i1, i1 + 1, . . . , i2)
using the chain property. Analogously, from some state in si∗0 (using the consistency property)
there is a segment of play to the state in register rK at the first singular position i0. The constructed
segments can be concatenated to form a single play, and if this play is finite, we can prolong it to
an infinite play compatible with σ .
Given theK plays in G constructed in this way fromC1, . . . ,CK , it is easy to construct a strategy

for player 2 that ensures a probability mass of 1
K (a token) will move along each of the K plays

(possibly using randomization), and therefore a probability mass of at least 1
K in a non-accepting

state at every round i ≥ i∗0 , showing that the strategy σ of player 1 is not almost-sure winning for
weakly synchronizing in T , which concludes the proof. �

In the deterministic gameGwin of Figure 2a, the strongly connected componentC = {{q2}, {q3}}
in the subset construction P(Gwin), which contains the accepting setU = {q2}, shows that player 1
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is almost-sure winning from some state (Lemma 3), namely from q2 and from q3. This holds even
if there is no self-loop on q2. However, whether player 1 is almost-sure winning from q1 depends
on the presence of that self-loop: with the self-loop on q2, the period of the SCC C is p = 1 (see
Figure 2b) and player 1 is almost-sure winning from q1, whereas without the self-loop, the period
of C is p = 2 and player 1 is not almost-sure winning from q1 (player 2 can inject an equal mass
of probability from q1 to q2 in two successive rounds, and as those masses can never merge, the
probability mass in q2 is always bounded away from 1). In fact, player 1 needs to ensure that any
probability mass injected in C is always injected at the same round (modulo p), where p is the
period of C.
To track the number of rounds modulo p, define the game G × [p] that follows the transitions

of G and decrements a tracking counter (modulo p) along each transition (Figure 7). Formally,
let G × [p] = 〈Q ′,A, δ ′〉 where Q ′ = Q × {p − 1, . . . , 1, 0} and δ ′ is defined as follows, for all
〈q, i〉, 〈q′, j〉 ∈ Q ′ and a ∈ A:

δ ′(〈q, i〉,a)(〈q′, j〉) =

{

δ (q,a)(q′) if j = i − 1 mod p,

0 otherwise.

Given 0 ≤ t0 < p, there is a bijection µt0 between the histories in G and in G × [p] that maps
the history q0 a0b0 q1 . . . qk in G to the history (q0, t0)a0b0 (q1, t1) . . . (qk , tk ) in G × [p] where ti =
ti−1 − 1 mod p for all 0 < i ≤ k . Therefore, when t0 is fixed, strategies in G can be transformed
into strategies in G × [p], via this bijection. In the sequel, we take the freedom to omit mentioning
that this bijection needs to be applied, and we consider that strategies can be played both in G
and in G × [p]. We say that a distribution d on Q × {p − 1, . . . , 1, 0} is proper if there exists an
index 0 ≤ j < p such that if Supp(d) ⊆ Q × {j}. We also omit the bijection µ j between proper
distributions and distributions on Q (when the index j is not relevant, or clear from the context).
For a distribution d in Q , we denote by d × {j} the corresponding proper distribution such that
d × {j}(q, i) is equal to d(q) if i = j (and 0 otherwise).

A simple property relating the gameG with the games G×[p] is that player 1 can fix (in advance,
regardless of the strategy of player 2) the value of the counter when synchronization occurs in T .

Lemma 4. Player 1 is almost-sure weakly synchronizing in T from q in the game G if and only if

for all p ≥ 0, there exists 0 ≤ i ≤ p − 1 such that player 1 is almost-sure weakly synchronizing in

T × {0} from 〈q, i〉 in G × [p].

Proof. It is immediate that almost-sure weakly synchronizing inT ×{0} from 〈q, i〉 in the game
G × [p] implies almost-sure weakly synchronizing in T from q in G.
For the converse implication, we prove the contrapositive. If for all 0 ≤ i ≤ p − 1, player 1

is not almost-sure weakly synchronizing in T × {0} from 〈q, i〉 in G × [p], then for all player-
1 strategies σ , there exist player-2 strategies τ0, τ1, . . . , τp−1 such that Gσ ,τi

〈q,i 〉
is not almost-sure

weakly synchronizing in T × {0}, that is there exist rounds j0, j1, . . . , jp−1 and positive bounds
ε0, ε1, . . . , εp−1 such that for all 0 ≤ i ≤ p − 1, for all j ≥ ji with j = i mod p, under strategies
σ , τi in G from q the probability mass in T at position j is at most 1 − εi . Consider the strategy τ
playing the superposition

∑

i
1
p τi . For ε =

1
p mini εi and j∗ = maxi ji , under strategies σ , τ in G

from q the probability mass inT at all positions after j∗ is at most 1− ε , which shows that σ is not
almost-sure weakly synchronizing in T . �

Given an accepting setU ⊆ T that belongs to an SCC with period p in P(G), we solve the game
G by removing from G × [p] the attractorW of U × {0}, and by recursively solving the subgame
of G × [p] induced by Q \W , with target set T × {0}.
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q1, 0

q2, 0

q3, 0

b2

b1

(a) Gwin × [1]

q1, 0 q1, 1

q2, 1 q2, 0

q3, 0 q3, 1

b1

b1
b2 b2

(b) G′
win
× [2]

Fig. 7. Removal of positive a�ractor in Gwin × [1] and G
′
win
× [2], where G′

win
is the variant of Gwin without

a self-loop on q2.

In Gwin, the set U = {q3} belongs to an SCC of period 1, and its attractor isW = {q2,q3}. After
removal of the attractor, the subgame is winning for player 1 (Figure 7a). In the variant G′

win
of

Gwin without a self-loop on q2, the setU = {q3} is also in an SCC, but with period 2. After removal
of the attractor to U × [0] in G′win × [2], the subgame is not winning for player 1 (Figure 7b).
By Lemma 4, solving G with target setT is equivalent to solving G × [p]with target setT × {0}.

However, in general combining two almost-sure winning strategies constructed in two different
subgames may not give an almost-sure winning strategy (if, for instance, one strategy ensures the
probability mass in T × {0} tends to 1 at even rounds, and the other strategy at odd rounds). To
establish the correctness of our solution, note that all states in U × {0} belong to the (controllable
predecessor of the) attractor of U × {0} in G × [p], and since the period of the SCC containing
U is p, in P(G × [p]) there is a path from U × {0} to itself of length ℓ = k · p for all sufficiently
large k . See the Frobenius problem [30] for questions related to computing the largest k0 such that
there is no such path of length ℓ = k0 · p. It follows that, forW = A�r(U × {0},G × [p]), given
a state 〈q, i〉 ∈ W and an arbitrary length ℓ0 = i + k · p for k > k0, player 1 has a strategy to get
eventually synchronized inU × {0} ⊆ T × {0} at round ℓ0 (where the tracking counter is 0), and by
the same argument at any round ℓ1 = ℓ0 + k ′ · p for k ′ > k0, and so on. That is, for any sequence
i0, i1, . . . such that i j − i j−1 > k0 · p (where i−1 = 0) and i j = i mod p for all j ≥ 0, player 1 has
a strategy from 〈q, i〉 such that for all outcomes d0,d1, . . . of a strategy of player 2 in G × [p], we
have lim infk→∞ dik (T × {0}) = 1 (thus also lim supk→∞ dik (T × {0}) = 1).
Intuitively, we can choose the sequence i0, i1, . . . in order to synchronize the probability mass

in W with the outcome of the strategy constructed in the subgame of G × [p] induced by the
complement ofW .

