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1 IntrodutionThe design and veri�ation of real-time systems has intensively used formal methodsfor several years. In that ontext, timed automata have played an important role [1℄.A timed automaton is essentially a �nite automaton augmented with a set of loksthat allow to speify timing onstraints on the transitions of the automaton. Twomodels of time are usually onsidered, either the time domain T is disrete (T = N)or dense (T = R≥0 or T = Q≥0).An important result about timed automata is that the reahability problem (`Is agiven loation of the automaton reahable from the initial state ?') is deidable whenthe onstants that appear in the timing onstraints are rational numbers [1℄. Theproblem beomes undeidable when irrational onstants are allowed [10℄.In this paper, we are interested in the reahability problem for parametri extensionsof timed automata, where onstants in timing onstraints are replaed by parametersrepresenting unknown onstants. The possibility to speify parametri onstraintsPreprint submitted to Elsevier 23 November 2006



allows to design systems independently of a partiular implementation. For exam-ple, the speed of the hardware or the time transmission in a ommuniation protoolould be left as parameters in the early phases of the design. The parametri reah-ability problem asks then whether there exists a valuation for the parameters suhthat a given loation is reahable. We review the known (un)deidability resultsabout this problem when the domain P of the parameters is either disrete (P = N)or dense (P = R≥0 or P = Q≥0). The main result is that the problem is undeidablewhen T and P are dense [4, 7℄.The lassial proofs of that result use the expressiveness of equality in timed au-tomata to enode Turing-mahine omputations. Similar results exist for real-timelogis. However, if the use of equality is disallowed in the logi, deidability anoften be established. This is the ase for MITL [3℄ and the parametri extension ofTCTL [6℄. The hope has then arisen that deidability of the parametri reahabilityproblem ould be established for more robust models like open timed automata thatavoid equality onstraints. Unfortunately, we show that this is not the ase and thatparametri timed automata are robustly undeidable. The proof that we present isthe main ontribution of the paper. It is based on a non-trivial novel enoding oftwo-ounter Minsky mahines.
2 Parametri Timed AutomataGiven a set Var of loks and a set P of parameters, let Φ(Var,P) be the set of lokonstraints ϕ de�ned by the grammar rule ϕ ::= x ∼ c | ϕ ∧ ϕ where x ∈ Var,
c ∈ N ∪ P and ∼∈ {<,≤,=,≥, >}.De�nition 1 [PTA - Parametri Timed Automata℄ A parametri timed automatonis a tuple A = 〈Loc, ℓ0,Var,P,Lab,Edg, Inv〉 where : (i) Loc is a �nite set of loations;(ii) ℓ0 ∈ Loc is the initial loation; (iii) Var is a �nite set of variables alled loks;(iv) P is a �nite set of parameters; (v) Lab is a �nite alphabet of labels; (vi) Edg ⊆
Loc × Loc × Φ(Var,P) × Lab × 2Var is a set of edges. An edge (ℓ, ℓ′, g, α,R) ∈ Edg,represents a transition from loation ℓ to loation ℓ′ with guard g, label α and asubset R ⊆ Var of the loks to be reset; (vii) Inv : Loc → Φ(Var,P) is the invariantondition. The automaton an stay in loation ℓ as long as the urrent values of theloks satisfy the onstraint Inv(ℓ).The semantis of PTA is given by a transition system. The states are pairs (ℓ, v)where ℓ ∈ Loc and v : Var → T is a lok valuation. The transition relation dependson the valuation of the parameters. Let κ : P → P be a parameter valuation andde�ne κ(c) = c for every c ∈ N. For a formula ϕ ∈ Φ(Var,P) and a lok valuation
v, we write v |=κ ϕ i� v(x) ∼ κ(c) for eah `x ∼ c' appearing in ϕ. De�ne [[ϕ]]κ=
{v | v |=κ ϕ}. Given a valuation v and t ∈ T, the valuation v + t assigns the value
v(x) + t to eah variable x ∈ Var. 2



