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Abstract

We consider two-player zero-sum games on finite-state graphs. These games can be
classified on the basis of the information of the players and on the mode of interaction
between them. On the basis of information the classificationis as follows: (a) partial-
observation (both players have partial view of the game); (b) one-sided complete-
observation (one player has complete observation); and (c)complete-observation (both
players have complete view of the game). On the basis of mode of interaction we
have the following classification: (a) concurrent (playersinteract simultaneously); and
(b) turn-based (players interact in turn). The two sources of randomness in these games
are randomness in the transition function and randomness inthe strategies. In general,
randomized strategies are more powerful than deterministic strategies, and probabilistic
transitions give more general classes of games. We present acomplete characterization
for the classes of games where randomness is not helpful in: (a) the transition function
(probabilistic transitions can be simulated by deterministic transitions); and (b) strate-
gies (pure strategies are as powerful as randomized strategies). As a consequence of
our characterization we obtain new undecidability resultsfor these games.

1. Introduction

Games on graphs.Games played on graphs provide the mathematical framework to
analyze several important problems in computer science as well as mathematics. In
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particular, when the vertices and edges of a graph representthe states and transitions of
a reactive system, then the synthesis problem (Church’s problem) asks for the construc-
tion of a winning strategy in a game played on a graph [5, 24, 23, 21]. Game-theoretic
formulations have also proved useful for the verification [1], refinement [18], and com-
patibility checking [14] of reactive systems. Games playedon graphs are dynamic
games that proceed for an infinite number of rounds. In each round, the players choose
moves; the moves, together with the current state, determine the successor state. An
outcome of the game, called aplay, consists of the infinite sequence of states that are
visited.

Strategies and objectives. A strategy for a player is a recipe that describes how
the player chooses a move to extend a play. Strategies can be classified as follows:
(a) purestrategies, which always deterministically choose a move to extend the play,
and (b)randomizedstrategies, which may choose at a state a probability distribution
over the available moves. Objectives are generally Borel-measurable sets [19]: the ob-
jective for a player is a Borel setB in the Cantor topology onSω (whereS is the set
of states), and the player satisfies the objective if the outcome of the game is a mem-
ber ofB. In verification, objectives are usuallyω-regular languages. Theω-regular
languages generalize the classical regular languages to infinite strings; they occur in
the low levels of the Borel hierarchy (they lie inΣ3 ∩ Π3) and they form a robust and
expressive language for determining payoffs for commonly used specifications.

Classification of games.Games played on graphs can be classified according to the
knowledge of the players about the state of the game, and the way of choosing moves.
Accordingly, there are (a)partial-observationgames, where each player only has a
partial or incomplete view about the state and the moves of the other player; (b)one-
sided complete-observationgames, where one player has partial knowledge and the
other player has complete knowledge about the state and moves of the other player;
and (c)complete-observationgames, where each player has complete knowledge of
the game. According to the way of choosing moves, the games ongraphs can be clas-
sified intoturn-basedandconcurrentgames. In turn-based games, in any given round
only one player can choose among multiple moves; effectively, the set of states can be
partitioned into the states where it is player 1’s turn to play, and the states where it is
player 2’s turn. In concurrent games, both players may have multiple moves available
at each state, and the players choose their moves simultaneously and independently.

Sources of randomness.There are two sources of randomness in these games. First is
the randomness in the transition function: given a current state and moves of the play-
ers, the transition function defines a probability distribution over the successor states.
The second source of randomness is the randomness in strategies (when the players
play randomized strategies). In this work we study when randomness can be obtained
for free; i.e., we study in which classes of games the probabilistic transitions can be
simulated by deterministic transitions and the classes of games where pure strategies
are as powerful as randomized strategies.

Motivation. The motivation to study this problem is as follows: (a) if fora class of
games it can be shown that randomness is for free in the transition function, then all
future works related to analysis of computational complexity, strategy complexity, and
algorithmic solutions can focus on the simpler class with deterministic transitions (the
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randomness in transition function may be essential for modeling appropriate stochastic
reactive systems, but the analysis can focus on the deterministic subclass); (b) if for a
class of games it can be shown that randomness is for free in strategies, then all future
works related to correctness results can focus on the simpler class of pure strategies,
and the results would follow for the more general class of randomized strategies; and
(c) the characterization of randomness for free will allow hardness results obtained
for the more general class of games (such as games with randomness in the transition
function) to be carried over to simpler class of games (such as games with deterministic
transitions).