Lemma 5. Given a set U in a strongly connected component of period p in the subset construction

P(G) that is accepting (U ⊆ T ), letW = A�r(U × {0},G × [p]) andH = G × [p]↾ [Q × [p] \W ]. We

have:

〈〈1〉〉weakly
almost

(G,T ) ∩ {1q | q ∈ Q} = {1q | ∃i : 〈q, i〉 ∈W ∪ 〈〈1〉〉
weakly

almost
(H ,T × {0})}.
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Proof. We establish the claim by showing an inclusion in bothways.We recall that we generally

identify 1s with s . First, we show that if q ∈ 〈〈1〉〉weakly
almost

(G,T ), then there exists 0 ≤ i ≤ p − 1 such

that either 〈q, i〉 ∈ W , or 〈q, i〉 ∈ 〈〈1〉〉weakly
almost

(H ,T × {0}). By Lemma 4, there exists 0 ≤ i ≤ p − 1

such that 〈q, i〉 ∈ 〈〈1〉〉
weakly

almost
(G ×[p],T × {0}), and thus if 〈q, i〉 is in the state space ofH , then since

all choices of player 2 in H are also possible in G × [p], we have 〈q, i〉 ∈ 〈〈1〉〉
weakly

almost
(H ,T × {0}),

and otherwise 〈q, i〉 ∈W .
Second, we show that if there exists 0 ≤ i ≤ p − 1 such that either 〈q, i〉 ∈ W , or 〈q, i〉 ∈

〈〈1〉〉
weakly

almost
(H ,T × {0}), then q ∈ 〈〈1〉〉

weakly

almost
(G,T ). To show this, we construct a strategy σ that is

almost-sure weakly synchronizing in T × {0} from 〈q, i〉 (in the game G × [p], which entails that
player 1 is almost-sure weakly synchronizing in T from q (in the game G).
The construction proceeds by induction on the subgames. Assume that we have constructed an

almost-sure winning strategy σH in H as well as a sequence of indices i0, i1, . . . such that for all
outcomes d0,d1, . . . of a strategy τ of player 2 in H , we have limk→∞ dik (T × {0}) = 1 (we say
that under σH , synchronization is guaranteed to occur at indices i0, i1, . . . ). For the induction step,
we construct an almost-sure winning strategy σG in G × [p] together with a sequence of indices
j0, j1, . . . where the synchronization is guaranteed to occur. Note that ik − ik−1 is a multiple of p
(for all k ≥ 1) and that the counter c is 0 in any state 〈q′, c〉 carrying positive probability at round
ik . The sequence j0, j1, . . . is a(ny) sub-sequence of i0, i1, . . . such that jk − jk−1 ≥ k0 · p (where
j−1 = 0). There is a strategy σW for player 1 (essentially following paths of the appropriate lengths
in P(G × [p])) such that given a state 〈q′, c〉 carrying probability η at round j with jk−1 ≤ j ≤ jk ,
for all outcomes d ′0,d

′
1, . . . of a strategy τ of player 2, we have limm→∞ d

′
jk+m−j

(T × {0}) = 1, that
is synchronization occurs at rounds jk+1, jk+2, . . . from 〈q′, c〉.
The strategy σG plays according to σW whenever the state is inW , and according to the almost-

sure winning strategy σH in H otherwise. Note that σ is well-defined because once a play leaves
H (and entersW ) it never leavesW . It is easy to see that σ is almost-sure weakly synchronizing
in T × {0} since, for all strategies τ ∈ Θ of player 2, the outcome sequence from 〈q, i〉 is the sum
of a sequence d0,d1, . . . of probability distributions with support inW , and a sequence d ′0,d

′
1, . . .

of probability distributions with support in Q × [p] \W and such that, for some η ∈ [0, 1]:

lim
k→∞

d jk (T × {0}) = η, and

lim
k→∞

d ′jk (T × {0}) = 1 − η,

from which it follows that lim supi→∞ di (T × {0}) + d
′
i (T × {0}) = 1, thus player 1 is almost-sure

weakly synchronizing in T × {0} from 〈q, i〉. �

Lemma 5 suggests a recursive procedure to compute the almost-sure winning set for a weakly
synchronizing objective, shown as Algorithm 1. We illustrate the execution on the example of
Figure 8. First the set U = {y} is accepting and belongs to an SCC of period p = 2 (line 2) in the
subset construction (line 1). The game H = G × [p] with tracking counter modulo p = 2 is shown
in Figure 9, with the attractorW toU × {0} = {〈y, 0〉} shaded (lines 3-4). In the induced subgame
(line 5), all states except 〈x , 0〉 and 〈y, 1〉 are winning, which is found in the recursive call (line 6). It
follows that all states (all Dirac distributions) are winning for player 1, and in fact all distributions
that do not contain both x and y in their support are winning.
We establish the correctness and termination of Algorithm1 as follows. The correctness straight-

forwardly follows from Lemma 5, and we show that the depth of the recursive calls in Solve(G0,T )
is bounded by the size |QG0 | of the state space of G0. This is not immediately obvious, since the size
of the first argument G in a recursive call may increase (the gameHsub is a subgame ofH , which
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Fig. 8. A deterministic game.
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Fig. 9. The game Hsub computed by Algorithm 1 (line 5) for the game of Fig. 8, where the shaded region is

the setW (line 4), and the set U = {〈y, 0〉} is self-recurrent.

is p times bigger than G). However, we claim that an invariant of the execution of Solve(G0,T0)
is that, in all recursive calls Solve(G,T ), the algorithm only needs to consider states of the first
argument G that form a subgame (isomorphic to a subgame) of G0 × [k] for some k . This holds in
the initial call (take k = 1), and if G is a subgame of G0 × [k], then the period p computed at line 2
is a multiple of k , and therefore in all states 〈〈q, i〉, j〉 in (G0 × [k]) × [p] the value j − i mod k is
constant along the transitions. Given the target states (T × {0}) × {0} we only need to consider
states 〈〈q, i〉, j〉 with j − i = 0 mod k , and we can project 〈〈q, i〉, j〉 to 〈q, j〉 without loss. It follows
thatH (and alsoHsub used in the recursive call) can be viewed as a subgame of G0×[p]. Moreover,
the attractorW contains at least one state for every value of the tracking counter, and therefore
the size of the game G measured as maxi |{q ∈ QG0 | 〈q, i〉 ∈ QG}| is strictly decreasing. It follows
that there are at most |QG0 | recursive calls in Solve(G0,T ).
Given 0 ≤ i ≤ p − 1, the slice at i of a setW ⊆ Q × [p] is the set {q ∈ Q | 〈q, i〉 ∈W }.
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Algorithm 1: Solve(G,T )

Input :G = 〈Q,A, δ〉 is a deterministic game,T ⊆ Q is a target set.

Output :The set {q ∈ Q | 1q ∈ 〈〈1〉〉
weakly

almost
(G,T )}.

begin

1 if there is an SCC C of P(G) containing a set U ∈ C with U ⊆ T then

2 p ← period of C ;
3 H ← G × [p] ;
4 W ← A�r(U × {0},H) ;
5 Hsub ←H ↾ [Q × [p] \W ] ;
6 return {q ∈ Q | ∃i : 〈q, i〉 ∈W ∪ Solve(Hsub ,T × {0} \W )} ;

else

7 return ∅ ;

Lemma 6. Algorithm 1 computes the almost-sure winning Dirac distributions for weakly synchro-

nizing in deterministic games. It can be implemented in PSPACE.

Proof. The correctness and termination of Algorithm 1 have been established above. To show
the PSPACE upper bound, note that if G is a subgame of G0 × [k], then the the period p computed
at line 2 is at most 2n · k , because slices are subsets of QG0 . Since the depth of recursive calls is at

most n, the gameH constructed at line 3 is a subgame of G0 × [p] where p ≤ (2n)n = 2n
2
.

In a PSPACE implementation of Algorithm 1, we can store the game G0 but not the subgames
Hsub of G0 × [k] (constructed at line 5). However, we will show that there is a PSPACE procedure
to determine the transitions of Hsub , namely, given 〈q, i〉, 〈q′, j〉 ∈ Q × [k] and a,b ∈ A to decide
whether (〈q, i〉,a,b, 1〈q′, j 〉) is a transition inHsub .