T
Cloks ompared Other Parameters Deidabilityto parameters loks (P = T)

N 1 any any √ [4℄
R 1 0 any √ [4, 10℄

N or R 3 0 6 × [4℄
R 3 0 1 × [10℄
R 1 3 1 × [10℄Table 1. Existing deidability (√) and undeidability (×) results for PTA.De�nition 2 [Semantis of PTA℄ Given a parameter valuation κ, the semantis ofa PTA A = 〈Loc, ℓ0,Var,P,Lab,Edg, Inv〉 is given by the labelled transition sys-tem [[A]]κ= (S, S0,L, 7→) where : (i) S = {(ℓ, v)|ℓ ∈ Loc ∧ v ∈[[Inv(ℓ)]]κ}; (ii)

S0 = {(l0, v0)} where v0(x) = 0 for every x ∈ Var; (iii) L = Lab ∪ T; (iv) Therelation 7→⊆ S × L× S is de�ned as follows: (a) Disrete transitions. For σ ∈ Lab,
((ℓ, v), σ, (ℓ′, v′)) ∈ 7→ i� there exists an edge (ℓ, ℓ′, g, σ,R) ∈ Edg suh that v |=κ g,
v′(x) = 0 if x ∈ R and v′(x) = v(x) if x 6∈ R. (b) Timed transitions. For t ∈ T,
((ℓ, v), t, (ℓ′, v′)) ∈ 7→ i� ℓ′ = ℓ, v′ = v + t and for every t′ ∈ [0, t] : v + t′ ∈[[Inv(ℓ)]]κ.A state sf is reahable in a labelled transition system T = (S, S0,L, 7→) i� thereexists a �nite sequene s̄ = s0, s1, . . . , sn of states si ∈ S suh that s0 ∈ S0, sn = sfand for every 0 ≤ i < n, there exists some σi ∈ L suh that (si, σi, si+1) ∈ 7→. Wewrite Reach(T ) for the set of reahable states of T .3 Parametri ReahabilityGiven a PTA A and a loation ℓf , the set Γℓf

(A) = {κ | (ℓf , vf ) ∈ Reach([[A]]κ) forsome valuation vf} ontains the parameter valuations suh that ℓf is reahable in A.De�nition 3 Given a PTA A and a loation ℓf , the parametri reahability problemasks whether Γℓf
(A) is empty.In Table 1, we give a summary of the existing results about deidability of thisproblem, depending on the time domain T and the number of loks and parameters.We assume that the parameters take their value in the set T, that is P = T. It wouldmake sense to onsider the ase T = R≥0 and P = N, but the problem is obviouslyundeidable in general sine it is already the ase for P = T = N (3rd line in Table 1).Notie that all the results presented for P = T = R≥0 hold for P = T = Q≥0.The parametri reahability problem in disrete time is deidable for the lass ofPTA with an arbitrary number of loks in whih only one lok is ompared to theparameters [4℄. The proof is in two steps. First the non parametrially onstrainedloks are eliminated, and then a linear formula de�ning Γℓf