Contribution. The contributions of this paper are as follows:

1. Randomness for free in the transition function.We show that randomness in the
transition function can be obtained for free for complete-observation concurrent
games (and any class that subsumes complete-observation concurrent games)
and for one-sided complete-observation turn-based games (and any class that
subsumes this class). The reduction is polynomial for complete-observation con-
current games, and exponential for one-sided complete-observation turn-based
games. It is known that for complete-observation turn-based games, a probabilis-
tic transition function cannot be simulated by a deterministic transition function
(see discussion in Section 3.4 for details), and thus we present a complete char-
acterization when randomness can be obtained for free in thetransition function.

2. Randomness for free in the strategies.We show that randomness in strate-
gies is free for complete-observation turn-based games, and for 1-player partial-
observation games (POMDPs). For all other classes of games randomized strate-
gies are more powerful than pure strategies. It follows froma result of Mar-
tin [20] that for 1-player complete-observation games with probabilistic tran-
sitions (MDPs) pure strategies are as powerful as randomized strategies. We
present a generalization of this result to the case of POMDPs. Our proof is totally
different from Martin’s proof and based on a new derandomization technique of
randomized strategies.

3. Concurrency for free in games.We show that concurrency is obtained for free
with partial-observation, both for one-sided complete-observation games as well
as for general partial-observation games (see Section 3.5). It follows that for
partial-observation games, future research can focus on the simpler model of
turn-based games, and concurrency does not add anything in the presence of
partial observation.

4. New undecidability results.As a consequence of our characterization of random-
ness for free, we obtain new undecidability results. In particular, using our re-
sults and results of Baier et al. [2] we show for one-sided complete-observation
deterministic games, the problems of almost-sure winning for coBüchi objec-
tives and positive winning for Büchi objectives are undecidable. Thus we obtain
the first undecidability result for qualitative analysis (almost-sure and positive
winning) of one-sided complete-observation deterministic games withω-regular
objectives.
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Applications of our results. While we already show that our results allow us to obtain
new undecidability results, they have also been used to simplify proofs and analysis
of POMDPs and partial-observation games [6, 7, 8, 9, 16] (e.g. [7, Lemma 21] and [9,
Claim 2. Lemma 5.1]) as well as extended to other settings such as probabilistic au-
tomata [17].

2. Definitions

In this section we present the definition of concurrent gamesof partial information
and their subclasses, and notions of strategies and objectives. Our model of game is
equivalent to the model of stochastic games with signals [22, 3] (in stochastic games
with signals, the players receive signals which represent information about the game,
which in our model is represented as observations). Aprobability distributionon a
finite setA is a functionκ : A → [0, 1] such that

∑

a∈A κ(a) = 1. We denote byD(A)
the set of probability distributions onA.

Concurrent games of partial observation.A concurrent game of partial observation
(or simply agame) is a tupleG = 〈S,A1, A2, δ,O1,O2〉 with the following compo-
nents:

1. (State space).S is a finite set of states;

2. (Actions).Ai (i = 1, 2) is a finite set of actions for playeri;

3. (Probabilistic transition function).δ : S × A1 × A2 → D(S) is a concurrent
probabilistic transition function that given a current states, actionsa1 anda2 for
both players gives the transition probabilityδ(s, a1, a2)(s′) to the next states′;
for the sake of effectiveness, we assume that all probabilities in the transition
function are rational;

4. (Observations).Oi ⊆ 2S (i = 1, 2) is a finite set of observations for playeri
that partition the state spaceS. These partitions uniquely define functionsobsi :
S → Oi (i = 1, 2) that map each state to its observation (for playeri) such that
s ∈ obsi(s) for all s ∈ S.