We describe a (N)PSPACE implementation of Algorithm 1 as follows. In the first call to the
algorithm, at line 1 we guess the set U ⊆ T . We can check in PSPACE that U belongs to an SCC
of P(G) (by guessing the selectors along a path fromU to itself) and we can compute its period p.
We can construct a PSPACE procedure to check if a state 〈q, i〉 belongs to the attractorW ofU × 0
in G × [p] (analogously, by guessing the selectors along a path from the singleton {〈q, i〉} toW
in P(G)). A transition (〈q, i〉,a,b, 1〈q′, j 〉) is in Hsub if j = i − 1 and (q,a,b, 1q′) is a transition in
G and 〈q, i〉, 〈q′, j〉 are not in the attractorW . All these conditions can be checked in PSPACE. In
the recursive calls (where G is Hsub from caller), we guess a slice of the set U at line 1, and we
check thatU belongs to an SCC of P(G) using our PSPACE procedure to decide the transitions in
Hsub . We can do this for all recursive calls up to depth n by storing the slice of the setU for each
recursive call. �

Theorem 2. The membership problem for almost-sure weakly synchronizing in deterministic

games is PSPACE-complete.

Proof. The PSPACE upper bound is given by Lemma 6. To establish the PSPACE lower bound,
we present a reduction from the membership problem1 for sure eventually synchronizing in MDPs,
which is PSPACE-complete [25, Theorem 2].

Given an MDPM and target setT , construct a deterministic game G as a copy ofM (illustrated
in Figure 10) where each probabilistic choice inM becomes a choice for player 2 in G: for each
q′ ∈ δM (q,a,−), there is an action b ∈ A such that δG(q,a,b) = 1q′ (assuming w.l.o.g. that there

1As a side note, we recall that this problem is the same as emptiness of one-letter alternating automata [29].
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MDPM T ⊆ Q
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⇒
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q. . .q0

q⊥ q♯

♯
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A∪{♯}

A∪{♯}

Fig. 10. Sketch of the reduction to show PSPACE-hardness of the membership problem for almost-sure

weakly synchronizing.

are sufficiently many actions in A). The alphabet of G is A∪ {♯} where the action ♯ can be used by
player 1 from the states in T to visit the new (target) state q♯ . From the non-target states, playing
♯ leads to a sink state.
We claim that player 1 is sure winning for eventually synchronizing in T from q0 (inM) if and

only if player 1 is almost-sure winning for weakly synchronizing in {q♯} from q0 (in G).
First, if player 1 has a sure-winning strategy for eventually synchronizing in T from q0 (inM),

then player 1 can play the same strategy in G followed by playing two times ♯ to visit q♯ and
restart from q0 repeating the same strategy. Hence player 1 is almost-sure winning for weakly
synchronizing in {q♯} from q0 (in G).
Conversely, if player 1 is almost-sure winning for weakly synchronizing in {q♯} from q0 (in
G), then by Lemma 3 there exists an SCC C in P(G) containing {q♯}. Given a path s0, s1, . . . , sk
(induced by a sequence of selectors α1,α2, . . . ,αk ) from {q♯} to itself in P(G) (s0 = sk = {q♯}), con-
sider the largest index i < k such that q♯ ∈ si . It is easy to see that the selectors αi+2,αi+3, . . . ,αk
play only actions in A, and that they define a sure-winning strategy for eventually synchronizing
in T from q0 (inM), which concludes the proof. �

4.2 Weakly synchronizing in stochastic games

We present an algorithm to compute the almost-sure winning region for weakly synchronizing
objectives in stochastic games, which generalizes the result of Section 4.1. This algorithm has the
flavor of the algorithm for deterministic games, with additional complications due to the proba-
bilistic transitions in the game. The proof is also more technical because we no longer assume that
pure counting strategies are sufficient for player 1 (but we show that such strategies are indeed
always sufficient for almost-sure winning).
Recall that throughout this section we consider a stochastic game G = 〈Q,A, δ〉 and we denote

by n = |Q | the size of the state space, and by η the smallest positive probability in the transitions
of G. We consider the almost-sure weakly synchronizing objective defined by a set T ⊆ Q of
accepting states.
Given a set U ⊆ Q , consider the sequence Ui = CPrei (U ) for i ≥ 1 (and U0 = U ). Since Ui ⊆ Q ,

this sequence is ultimately periodic. Consider the least k ≥ 0 for which there exists r > 1 such
that Uk = Uk+r , and consider the least such r , called the period. It is easy to see that k, r ≤ 2n .
For R = Uk we call 〈R, r ,k〉 the periodic scheme of U and we refer to its elements as R(U ) = Uk ,
r(U ) = r , and k(U ) = k . The set U is self-recurrent if U , ∅ and there exists an index 0 ≤ t < r

such that all states in U × {t} are almost-sure winning for the (state-based) reachability objective
^(R × {0}) in G × [r ]. The intuitive meaning of being self-recurrent appears in Lemma 7 below.
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Note that in deterministic games G, an accepting set U ⊆ T contained in a strongly connected
component C of P(G) is self-recurrent. Self-recurrent sets are the key to generalize the result of
Lemma 3 to stochastic games. The argument of the proof is more involved, and presented in the
following three lemmas.

Lemma 7. If there exists a self-recurrent setU ⊆ T , then there exists a state from which player 1 is
almost-sure winning for weakly synchronizing in T , using a pure and counting strategy.

Proof. Let 〈R, r ,k〉 be the periodic scheme ofU . We show that if all states inU ×{t} are almost-
sure winning for the (state-based) reachability objective^(R×{0}) inG×[r ], thenwe can construct
a strategy σas for player 1 in G that is almost-sure winning for weakly synchronizing in U (and
thus also in T ) from all distributions with support in U .
The key argument is to show that for all distributions d onU , for all ε > 0, there exists a strategy

σε for player 1 that ensures from d × {t}, against all strategies of player 2, that after finitely many
rounds, a distribution d ′ × {t ′} is reached such that (i) d ′(U ) > 1 − ε , and (ii) d ′ × {t ′} is almost-
sure winning for the reachability objective ^(R × {0}) in G × [r ]. From this key argument, we can
construct a pure and counting strategy σas for player 1 that successively plays according to the
strategies σ 1

2
, σ 1

4
, σ 1

8
,. . . and show that it is almost-sure weakly synchronizing in U (and thus also

in T ) from the distribution d , which concludes the proof.
To prove the key argument, we construct σε as follows (see also [25, Theorem 7]). Since d ×
{t} is almost-sure winning for the reachability objective ^(R × {0}) in G × [r ], there exists a
(pure memoryless) strategy σ and an integer hε such that for all strategies τ of player 2, we have
Prσ ,τq0 (^

≤hε R × {0}) ≥ 1 − ε (Lemma 1).
We construct the strategy σε to play according to σ as long as no state in R × {0} is reached.

Whenever a state in R × {0} is reached, if it happens within the first hε rounds, then the strategy
σε plays to reach again R × {0} after r more rounds (which is possible since R = CPrer (R)); if it
happens after hε rounds, then it plays according to a sure-winning strategy for eventually syn-
chronizing inU from R (thus for k more steps, where k is such that R = CPrek (U )). It immediately
follows that for all strategies τ of player 2, after finitely many rounds (at most hε + r + k rounds)
a distribution d ′ × {t ′} is reached such that (i) d ′(U ) ≥ 1 − ε , and (ii) d ′ × {t ′} is almost-sure
winning for the reachability objective ^(R× {0}) in G×[r ] (recall that for a reachability objective,
a distribution is almost-sure winning if all states in its support are almost-sure winning). �

For the converse of Lemma 7, the structure of the argument is similar to the proof of Lemma 3
for deterministic games and pure strategies. However, the technical details are more involved due
to stochasticity (in the game graph, and in the strategy of player 1).
For convenience, we separate the structure of the argument and the technical details.