(A) is onstruted. Thedeidability of testing emptiness of Γℓf
(A) follows.3



In dense time, deidability is established only for PTA with one single lok and theproblem is NP-omplete in this ase [4, 10℄. However, for PTA with four loks, theparametri reahability problem is undeidable even if only one lok is parametri-ally onstrained [10℄. Finally, as stated by Theorem 1, the parametri reahabilityproblem is undeidable in both disrete and dense time for PTA with at least threeloks and six parameters [4℄.Theorem 1 ([4℄) The parametri reahability problem is undeidable in dense timefor general PTA.The proof uses a redution from the halting problem for 2-ounter mahine whihis known to be undeidable [11℄. A 2-ounter mahine onsists of a �nite set ofstates Q = {q0, . . . , qm} (with an initial state q0 and a �nal state qm), a �nite setof instrutions and two ounters C1 and C2. An instrution is assoiated to eahmahine state, and it an be either (inrement) Ck = Ck +1 goto qi, or (derement)
Ck = Ck − 1 goto qi, or (zero-testing) if Ck = 0 then goto qi else goto qj ,where k ∈ {1, 2} and qi, qj ∈ Q are mahine states. The derement is not allowedif the ounter value is 0. We may assume that a zero-testing is done before everyderement.A on�guration of the mahine is a triple (qi, c1, c2) where qi ∈ Q is a state and
c1, c2 ∈ N are the values of C1 and C2 respetively. An exeution of the mahineis an in�nite sequene π = π0π1 . . . of on�gurations suh that π0 = (q0, 0, 0) andfor all i ≥ 0, if πi = (q, c1, c2) then πi+1 is obtained as expeted, aording to theinstrution assoiated to the state q. The halting problem for 2-ounter mahinesis to deide if a given mahine M has an exeution that reahes a on�guration
(qm, c1, c2) for some values c1 and c2.The redution presented in [4℄ uses three loks and six parameters to enode thevalue of the two ounters, and instrutions of the 2-ounter mahine are translatedinto operations on loks. In [10℄, an original proof is presented for dense time. Itworks for PTA with three loks and one parameter. The idea is to use a new un-deidability result for irrational timed automata where onstants an be irrationalinstead of integers. One again, this result is proven by redution of the halting prob-lem for 2-ounter mahines. Then, it is shown that the redution is still appliableif the irrational onstants are replaed by a parameter (sine a rational parameteran be hosen arbitrarily lose to an irrational). Refer to [10℄ for details. Finally, forthe sublass of PTA alled L/U automata, the parametri reahability problem isdeidable [9℄.In the �eld of parametri real-time veri�ation, there are several works where the pa-rameters are introdued in real-time logis like TCTL [12, 8, 2, 5℄ or simultaneouslyin the model and in the logi [6℄. 4



0 1

I2 Ii In−1I1 . . .. . . InFig. 1. Intervals of the form Ii = ]i · α, i · β[ in whih the loks x and y lie.4 Robust UndeidabilityIn both undeidability proofs of the previous setion (Theorem 1), the fat thatPTA allow to de�ne strong onstraints of the form 'x = α' where α is a parameteris essential for simulating 2-ounter mahine. It ould be argued that perhaps theparametri deision problem is undeidable simply beause equality is too expressive.However, we show that a 2-ounter mahine an be simulated without using equality.Our redution tehnique is inspired by the widget onstrution presented in [7℄.A PTA is open if all the guards and invariants are generated by the grammar rule
ϕ ::= x < c | x > c | ϕ ∧ ϕ where x ∈ Var and c ∈ N ∪ P.Theorem 2 The parametri reahability problem is undeidable in dense time foropen PTA (for P ∈ {R≥0, Q≥0} and T ∈ {R≥0, Q≥0}).Proof. Given a 2-ounter mahine M , we onstrut an open PTA AM with �veloks and two parameters α and β. The states q0, . . . , qm of the 2-ounter mahineare enoded by the loations ℓ1, . . . , ℓm of AM respetively. The onstrution is suhthat the loation ℓm is reahable for some valuation of the parameters if and onlyif M halts (or equivalently reahes the state qm). The value of eah ounter Ck isenoded by two loks xk and yk of the timed automaton, and we use an additionallok t to generate pseudo-periodial tiks: we put the guard t > α on every edge,and we put the invariant t < β on every loation (exept for the automaton of Fig. 2that we use in an initialization step). Also, we reset t on every edge so that a newtik ours every between α and β time units with α < β (typially, the value of theparameters α and β is intended to be muh less than 1).After i suh tiks, a lok x (initially 0) has a value in the interval Ii =]i · α, i · β[.Now, assume that for some n ∈ N (see also Fig. 1):(A1) the intervals Ii and Ii+1 are disjoint for eah 0 ≤ i < n;(A2) In−1 ⊂ [0, 1] and In ⊂ [1,+∞[ .Then, if we reset the lok x when x ∈ In, that is n tiks after the last reset,we an simulate a modulo-n ounter. Now, we use the di�erene between two suhounters to maintain the value of the mahine ounters as time elapses. Given amaximal onstant n, we de�ne the value c of a ounter enoded with loks x and yas follows: if x ∈ Ii and y ∈ Ij then c = val(i, j) =