We sometimes relax the assumption that games have a finite state space, and we
allow the setS of states to becountable. This is useful in the context of game solving,
where we get a countable state space after fixing an arbitrarystrategy for one of the
players in a game. In our results we explicitly mention when we consider countable
state space and when we consider finite state space.
Special cases.We consider the following special cases of partial-observation concur-
rent games, obtained either by restrictions in the observations, the mode of selection of
moves, the type of transition function, or the number of players:

• (Observation restriction).The games withone-sided complete-observationare
the special case of games whereO1 = {{s} | s ∈ S} (i.e., player 1 has complete
observation) orO2 = {{s} | s ∈ S} (player 2 has complete observation). The
games of complete-observationare the special case of games whereO1 = O2 =
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{{s} | s ∈ S}, i.e., every state is visible to each player and hence both players
have complete observation. If a player has complete observation we omit the
corresponding observation sets from the description of thegame.

• (Mode of interaction restriction).A turn-based stateis a states such that either
(i) δ(s, a, b) = δ(s, a, b′) for all a ∈ A1 and allb, b′ ∈ A2 (i.e, the action of
player 1 determines the transition function and hence it canbe interpreted as
player 1’s turn to play), we refer tos as a player-1 state, and we use the notation
δ(s, a,−); or (ii) δ(s, a, b) = δ(s, a′, b) for all a, a′ ∈ A1 and allb ∈ A2, we
refer tos as a player-2 state, and we use the notationδ(s,−, b). A states which
is both a player-1 state and a player-2 state is called aprobabilistic state(i.e.,
the transition function is independent of the actions of theplayers). We write
δ(s,−,−) to denote the transition function ins. Theturn-based gamesare the
special case of games where all states are turn-based.

• (Transition function restriction).The deterministic gamesare the special case
of games where for all statess ∈ S and actionsa ∈ A1 and b ∈ A2, there
exists a states′ ∈ S such thatδ(s, a, b)(s′) = 1. We refer to such statess as
deterministic states. For deterministic games, it is oftenconvenient to assume
thatδ : S ×A1 ×A2 → S.

• (Player restriction). The 11/2-player games, also calledpartially observable
Markov decision processes(or POMDPs), are the special case of games where
the action setA1 orA2 is a singleton. Note that 11/2-player games are turn-based.
Games without player restriction are sometimes called 21/2-player games.

The 11/2-player games of complete-observation are Markov decisionprocesses (or
MDPs), andMDPs with all states deterministic can be viewed as graphs (and are often
called1-player games).

Classes of game graphs.We use the following abbreviations (Table 1a): we write
Pa for partial-observation,Os for one-sided complete-observation,Co for complete-
observation,C for concurrent, andT for turn-based. For example,CoC will denote
complete-observation concurrent games, andOsT will denote one-sided complete-
observation turn-based games. ForC ∈ {Pa,Os,Co} × {C,T}, we denote byGC

the set of allC games. Note the following strict inclusions (see also Figure 2): partial
observation (Pa) is more general than one-sided complete-observation (Os) andOs is
more general than complete-observation (Co), and concurrent (C) is more general than
turn-based (T). We will denote byGD the set of all games with deterministic transition
function. The results we establish in this article are summarized in Figure 3.

Plays. In concurrent games of partial observation, in each turn, player 1 chooses
an actiona ∈ A1, player2 chooses an actionb ∈ A2, and the successor of the
current states is chosen according to the probabilistic transition function δ(s, a, b).
A play in a gameG is an infinite sequenceρ = s0 a0b0 s1 a1b1 s2 . . . such that
δ(si, ai, bi, si+1) > 0 for all i ≥ 0. Theprefix up tosn of the playρ is denoted by
ρ(n). The set of plays inG is denotedPlays(G), and the set of corresponding fi-
nite prefixes (or histories) is denotedPrefs(G). The observation sequenceof ρ for
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Pa partial observation
Os one-sided complete observation

Co complete observation

C concurrent
T turn-based
D deterministic transition function

(a) Classes of games

ΣG all player-1 strategies
ΣO

G observation-based pl.-1 strategies

ΣP
G pure player-1 strategies

ΠG all player-2 strategies
ΠO

G observation-based pl.-2 strategies

ΠP
G pure player-2 strategies

(b) Classes of strategies in gameG

Table 1: Abbreviations.

playeri (i = 1, 2) is the unique infinite sequenceobsi(ρ) = o0 c0 o1 c1 o2 . . . such that
sj ∈ oj ∈ Oi, andcj = aj if i = 1, andcj = bj if i = 2 for all j ≥ 0.