Structure of the argument (substitution game). We present the substitution game, loosely inspired
by player substitutions in ice hockey: for simplicity there is a single player on ice and a coach who
manages (i) a main team of players (those who have been on ice at least once during the game)
initially empty, and (ii) a reserve team ofK players (fresh players who have never been on ice). We
consider the following protocol for substitutions of players. A player stays on ice for a one-minute
period, then needs to rest and to be substituted: he returns to the main team, and a player from
the main team (possibly the same player) is selected by the coach to go on ice. At each one-minute
period, the players in the main team have the possibility to pass (e.g., if they are tired), which they
can do whenever they want, not necessarily on consecutive periods but at most a fixed number
N of times. When a player returns from ice to the main team, he gets recharged with N passes.
The next player to go on ice is chosen, at the discretion of the coach, among the players of the
main team who did not pass. If at some period all players in the main team pass, a player from
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the reserve team is called to go on ice instead (reserve players cannot pass), and will join the main
team after a one-minute period, thereby getting N possibilities to pass. Initially, the main team is
empty. The question is how many players should there be initially in the reserve team, in order for
the coach to be able to play the substitution game forever regardless of when the players decide to
pass, and what is an optimal strategy for the coach (assuming there is no player on ice initially).
Formally, a configuration of the substitution game consists of a set M , initially M = ∅, and a

function f : M → N that maps each member of the main team to their number of passes. Given a
configuration 〈M , f 〉, the players choose a set P ⊆ {p ∈ M | f (p) ≥ 1} of players who will pass,
and then the coach chooses a player p such that p ∈ M \ P if P , M , and p = |M | if P = M . The
next configuration is 〈M ′, f ′〉 where M ′ = M ∪ {p} and f ′ is defined by f ′(p) = N , and for all
m ∈ M \ {p}:

f ′(m) =

{

f (m) − 1 ifm ∈ P,

f (m) ifm < P .

The game is won by the coach if there exists K (the number of reserve players) such that the game
continues forever, with |M | ≤ K in all configurations.
It is easy to see that K ≥ N + 1 is necessary for the coach to win (e.g., if all players always pass,

then K = N players is not sufficient). To show that K = N + 1 is sufficient, consider the strategy
of the coach that, given the current configuration 〈M , f 〉, chooses a player p inM \ P with largest
number of passes (if P , M), that is p ∈ argmaxx ∈M\P f (x). Under this strategy, the following
invariant holds in all configurations 〈M , f 〉 during the game: for k = |M |, let p0,p1, . . . ,pk−1 be
the players inM in ascending order according to f (i.e., if i ≤ j , then f (pi ) ≤ f (pj )), then f (pi ) ≤

N + 1 − k + i . The proof is by induction, where the initial configuration satisfies the invariant
trivially, and given the invariant holds in a configuration 〈M , f 〉 with k = |M |, we consider two
cases: (1) if P = M , then all players in M are passing, thus |M ′ | = k + 1 in the next configuration
〈M ′, f ′〉 and f ′(pi ) = f (pi ) − 1 ≤ (N + 1− k + i) − 1 = N + 1 − (k + 1)+ i for pi ∈ M (in ascending
order), and for the new player pk in position k , we verify that f ′(pk ) = N ≤ N + 1 − (k + 1) + k;
(2) if P , M , then |M ′ | = |M | = k in the next configuration 〈M ′, f ′〉, and for the players pi on
the left of the player chosen by the coach, their position inM ′ is the same as inM (assuming that
among the players with the same number of passes, the leftmost are passing if any, which is no loss
of generality since the positions of two players with the same number of passes can be swapped
while maintaining the invariant) and their value of f does not increase, and for the players pi on
the right of the player chosen by the coach, their position in M ′ and their value of f decrease by
1, thus in both cases f ′(pi ) ≤ N + 1−k + i holds, while for the player chosen by the coach, its new
position is k − 1 and we verify that f ′(pk−1) = N ≤ N + 1 − k + (k − 1).
It follows from this invariant that f (p0) ≤ N + 1 − k for the first player in ascending order, and

k ≤ N + 1 since f (p0) ≥ 0, that is each configuration has at most N + 1 players inM , showing that
N + 1 reserve players are sufficient.
In the proof of Lemma 3, the players of the substitution gamewere the registers, and the number

N of allowed passes was N = 2n − 1 (which is an upper bound on the number of positions that
player 2 could not cover). We concluded that K = 2n registers were sufficient, which allowed us to
define a spoiling strategy for player 2 using K tokens, each representing a probability mass of 1

K
.

Technical aspects. For stochastic games, we use a structure of argument based on the substitution
game to show the converse implication of Lemma 7. In Lemma 8 we construct a number εw > 0
and a bound Nw on the number of positions that player 2 may not be able to cover against an
arbitrary strategy of player 1, where covering a position informally means that a probability mass
εw > 0 is in Q \T at that position.
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Lemma 8. Let G be a stochastic game. There exists εw > 0 and Nw ∈ N such that the following

holds: if there exists no set U ⊆ T that is self-recurrent, then in G for all player-1 strategies σ , for all
but at most Nw rounds i , there exists a player-2 strategy τ such that Gσ ,τi (T ) ≤ 1 − εw .

Proof. Given a set U ⊆ T with periodic scheme 〈R, r ,k〉 and given 0 ≤ t < r , since U is not
self-recurrent (by the assumption of the lemma) and using Lemma 2, there exists a strategy τUt for
player 2 inH = G×[r ] (with initial distribution d0 such that Supp(d0) = U × {t}), such that for all

player-1 strategies σ , we haveH
σ ,τUt
i (R × {0}) ≤ 1 − η0 · ηn ·2

n
where η0 = min{d0((q, t)) | q ∈ U }

is the smallest positive probability in d0.

Construction of the strategy τU . Each strategy τUt maps to a strategy τ in G via the bijection µt
(namely, τ (ρ) = τUt (µt (ρ)), see p.15), and by an abuse of notation we also denote by τUt the cor-
responding strategy τ in G. Thus τUt plays in G as if the initial index (in G × [r ]) was t . Fix an

arbitrary player-1 strategy σ in G, and define the strategy τU =
∑r(U )−1

t=0
1

r(U )
· τUt as the uniform

superposition of the strategies τUt for t = 0, . . . , r(U ) − 1 in the (infinite-state) MDP obtained by
fixing σ in G. Notice that if d0(q) ≥ η0 for all q ∈ U , then from d0 the strategy τU ensures, against

player-1 strategy σ , that Gσ ,τ
U

i (Q \ R) ≥
η0 ·η

n·2n

2n for all i ≥ 0, since r(U ) ≤ 2n .

Construction of the set Iw . We define the numbers εw > 0 and Nw ∈ N required in the lemma. Let

Nw = 4n and εw =
1
2n ·

(
η(n+1)·2

n

n ·4n

)2n

.

To prove the lemma, given the arbitrary player-1 strategy σ in G, we construct a set Iw of
positions such that |Iw | ≤ Nw , and for all i ∈ N \ Iw , there exists a player-2 strategy τ such that
Gσ ,τi (T ) ≤ 1 − εw .
We construct the set Iw iteratively as follows. We construct a sequence I = I0, I1, . . . of (finite)

sets Ii ⊆ N of indices (initially, I0 = ∅) and a sequence U = U0,U1, . . . of sets Ui ⊆ 2T of
nonempty subsets of accepting states (initially,U0 = ∅). The sequenceUwill be strictly increasing
U0 ( U1 ( . . . , and therefore the construction has (at most) 2n iterations. Each iteration k

corresponds to a round, numbered ı̂k , and defines the sets Ik andUk .
At iteration k (k = 1, 2, . . . ), we consider the round ı̂k−1 defined from the previous iteration

(initially, ı̂0 = 0), and either the construction terminates at iteration k , or we define a new index ı̂k >
ı̂k−1 + 2n . We associate with index ı̂k a set of sub-distributions2 that sum up to the distribution dı̂k
in the outcome of the game G (from initial distribution d0) under the player-1 strategy σ and some
player-2 strategy τ . The sub-distributions associated with index ı̂k are described below (where
K = 2n), see also Figure 11:

• for eachU ∈ Uk , we have (K − k) identical sub-distributions f U (which we call a U -token);
• we have a sub-distribution дk storing the remaining probability mass.