{

i − j if i ≥ j

n + i − j if i < j5



a0 a1

a2 ℓ0

t < β

x1 < α

x1 := 0

y1 > β

y1 := 0t < 1

x1 < α ∧ t > 1

x1, y1, x2, y2, t := 0Fig. 2. Ainit

idle

xk > 1

∧ y > 1

xk, yk := 0

xk < 1

∧ yk < 1

xk > 1

∧ yk < 1

xk := 0

xk < 1

∧ yk > 1

yk := 0Fig. 3. Idling with Aidle
k .The assumption (A1) guarantees the uniqueness of i suh that x ∈ Ii (and similarlyfor j). It is easy to establish the following invariane property for this enoding:

∀0 ≤ i, j < n : val(i + 1 mod n, j + 1 mod n) = val(i, j) (1)Note that the assumption (A1) is equivalent to ask that In−1 and In are disjoint(sine α < β and (n − 1)β < n · α entails (i − 1)β < i · α for all i ≤ n), whih isimplied by (A2). On the other hand, (A2) is equivalent to the following onditionon the parameters: (n − 1)β < 1 < n · α.We hek this ondition with the initialization widget Ainit of Fig. 2 whose loation
ℓ0 (orresponding to the mahine state q0) is reahable if and only if there exists
n ∈ N suh that (n − 1)β < 1 < n · α (in fat n is the number of times the loation
a0 is visited before reahing ℓ0, thus the loop a0, a1 is taken n − 1 times). Observethat the lok x1 is always reset when x1 < α, so that when the edge (a2, ℓ0) istaken, we have t < n · α and t > 1 whih implies 1 < n · α. On the other hand, theondition (n − 1)β < 1 is trivially satis�ed for n = 1. For n > 1, sine y1 is resetwhen y1 > β, we have t > (n − 1)β in the loation a0 when the edge to a2 is takenwith t < 1. This entails (n − 1)β < 1.In this setting, the maximal value of a ounter is n − 1 = ⌊ 1

α
⌋ = ⌊ 1

β
⌋. Thus, witha lower value for α we an enode larger values of the ounters. Sine parametersare valued in R≥0, this is su�ient to guarantee faithful simulation of the 2-ountermahine, if its ounters remain bounded. If a ounter over�ow ours in the simula-tion of M , an error loation is reahed in AM where it is impossible to reah ℓm. Insummary,

• if M reahes qm, then the values of its ounters remain bounded, and so by hoos-ing su�iently small values for the parameters, AM will be able to simulate Mand thus to reah ℓm.
• On the other hand, if M does not reah qm, then either the ounters are unboundedand AM falls in over�ow no matter the hoie of the value of the parameters, or

AM an mimi the exeution of M forever (as before by hoosing su�iently smallvalues for the parameters), yet annot reah ℓm sine M does not.6



ℓi

ℓ′i

ℓ′′i ℓj

over�owxk < 1

∧ yk < 1

xk > 1 ∧ yk > 1

xk, yk := 0

xk < 1 ∧ yk > 1

yk := 0

xk > 1

∧ yk < 1

xk := 0

yk < 1

yk > 1

yk := 0

xk < 1

yk := 0

xk > 1

Fig. 4. Inrementing Ck with A+
k .