Strategies.A pure strategyin a gameG for player1 is a functionσ : Prefs(G) → A1.
A randomized strategyin G for player1 is a functionσ : Prefs(G) → D(A1). A
(pure or randomized) strategyσ for player1 is observation-basedif for all prefixes
ρ, ρ′ ∈ Prefs(G), if obs1(ρ) = obs1(ρ

′), thenσ(ρ) = σ(ρ′). We omit analogous
definitions of strategies for player2. We denote byΣG, ΣO

G, ΣP
G, ΠG, ΠO

G andΠP
G the

set of all player-1 strategies inG, the set of all observation-based player-1 strategies,
the set of all pure player-1 strategies, the set of all player-2 strategies inG, the set
of all observation-based player-2 strategies, and the set of all pure player-2 strategies,
respectively (Table 1b). Note that if player1 has complete observation, thenΣO

G = ΣG.

Objectives. An objectivefor player 1 in G is a setϕ ⊆ Sω of infinite sequences
of states. A playρ = s0 a0b0 s1 a1b1 s2 . . . ∈ Plays(G) satisfiesthe objectiveϕ,
denotedρ |= ϕ, if s0s1s2 . . . ∈ ϕ. A Borel objective is a Borel-measurable set in the
Cantor topology onSω [19]. We specifically considerω-regular objectives specified
as parity objectives (a canonical form to express allω-regular objectives [26]). For
a sequencēs = s0s1s2 . . . we denote byInf(s̄) the set of states that occur infinitely
often in s̄, that is,Inf(s̄) = {s ∈ S | sj = s for infinitely manyj’s}. Ford ∈ N, let
p : S → {0, 1, . . . , d} be apriority function, which maps each state to a nonnegative
integer priority. Theparity objectiveParity(p) requires that the minimum priority that
occurs infinitely often be even. Formally,Parity(p) = {s̄ ∈ Sω | min{p(s) | s ∈
Inf(s̄)} is even}. The Büchi and coBüchi objectives are the special cases ofparity
objectives with two priorities, forp : S → {0, 1} andp : S → {1, 2} respectively.
We say that an objectiveϕ is visible for playeri if for all ρ, ρ′ ∈ Plays(G), if ρ |= ϕ
and obsi(ρ) = obsi(ρ

′), thenρ′ |= ϕ. For example if the priority function maps
observations to priorities (i.e.,p : Oi → {0, 1, . . . , d}), then the parity objective is
visible for playeri.

Almost-sure winning, positive winning, and value function. An eventis a measurable
subset ofSω, and given strategiesσ andπ for the two players, the probabilities of
events are uniquely defined [27]. For a Borel objectiveϕ, we denote byPrσ,πs (ϕ) the
probability thatϕ is satisfied by the play obtained from the starting states when the
strategiesσ andπ are used. Given a game structureG and a states, an observation-
based strategyσ for player1 is almost-sure winning(resp.,positive winning) for the
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s1

s2

s′2

s3

s′3 s4

(−,−)

(−, b1)

(−, b2)

(a1,−)

(a1,−)

(a2,−)

(a2,−)

(−,−)

(−,−)

o1 o2 o3 o4

Figure 1: A game with one-sided complete observation (Example 1).

objectiveϕ from s if for all observation-based randomized strategiesπ for player2, we
havePrσ,πs (ϕ) = 1 (resp.,Prσ,πs (ϕ) > 0).

The value function〈〈1〉〉G
val

(ϕ) : S → R for player 1 and objectiveϕ assigns to
every state ofG the maximal probability with which player 1 can guarantee the satis-
faction ofϕ with an observation-based strategy, against all observation-based strategies
for player 2. Formally we define

〈〈1〉〉G
val

(ϕ)(s) = sup
σ∈ΣO

G

inf
π∈ΠO

G

Prσ,πs (ϕ).