All tokens for a given set U were created at the iteration, say jU , where U was added to U.
At the end of iteration jU , each token carries probability ε jU in each state of U and the tokens
are updated according to the strategy τU , which ensures that at every step after jU , a probability

mass bounded away from 0 (namely, ε jU ·
ηn·2

n

2n ) lies in Q \R(U ) from where, by definition of R(U ),
player 2 has the possibility, using the spoiling strategy against sure eventually synchronizing in
U , to inject a fraction ηk(U ) of the probability mass intoQ \U after k(U ) steps. Since k(U ) ≤ 2n , for
all j ≥ ı̂k + 2n , there is a player-2 strategy to ensure probability bounded away from 0 in Q \U at

step j (namely, ε jU ·
η(n+1)·2

n

2n ). Then the state in Q \U with largest probability mass, carries at least
εjU
n
·
η(n+1)·2

n

2n . If that state is not inT , then the index j is covered. However, if that state is inT (and

2A sub-distribution on S is a function d : S → [0, 1] such that
∑

s∈S d(s) ≤ 1.
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K − 3 remaining tokens

Fig. 11. The construction of the strategy τw as the limit of the sequence τ0, τ1, . . . (proof of Lemma 8).

if this is the case for all U ∈ Uk ), then the index j is not covered, and we insert j into Iw . On the
other hand, if player 2 does inject probability in Q \U in this way, we can show that a new set U
(i.e., U < Uk ) carries a probability bounded away from 0. Therefore, the situation where an index
j is not covered cannot occur more than 2n times (which is an upper bound on the cardinality of
the sets in the sequenceU). Note that when player 2 does inject probability in Q \U , one token is
“consumed”, and therefore the number of tokens for each U will decrease (by 1) at each iteration.
We create sufficiently many tokens for eachU (namely K = 2n tokens) to avoid depletion.

Initially we have U0 = ∅ and д0 = d0 is the (full) initial distribution. At iteration k , given
index ı̂k−1 we first construct the index ı̂k and then the sub-distributions associated with ı̂k . The
construction is illustrated in Figure 11.
The first iteration (k = 1) of the construction is slightly different from the other iterations

becauseU0 is empty. Consider the outcome Gσ ,τu = d0,d1, . . . from the initial distribution д0 = d0
and the uniform strategy τu. Let ı̂1 be the smallest index j ≥ 0 such that the setT∩{q | d j (q) ≥ ε0} is
nonempty, where ε0 =

1
2n . We consider two cases: (1) if no such index j exists, then d j (T ) ≤ n · ε0 =

1
2 ≤ εw , for all j ≥ 0, hence we can take Iw = ∅ and the construction terminates; (2) otherwise, let
U1 = T ∩ {q | dı̂1(q) ≥ ε0} , ∅ and decompose the sub-distribution dı̂1 as dı̂1 = (K − 1) · f

U1 + д1
where f U1 (q) = ε0

K−1 if q ∈ U1, and f U1(q) = 0 otherwise (and let д1 = dı̂1 − (K − 1) · f U1 ), thus
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f U1 and д1 are sub-distributions. We update I and U as follows: let I1 := I0 ∪ [ı̂1, ı̂1 + 2n] and
U1 :=U0 ∪ {U1}. Let ε1 =

ε0
K−1 be the probability mass in each state of U1 according to fU1 .

Now we present iteration k for k ≥ 2. For each U ∈ Uk−1, pick one of the K − k + 1 tokens of
iteration k − 1 (i.e., a sub-distribution f U associated with index ı̂k−1 that carried probability mass
at least εk−1 in each state of U when U was added to U) and for each j ≥ ik−1 + 2n , consider the
strategy τU played until step j−k(U ), then the spoiling strategy for sure eventually synchronizing

inU . The strategy τU would ensure probability at least εk−1 ·η
n·2n

2n in Q \R(U ) at every step, thus in
particular at step j − k(U ), and the spoiling strategy can inject probability at least β · εk−1 in Q \U

(at step j) where β = η2
n
·
ηn·2

n

2n ≤ η
k(U ) ·

ηn·2
n

2n .

Hence under that strategy, there is a state qUj ∈ Q \U that contains probability at least β
n
· εk−1.

We consider two cases: (1) if for all j ≥ ı̂k−1 + 2n there existsU ∈ Uk−1 such that qUj < T , then the
construction is over and we define Iw = Ik−1; (2) otherwise, let ı̂k be the smallest index j ≥ ı̂k−1+2n

such that qUj ∈ T for all U ∈ Uk−1, and consider the sub-distribution d at step ı̂k that originates
from the superposition of playing τu from дk−1 and playing, from eachU -token for U ∈ Uk−1 the
strategy τU followed (at step j − k(U ) for one of the U -tokens) by the spoiling strategy for sure

eventually synchronizing in U . Let Uk = T ∩ {q | d(q) ≥
β
n
· εk−1} , ∅ be the set of accepting

states that carry a sufficiently significant probability mass according to d . Note that qUj ∈ Uk for

all U ∈ Uk−1, and since qUj < U , it follows that Uk , U for all U ∈ Uk−1, that is Uk < Uk−1.

Decompose the sub-distribution d as d = (K − k) · f Uk +дk where f Uk (q) = β

n
·
εk−1
K−k

if q ∈ Uk , and
f Uk (q) = 0 otherwise (and let дk = d − (K − k) · f Uk ), thus f Uk and дk are sub-distributions.
With step ı̂k , we associate the sub-distribution дk , the K − k copies of the sub-distribution f Uk ,

and for eachU ∈ Uk−1 the K −k remainingU -tokens updated according to τU (see Figure 11). We

update I andU as follows: let Ik := Ik−1 ∪ [ı̂k , ı̂k + 2n] andUk :=Uk−1 ∪ {Uk }. Let εk =
β
n ·

εk−1
K−k .

The construction must terminate after at most 2n iterations because the cardinality of the sets
Ui is increasing by 1 at each iteration (in fact |Ui | = i), andUi ⊆ 2T thus |Ui | is bounded by 2n .
We note that Ik is the union of k intervals of size 2n , thus |Ik | ≤ k · 2n ≤ 4n . If the construction
terminates before the first iteration is complete, then we have already shown that the result of the
lemma holds. When the construction terminates, say during iteration kmax < K = 2n , then for all
k ≤ kmax, considering the two cases, in all rounds j between ı̂k−1 + 2n and ı̂k and in all rounds j

after round ı̂kmax + 2
n , player 2 can inject probability β

n ·
εk−1
K ≥ εK in qUj for U = Uk , thus outside

T , which concludes the proof with Nw = 4n and εw = εK > ε0 · (
β

n ·K
)2
n
=

1
2n ·

(
η(n+1)·2

n

n ·4n

)2n

. �

In the proof of Lemma 8, the set Iw of cardinality Nw corresponds to the positions that player 2
does not cover from an initial distribution d0 (where he would pass in the substitution game). Note
the order of the quantifiers in the statement of Lemma 8: player 2 may use different strategies
to cover different positions. We use the structure of argument of the substitution game to show
that a single strategy of player 2 can cover all but finitely many positions, and we obtain the
generalization of Lemma 3 to stochastic games.

Lemma 9. Let G be a stochastic game. The following equivalence holds: there exists a self-recurrent

set U ⊆ T , if and only if, there exists a state from which player 1 is almost-sure winning for weakly

synchronizing in T .

Proof. One direction of the lemma is given by Lemma 7. For the converse direction, the proof
uses Lemma 8 and is similar to the proof of Lemma 3.