ℓi ℓj

ℓj′

xk > 1

∧ yk > 1

xk, yk := 0

xk < 1

∧ yk < 1

xk < 1

∧ yk > 1

yk := 0

xk > 1
∧ yk < 1

xk := 0

Fig. 5. Zero-testing Ck with A0
k.We present the widgets that we use to onstrut the timed automaton AM . In allthe subsequent �gures, the invariant t < β on eah loation, the guard t > α andthe reset t := 0 on every edge are not depited for the sake of larity.First, onsider the idling automaton Aidle

k of Fig. 3 (for k ∈ {1, 2}). This automatonmaintains the value of the ounter Ck by resetting xk and yk whenever they exeed 1.This widget is used to preserve the value of a ounter while exeuting an instrutioninvolving the other ounter. The orretness of Aidle
k relies on Equation (1). Now,we show how to exeute the three types of instrution of M with AM .Inrement An instrution of the form Ck = Ck +1 goto qj at state qi is translatedinto the synhronized produt of A+

k and Aidle
3−k where A+

k is depited in Fig. 4. Itis assumed that all their edges have the same label (not depited) whih ensuressynhronizations of the two automata.We informally explain the struture of A+
k . Remember that eah edge is a tik. The�rst step is to obtain an enoding of Ck suh that yk = 0 in ℓ′′i . To do this, theautomaton A+

k is idling in loation ℓi until either yk > 1 or xk > 1. In the �rst ase,we an diretly reset yk and jump to ℓ′′i , and in the seond ase we have to wait inloation ℓ′i until yk > 1 to do so. The seond step is the inrement itself. From ℓ′′i,we reset yk after the next tik and we proeed to ℓj . However, if we had x1 > 1at that time, it would mean that the ounter over�ows and that the simulationannot ontinue. The deadlok loation over�ow is then reahed where no transitionis possible.Derement A derement of the form Ck = Ck − 1 goto qj at state qi is translatedinto the synhronized produt of A−
k and Aidle

3−k where A−
k is depited in Fig. 6. Again,all their edges have the same label.Derementing the ounter Ck is the dual of inrementing: we proeed to loation ℓ′′iwhen xk is reset so that yk ∈ In−i if the value of Ck is i. Then, with the next tik,we reset xk so that xk ∈ I0 and yk ∈ In−i+1. Thus, the value of Ck is now i−1 in ℓj .Note that an edge guarded by xk > 1 ∧ yk > 1 is missing from loation ℓi in Fig. 67



ℓi

ℓ′i

ℓ′′i ℓj

xk < 1 ∧ yk < 1

xk > 1 ∧ yk < 1

xk := 0

xk < 1

∧ yk > 1

yk := 0

xk < 1

xk > 1

xk := 0

yk < 1

xk := 0

Fig. 6. Derementing Ck with A−
k .sine it orresponds to a ounter equal to 0 whih is prevented by the assumptionthat ounters are zero-tested before derementing.Zero-testing An instrution of the form if Ck = 0 then goto qj else goto qj′ atloation qi is translated into the synhronized produt of A0

k and Aidle
3−k where A0

kis depited in Fig. 5. The value of a ounter Ck is zero i� xk, yk ∈ Ii for some i,whih means that the two loks will eventually exeed 1 during the same tik. Thisis heked by A0
k, branhing to either ℓj or ℓj′. Again, all their edges have the samelabel.The automaton AM is now built up by onatenating Ainit and eah of the widgettranslated from the instrutions of M . By onatenation, we mean taking the unionof the loations and edges of the widgets, with initial loation a0 of Ainit and �nalloation ℓm. It is now lear from the above onstrution that the following laimsare equivalent:(1) The state (ℓm, v) is reahable in [[AM ]]κ for some valuation v.(2) There exists an exeution π′ of M ontaining a on�guration (qm, c1, c2) forsome c1, c2 ∈ N and suh that for all i ≥ 0, if π′

i = (q, c1, c2) then c1, c2 ≤ ⌊ 1
κ(α)⌋.This allows to onlude that Γℓm

(AM ) is not empty if and only if the answer to thereahability problem for M is Yes, and thus the parametri reahability problem isundeidable for open PTA. 2The proof that we have presented uses �ve loks and two parameters, but threeloks are ompared with parameters, namely x1, y1 and t. It is lear that the sameredution holds with only two loks ompared with parameters: in the initializationwidget Ainit, sine all the loks are reset before entering ℓ0, we ould swap forexample x1 and t so that x1 is no more ompared to parameters.8
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