The value of an observation-based strategyσ for player 1 and objectiveϕ in
state s is valσ1 (ϕ)(s) = infπ∈ΠO

G

Prσ,πs (ϕ). Analogously for player 2, define

〈〈2〉〉G
val

(ϕ)(s) = infπ∈ΠO

G

supσ∈ΣO

G

Prσ,πs (ϕ) andvalπ2 (ϕ)(s) = supσ∈ΠO

G

Prσ,πs (ϕ).
For ε ≥ 0, an observation-based strategyσ is ε-optimal for ϕ from s if valσ1 (ϕ)(s) ≥
〈〈1〉〉G

val
(ϕ)(s) − ε. An optimalstrategy is a0-optimal strategy.

Example 1 ([10]). Consider the game with one-sided complete observation (player2
has complete information) shown in Figure 1. Consider the Büchi objective de-
fined by the states4 (i.e., states4 has priority 0 and other states have prior-
ity 1). Because player1 has partial observation (given by the partitionO1 =
{{s1}, {s2, s

′
2}, {s3, s

′
3}, {s4}}), she cannot distinguish betweens2 ands′2 and there-

fore has to play the same actions with same probabilities ins2 ands′2 (while it would be
easy to win by playinga2 in s2 anda1 in s′2, this is not possible). In fact, player1 can-
not win using a pure observation-based strategy. However, playinga1 anda2 uniformly
at random in all states is almost-sure winning. Every time the game visits observation
o2, for any strategy of player2, the game visitss3 ands′3 with probability 1

2 , and hence
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Pa - partial observation

Os - one-sided complete observation

Co - complete observation

C - concurrent

T - turn-based

Th. 4
Th. 5

Figure 2: Hierarchy of the various classes of game graphs. According to Theorem 4
randomness is for free in the transition function for concurrent games even with com-
plete observation, and according to Theorem 5 randomness isfor free in the transi-
tion function for one-sided complete observation games even if they are turn-based.
For 21/2-player games, randomness in the transition function is notfor free only in
complete-observation turn-based games.

also reachess4 with probability 1
2 . It follows that against all player-2 strategies the

play eventually reachess4 with probability 1, and then stays there.

Theorem 1 ([20]). Let G be aCoT stochastic game (with countable state spaceS)
with initial state s and an objectiveϕ ⊆ Sω. Then the following equalities hold:
〈〈1〉〉G

val
(ϕ)(s) = 〈〈2〉〉G

val
(ϕ)(s) = supσ∈ΣO

G
∩ΣP

G

infπ∈ΠO

G

Prσ,πs (ϕ).

Discussion of Theorem 1. Theorem 1 can be derived as a consequence of Mar-
tin’s proof of determinacy of Blackwell games [20]: the result states that forCoT
stochastic games pure strategies can achieve the same valueas randomized strate-
gies, and as a special case, the result also holds forMDPs (for a detailed discus-
sion how to obtain the result from [20] see [13, Lemma 10]). Note that Martin’s
determinacy result of〈〈1〉〉G

val
(ϕ)(s) = 〈〈2〉〉G

val
(ϕ)(s) also holds forCoC stochas-

tic games (complete-observation concurrent stochastic games), but the equality with
supσ∈ΣO

G
∩ΣP

G

infπ∈ΠO

G

Prσ,πs (ϕ) (which implies existence of pureǫ-optimal strategies
for ǫ > 0) only holds forCoT stochastic games.

3. Randomness for Free in Transition Function

In this section we present a precise characterization of theclasses of games where
randomness in the transition function can be obtained forfree: in other words, we
present the precise characterization of classes of games with probabilistic transition
function that can be reduced to the corresponding class withdeterministic transition
function. We present our results as three reductions: (a) the first reduction allows us to
separate probability from the mode of interaction; (b) the second reduction shows how
to simulate probability in transition function withCoC (complete-observation concur-
rent) deterministic transition function; and (c) the final reduction shows how to sim-
ulate probability in transition withOsT (one-sided complete-observation turn-based)
deterministic transition function. We then show that forCoT (complete-observation
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PaC ≡ PaT

OsC ≡ OsT

CoC

CoT







Th. 6
Concurrency for free

Th. 4 & Th. 5
Randomness for free

Figure 3: Summary of the results of Section 3.

turn-based) games, randomness in the transition function cannot be obtained for free,
and conclude with theconcurrency for freeresult thatOsT andPaT games can simu-
lateOsC andPaC games respectively.