J. ACM, Vol. 1, No. 1, Article . Publication date: March 2023.



26 Laurent Doyen

Algorithm 2: Solve(H ,p,T )

Input :G = 〈Q,A, δ〉 is a stochastic game, T ⊆ Q is a target set.

Output :The set {Supp(d) | d ∈ 〈〈1〉〉
weakly

almost
(G,T )}.

begin

1 r ← 1
2 H ← G × [r ]

3 S ← Q × [r ]

4 K ← S

5 repeat

6 if there is a self-recurrent set U ⊆ T inH ↾ [K] then

7 Let 〈R, r ,k〉 be the periodic scheme of U
8 H ← G × [r ]

9 K , S ← expand(r ,K , S)
10 LetW be the almost-sure winning

region for the (state-based) reachability
objective ^(R × {k mod r }) inH ↾ [K]

11 X ← PosA�r1(W ,H ↾ [K])

12 K ← K \ X

else

13 L← PosA�r2(K ,H ↾ [S])

14 S ← S \ L

15 K ← S

until K = ∅
16 return {s ⊆ Q | ∃i : s × {i} ⊆ S}

Given an arbitrary strategy σ for player 1, by Lemma 8 there exists an index i0 (namely, i0 =
max Iw the largest index in the finite set Iw constructed in the proof of Lemma 8) such that for

all i ≥ i0, there exists a player-2 strategy τ i such that di = G
σ ,τ i

i (T ) ≤ 1 − εw . The strategies τ i

correspond to the reserve team of tokens (in the substitution game).
Now for each di (as an initial distribution), considering the strategy σ of player 1 played from

di , we also get from Lemma 8 a finite set Idi of at most Nw indices, which are the times associated
with di where player 2 will pass in the substitution game. As we know that at most Nw + 1 tokens
from the reserve team may be needed in the substitution game, there is a time i∗0 after which no
token will ever be transferred from the reserve team and let K be the number of token in the
main team of tokens at time i∗0 . We assign probability mass 1

K to each token. At every step i ≥ i∗0 ,
there is a token that does not pass, and therefore there exists a strategy τ transforming that token
into a sub-distribution that carries probability at least εw

K
in Q \ T at time i . The resulting sub-

distribution (at time i) has again from Lemma 8 a finite set of indices of size Nw where it can pass,
as in the substitution game. Hence the process can continue forever, and at every step i ≥ i∗0 , there
is a probability mass at least εw

K in Q \ T , showing that σ is not almost-sure winning for weakly
synchronizing in T . �

We present Algorithm 2 to compute the almost-sure winning set for weakly synchronizing ob-
jectives. We use the game of Figure 12 for illustration. The game contains a self-recurrent set
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Fig. 12. A stochastic game G to illustrate the execution of Algorithm 2 (see also Fig. 13).
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Fig. 13. The gameH = G×[2] for the game G of Fig. 12 with the shaded region X computed by Algorithm 2

(line 11).

U = {y} (with period 2), thus player 1 is winning from x and from y. Player 1 is also winning from
the other states: the mass of probability that eventually stays in t is winning, and the remaining
mass of probability can be injected inU by player 1 at the correct times to be synchronized modulo
the period 2, thanks to the consecutive transitions on a2 from q and from s .
Given the game G as input, the algorithm considers subgames of H = G × [r ] where r = 1

initially (lines 1-2), with state space S , initially S = Q ×[1] (line 3). The auxiliary variable K (line 4)
is used to compute losing states for player 1.
The algorithm proceeds iteratively to construct K , by removing states from S . In the loop of

line 5, as long as there is a self-recurrent setU in the subgameH ↾ [K], we expand the state space
to track the number of rounds modulo the period ofU (which must be a multiple of the period of
H ). The map between the state spaces of the expanded game and of the original game is defined
as follows. Given a set S ⊆ Q × [p], and a period r that is a multiple of p, the r -expansion of S is
the set {〈q, i〉 | 0 ≤ i ≤ r − 1∧ 〈q, i mod p〉 ∈ S}. The expand function computes the r -expansion
of S and K at line 9 (where p = |{i | 〈q, i〉 ∈ S}| can be derived from the set S). In the expanded
gameH (line 8), we compute the almost-sure winning regionW for the (state-based) reachability
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Fig. 14. View of the iterations of Algorithm 2.

objective ^(R × {k}), which we call a core winning region, where k = k(U ) mod r . From the states
inW player 1 is almost-sure weakly synchronizing inT ×{0} (see the proof of Lemma 7). Figure 13
shows the 2-expansion of the game of Figure 12. The value k is such that from R × {k} player 1
can inject all the probability mass into T × {0} (in fact, in U × {0}).
The next iteration starts after removing from the state spaceK the positive attractor for player 1

toW (lines 11-12), thus ensuringH ↾ [K] is again a subgame (the dark part of Figure 13). Whenever
there is no setU inH ↾ [K] satisfying the conditions of Lemma 9, the whole state space K is losing
for player 1 andwe remove its positive attractor for player 2 (lines 13-15). This part of the algorithm
is illustrated in the game of Figure 15, where the self-recurrent setU = {y} (with period 1) induces
a core winning regionW = {x ,y}, and in the subgame obtained by removing the positive attractor
for player 1 toW , the set U = {q} is self-recurrent. The remaining subgame with state space {s}
has no self-recurrent set, thus we remove s and its positive attractor {q, s} for player 2, showing
that q and s are losing for player 1.
The loop (line 5) terminates when K = ∅, which can happen if either the state space S can

be partitioned by positive attractors to core winning regions, and then the whole state space S is
winning for player 1, or if all states in S are losing (L = S), and then the winning region for player 1
is empty. The algorithm then returns the slices of the winning region, which correspond to the
support of the winning distributions. Figure 14 illustrates the first iterations of the algorithm.

Termination. The termination of Algorithm 2 is established by showing that K ⊆ S is an invariant
of the repeat-loop and that at every iteration, either (i) the size of S is strictly decreasing, or (ii)
the size of S is unchanged, and the size of K is strictly decreasing, where the size of S (and K ) is
defined by maxi |{q ∈ Q | 〈q, i〉 ∈ S}| (and similarly for K ). Note that the expand function may
increase the cardinality of S and K , but not their size (line 9). To show (i) and (ii), if the condition
of the test (line 6) holds, thenW is nonempty and contains at least one state for each value of the
tracking counter, thus the size of K decreases (and S remains unchanged); otherwise, the size of S
decreases (line 14) since K is nonempty at the beginning of each iteration (the loop terminates if
K = ∅). It follows that the number of executions of the main loop (line 5) is at most n2.

Correctness. Let G be a game with state space Q , let T ⊆ Q .
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In the main loop of Algorithm 2 (line 5), let L1, L2, . . . , Liℓ be the sequence of values of the
variable L successively computed in the else-clause (line 13) and letX1,X2, . . . ,Xix be the values of
the variable X successively computed in the then-clause after the last execution of the else-clause
(line 11). Each of these two sequences may be empty, but not both. The sets Li and Xi are possibly
computed with different values of r . In the sequel, we consider their p-expansion for the value p
of r when the algorithm terminates, which leads to the property that in the game H = G × [p],
the sets expand(p, Li ) (i = 1, . . . , iℓ) and expand(p,X j ) (j = 1, . . . , ix ) form a partition of the state
spaceQ × [r ] (Figure 16). We often omit the expand function and write Li instead of expand(p, Li )
(and analogously for X j ).

We refine this partition with a decomposition of the losing states Li , and of the winning states
Xi (Figure 17). There exist sets Ki , Fi for i = 1, . . . , iiℓ , and Fiℓ+1 such that F1 = Q × [r ] and for all
1 ≤ i ≤ iℓ :

• Ki is a trap for player 1 in H ↾ [Fi ],
• Li = PosA�r2(Ki ,H ↾ [Fi ]),
• Fi+1 = Fi \ Li .

The setKi is the value of variableK (up top-expansion) when Li is computed (at line 13), and the
value Fi is the value of variable S computed in the next line (line 14). On the other hand, there exist
nonempty sets Ui ,Ri , Si ,Wi for i = 1, . . . , ix , andUix+1 such that S1 = Fiℓ+1 and for all 1 ≤ i ≤ ix :

• Ui is a self-recurrent set in H ↾ [Si ], with periodic scheme 〈Ri , ri ,ki 〉 where ri = p (sinceH
is the p-expansion of G, thus the least possible period in a subgame ofH is p).
• Xi = PosA�r1(Wi ,H ↾ [Si ]) whereWi is the almost-sure winning region for reachability to
Ri × {ki } inH ↾ [Si ],
• Si+1 = Si \ Xi .

Note that Six+1 = ∅ since the sets {Li }1≤i≤iℓ and {X j }1≤j≤ix form a partition of the state space
Q×[p]. The valuesUi ,Ri ,Wi correspond to the variablesU ,R,W (up top-expansion) at the iteration
where Xi is computed (lines 6-12). The set Si is the value of variable K at the beginning of that
iteration. Note that in the subgame H ↾ [Si ] player 2 cannot play the actions for which positive
probability leaves Si (Figure 17).
We now show that in the game H = G × [p], every state in

⋃

i Li is losing, and every state in
⋃

j X j is winning, for almost-sure weakly synchronizing in T × {0}.
For states in

⋃

i Li , the claim follows from Lemma 9 and the fact that Ki is a trap for player 1 in
H ↾ [Fi ]. In Li \Ki , player 2 uses the attractor strategy, and inKi , for every strategy of player 1 there

q s

x y

b2

a2

a1

b1

Fig. 15. A stochastic game to illustrate the execution of Algorithm 2 (lines 13-15).
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Fig. 16. The sets Li of losing states, and X j of

winning states in G × [r ] computed by Algo-

rithm 2 (see Correctness).
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Fig. 17. Refined view of the sets Li of losing

states, and X j of winning states in G × [r ] (from

Fig. 16).

is a strategy of player 2 to avoid almost-sure weakly synchronizing in T × {0}. By the attractor
strategy, the probability mass that reaches Ki is bounded (at least ηn) regardless of the strategy of
player 1, and thus there is also a lower bound on the probability mass outside T × {0} from some
point on.
For states in X := S1 =

⋃

j X j , we present an almost-sure winning strategy σas for player 1 that
successively plays according to the strategies σ1, σ2, . . . where σN is defined as follows, for all
N ≥ 1. The strategy σN plays in two phases: in the first phase, whenever a state in R =

⋃

j Rj × {kj
mod p} is reached, it plays to reach again R after p rounds (which is possible since p = r j ); if no
state in R was reached, it plays according to the (memoryless) attractor strategy in X j \Wj , and
according to the (memoryless) almost-sure winning strategy to reach Rj ×{kj mod p} inWj . This
first phase is played for N rounds. Let c be the value of the tracking counter at the end of the first
phase. The second phase is played for N ′ rounds such that N ′ > 2n and c + N ′ = 0 mod p, thus
the tracking counter will be 0 at the end of the second phase. In the second phase, the strategy σN
plays like in the first phase, except if a state in Rj × {kj mod p} is reached at step N + N ′ − kj
(note that N ′ > 2n ≥ kj ), where the strategy then plays according to the sure-winning strategy
for eventually synchronizing in Uj × {0}. Note that σas is pure and counting.
For j = 1, . . . , ix , consider the event

Aj = {q0 a0b0 q1 · · · ∈ (QAA)
ω | ∃I ≥ 0 · ∀i ≥ I : qi ∈Wj }

where from some point on the play remains in the setWj . We show that from every state in X , the
strategy σas is almost-sure winning for weakly synchronizing in T × {0}. The argument has two
parts:

• (Correctness under event Aj ). For an arbitrary ε > 0 let Nε given by Lemma 1. Under the
event Aj , since the strategy σNε plays inWj according to an almost-sure winning strategy
for the reachability objective ^(Rj × {kj mod p}) for Nε steps, it follows that for all states
〈q, t〉 ∈ X and strategies τ of player 2 inH ,

Pr
σNε ,τ

〈q,t 〉
(^≤Nε (Rj × {kj mod p}) | Aj ) ≥ 1 − ε,
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and since Uj × {0} ⊆Wj we can repeat the argument after the second phase of the strategy
σNε , and get Pr

σas,τ
〈q,t 〉
(^(Rj ×{kj mod p}) | Aj ) = 1 and Prσas,τ

〈q,t 〉
(�^Rj ×{kj mod p} | Aj ) = 1,

which implies that σas is almost-sure winning for weakly synchronizing in T × {0} under
event Aj .
• (The event

⋃

j Aj has probability 1).Nowwe show that the strategyσas is almost-sure winning
for the event

⋃

1≤j≤ix Aj , that is with probability 1 the play will remain forever in someWj .
Intuitively, this is because if a play visits infinitely often the positive attractor ofW1 (namely,
X1), then the setW1 is reached with probability 1 and never left since it is a trap for player 2
in the subgameH[S1] (where S1 is also a trap for player 2); on the other hand, if a play even-
tually remains outside X1, then from some point on the play remains always in the subgame
H[S2] (recall that S2 = S1 \ X1) and then visiting X2 infinitely often implies reaching and
staying forever inW2 with probability 1. Repeating this argument ix times shows that in all
cases, the play has to remain forever in some Rj with probability 1. Formally, fix an arbitrary
state 〈q, t〉 ∈ S1, and a strategy τ of player 2 inH , and we show that Prσas,τ

〈q,t 〉
(
⋃

1≤j≤ix Aj ) = 1.

Let B1 = {q0 a0b0 q1 · · · ∈ (QAA)ω | ∃∞i ≥ 0 : qi ∈ X1} and for j = 2, . . . , ix , let

Bj = {q0 a0b0 q1 · · · ∈ (QAA)
ω | ∃∞i ≥ 0 : qi ∈ X j } \

⋃

l<j

Bl

be the event that X j is visited infinitely often, and the states in X1 ∪ · · · ∪ X j−1 are visited
only finitely often.
Under event B1, the positive attractorX1 ofW1 is visited infinitely often, and therefore the set
W1 is reached with probability 1 (by an argument similar to the proof of Lemma 1, under the
positive-attractor strategy, there is a bounded probability η1 > 0 to reachW1 within a fixed
number of steps, which entails that the probability to never reachW1 is limk→∞(1−η1)k = 0).
Moreover, once the play is in W1, it remains there forever (by definition of the strategy
σas, and becauseW1 is a trap for player 2 in H ). Thus, we have Prσas,τ

〈q,t 〉
(A1 | B1) = 1 (if

Prσas,τ
〈q,t 〉
(B1) , 0). By a similar argument for j = 2, . . . , ix , under event Bj the play eventually

remains in the subgameH[S j ] since S j = S1 \
⋃

l<j Xl , and it follows that Pr
σas,τ
〈q,t 〉
(Aj | Bj ) = 1

(if Prσas,τ
〈q,t 〉
(Bj ) , 0). Finally, since {X j }1≤j≤ix is a partition of S1 we have Pr

σas,τ
〈q,t 〉
(
⋃

j Bj ) = 1,

and thus Prσas,τ
〈q,t 〉
(
⋃

1≤j≤ix Aj ) = Prσas,τ
〈q,t 〉
(
⋃

1≤j≤ix Aj |
⋃

1≤j≤ix Bj ) = 1.

In the game G, if 1q1 and 1q2 are almost-sure winning for weakly synchronizing inT , it does not
necessarily imply that the distribution with support {q1,q2} is almost-sure winning for weakly
synchronizing in T . However, we show that in the game H , if the counter value is the same in
two almost-sure winning states 〈q1, t1〉 and 〈q2, t2〉 (i.e., t1 = t2 = t ), then the distribution with
support {〈q1, t〉, 〈q2, t〉} is also almost-sure winning. This is because under the strategy σas , the
end of the second phase of the strategies σN occurs at the same time from all states with the same
counter value, Therefore, from all states in X with a given counter value, and for all strategies τ
of player 2, the probability mass is at least 1 − ε inT × {0} at the last round played by each σN for
all N sufficiently large.
Given a distribution d0 ∈ D(Q) over the states of G if Supp(d0) is a slice in X , that is there

exists a counter value t such that {〈q, t〉 | q ∈ Supp(d0)} ⊆ X , then d0 is an almost-sure winning
distribution in G. On the other hand, if for every 0 ≤ t < p, there is a state q ∈ Supp(d0) such
that 〈q, t〉 ∈ L, then from d0, player 2 can spoil all strategies of player 1, using a superposition of
spoiling strategies for each 〈q, t〉 ∈ L.
In conclusion, the sets s ⊆ Q such that s × {t} ⊆ X = S1 for some t are the supports of the

almost-sure winning distributions (line 16), which establishes the correctness of Algorithm 2.
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Lemma 10. Given a stochastic game and a setT of target states, Algorithm 2 computes the supports

of the distributions from which player 1 is almost-sure winning for weakly synchronizing in T . This

algorithm can be implemented in PSPACE.

Proof. The correctness of the algorithm follows from the arguments given above. We show
that this algorithm can be implemented in PSPACE by a similar proof as for deterministic games
(Lemma 6). We already showed that the number of executions of the main loop (line 5) is at most
n2 (see Termination), and since the period of the setU (line 6) is at most 2n times the period of the
gameH (slices are subsets ofQ), the final value of r (upon termination of the algorithm) is at most
(2n)n

2
= 2n

3
.

A PSPACE implementation of Algorithm 2 can be obtained by using a PSPACE procedure to
determine the transitions ofH ↾ [K] and H ↾ [S], as in the proof of Lemma 6. The computation of
the positive attractors, and almost-sure winning regions can then be done in PSPACE as well. �

We obtain the following theorem, where the PSPACE upper bound is given by Lemma 10, a pure
counting almost-sure winning strategy σas for player 1 is presented on p. 30, and the lower bound
and memory requirement hold in the special case of MDPs [25, Theorem 6].

Theorem 3. The membership problem for almost-sure weakly synchronizing in stochastic games is

PSPACE-complete, and pure counting strategies are sufficient for player 1. Infinite memory is necessary

in general.

4.3 Other synchronization objectives

The almost-sure winning region for the other synchronization objectives (always, eventually, and
strongly) can be computed relatively easily, using the following lemmas.

Lemma 11. For always synchronizing, the sure and almost-sure winning modes coincide:

〈〈1〉〉
always
sure (T ) = 〈〈1〉〉

always

almost
(T ).

Proof. The inclusion 〈〈1〉〉
always
sure (T ) ⊆ 〈〈1〉〉

always

almost
(T ) follows from the definitions (Section 2). For

the converse inclusion, consider an initial distribution d0 from which player 1 has an almost-sure
winning strategy for always synchronizing in T . We claim that player 1 has a strategy σsafe to
ensure, for all plays ρ = q0 a0b0 q1 . . . qk compatible with σ , that qi ∈ T for all 0 ≤ i ≤ k (i.e.,
player 1 is sure-winning for the safety objective �T [22]). By contradiction, if that is not the case,
then player 2 has a strategy to ensure reaching a state inQ \T within at most n steps with positive
probability against all strategies of player 1, in contradiction with player 1 being almost-sure win-
ning for always synchronizing in T . Hence such a strategy σsafe exists and we conclude the proof
by observing that σsafe is sure winning for always synchronizing in T . �

The following lemma generalizes to games a result that holds for MDPs [41, Section 5.1.2].

Lemma 12. [42] In stochastic games, we have 〈〈1〉〉event
almost
(T ) = 〈〈1〉〉eventsure (T ) ∪ 〈〈1〉〉

weakly

almost
(T ).

Proof. The inclusions 〈〈1〉〉eventsure (T ) ⊆ 〈〈1〉〉
event
almost
(T ) and 〈〈1〉〉weakly

almost
(T ) ⊆ 〈〈1〉〉event

almost
(T ) follow from

the definitions (Section 2). For the converse, consider an initial distribution d0 from which player 1
has an almost-sure winning strategy for eventually synchronizing in T . Towards contradiction,

assume that d0 < 〈〈1〉〉eventsure (T )∪ 〈〈1〉〉
weakly

almost
(T ). Then for all player-1 strategies σ , there exist player-2

strategies τe and τw such that Gσ ,τe
d0

is not sure eventually synchronizing in T , and Gσ ,τw
d0

is not

almost-sure weakly synchronizing in T . Let τ be the strategy playing the superposition of 1
2τe

and 1
2τw. Consider τw and following the definitions, there exists εw > 0 and i∗ ≥ 0 such that
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Gσ ,τi (T ) < 1 − εw for all i ≥ i∗. Moreover, considering τe, we have G
σ ,τ
i (T ) < 1 − η0

2 · η
i∗ for all

i ≤ i∗. For ε = min{εw ,
η0
2 · η

i∗} > 0, we get Gσ ,τi (T ) < 1 − ε for all i ≥ 0, in contradiction to
player 1 being almost-sure winning for eventually synchronizing in T . �

The reduction presented in the proof of Theorem2 also shows PSPACE-hardness for almost-sure
eventually synchronizing in deterministic games.

Lemma 13. Let G be a stochastic game. Given a target set T , an initial distribution d0 is almost-

sure winning for strongly synchronizing inT if and only if d0 is almost-sure winning for the coBüchi

objective ^�T .

Proof. First, if player 1 is almost-sure winning for the coBüchi objective ^�T in G, then there
exists a memorylesswinning strategyσas for player 1, which is such that all states in the (reachable)
end-components of theMDP obtained from the game G after fixing the strategy σas are inT [19]. It
is then easy to show that the strategy σas is almost-sure winning for strongly synchronizing in T .
For the converse direction, if player 1 is not almost-sure winning for the coBüchi objective ^�T

in G, then there exists a strategy τ for player 2, which we can assume to be memoryless [16], such
that for all player-1 strategies σ we have Prσ ,τ

d0
(^�T ) < 1. Hence in the MDP Gτ obtained from

G by fixing the strategy τ , player 1 is not almost-sure winning for the coBüchi objective ^�T ,
which is equivalent to saying that in Gτ no player-1 strategy is almost-sure winning for strongly
synchronizing in T [25, Lemma 27]. �

We note that in deterministic games, the sure and almost-sure winning modes coincide for state-
based objectives, thus it follows from Lemma 13 that for strongly synchronizing the sure and
almost-sure winning modes coincide in deterministic games.
We summarize the results of Section 4 for almost-sure synchronizing.

Theorem 4. The membership problem for almost-sure always and strongly synchronizing can be

solved in polynomial time, and pure memoryless strategies are sufficient for player 1.
The membership problem for almost-sure eventually and weakly synchronizing is PSPACE-

complete, and pure counting strategies are sufficient for player 1. Infinite memory is necessary in

general.

5 CONCLUSION

Stochastic games with synchronization objectives combine stochasticity with the presence of
an adversary and a flavour of imperfect information, which together tend to bring undecidabil-
ity [33, 37]. The form of imperfect information in these games differs from the traditional setting
where the strategy of player 1 is uniform (the same action is played in all states) [4, 18]. Here,
player 1 can see the local state of the game, but needs to enforce a global objective defined on state
distributions, which are not visible to player 1. Beyond decidability, it is perhaps surprising that
the membership problem for games is no harder than for MDPs (PSPACE-complete), although the
proof techniques are significantly more involved, mainly due to the presence of an adversary, and
the lack of determinacy.
The main question raised by this model is whether it is possible to extend it with a form of com-

munication, while remaining decidable. This would bring us closer to a wide range of applications
in synthetic biology [36, 45] and chemical reaction networks [12].
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