A reductionfrom a classG of games to a classG′ is a mapping that, from a game
G ∈ G and an objectiveϕ in G, returns a gameG′ ∈ G′ and an objectiveϕ′ in G′, and
such that the state spaceS of G is (injectively) mapped to the state spaceS′ of G′. In
all our reductions we haveS ⊆ S′, and thus the state-space mapping is the identity (on
S). The mapping of objectives in our reductions is such thatϕ is the projection ofϕ′

on Sω. It follows that whenϕ is a parity objective defined with at mostd priorities,
then so isϕ′ (and in the sequel, we omit the definition of the priority function for ϕ′),
and whenϕ is an objective in thek-th level of the Borel hierarchy, then so isϕ′.

All our reductions arelocal: they consist of a gadget construction and replacement
locally at every state. Additional properties of interest for reductions are as follows:

• A reduction isalmost-sure-preserving(resp.,positive-preserving), if for all states
s ∈ S in G: player1 is almost-sure winning (resp., positive winning) inG froms
if and only if player1 is almost-sure winning (resp., positive winning) inG′

from s.

• A reduction isvalue-preservingif 〈〈1〉〉G
val

(ϕ)(s) = 〈〈1〉〉G
′

val
(ϕ′)(s) for all s ∈ S,

andthreshold-preservingif for all η ∈ R, all statess ∈ S, and all⊲⊳∈{>,≥}:
there exists an observation-based strategyσ ∈ ΣO

G for player1 in G such that
∀π ∈ ΠO

G : Prσ,πs (ϕ) ⊲⊳ η if and only if there exists an observation-based

strategyσ′ ∈ ΣO
G′ for player1 in G′ such that∀π′ ∈ ΠO

G′ : Pr
σ′,π′

s (ϕ′) ⊲⊳ η.

All reductions presented in this paper are threshold-preserving. Note that threshold-
preserving implies value-preserving, almost-sure-preserving (⊲⊳ = ≥, η = 1), and
positive-preserving (⊲⊳=>, η = 0).

A reductionrestriction-preservingif when G is one-sided complete-observation,
then so isG′, whenG is complete-observation, then so isG′, and whenG is turn-
based, then so isG′. We say that a reduction is computable inpolynomial time(resp.,
in exponential time) if the gameG′ can be constructed in polynomial time (resp., in
exponential time) fromG (assuming a reasonable encoding of games, such as explicit
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lists of binary-encoded states, observations, actions, and transitions, and rational prob-
abilities encoded in binary).

An overview of the class of games for which randomness is for free in the transition
function (which we establish in this section) is given in Figure 3.

3.1. Separation of probability and interaction

A concurrent game of partial observationG satisfies theinteraction separation
condition if the following restrictions are satisfied (see also Figure 4): the state space
S can be partitioned into(SA, SP ) such that (1)δ : SA × A1 × A2 → SP , and (2)
δ : SP × A1 × A2 → D(SA) such that for alls ∈ SP and alls′ ∈ SA, and for all
a1, a2, a

′
1, a

′
2 we haveδ(s, a1, a2)(s′) = δ(s, a′1, a

′
2)(s

′) = δ(s,−,−)(s′). In other
words, the choice of actions (or the interaction) of the players takes place at states in
SA and actions determine a unique successor state inSP , and the transition function
at SP is probabilistic and independent of the choice of the players. In this section,
we present a reduction of each class of games to the corresponding class satisfying
interaction separation, and we present a reduction to gameswith uniform transition
probabilities.

Reduction to interaction separation.LetG = 〈S,A1, A2, δ,O1,O2〉 be a concurrent
game of partial observation with an objectiveϕ. We obtain a concurrent game of partial
observationG′ = 〈SA ∪ SP , A1, A2, δ

′,O′
1,O

′
2〉 whereSA = S, SP = S ×A1 ×A2,

and:

• Observations.For i ∈ {1, 2}, if Oi = {{s} | s ∈ S}, thenO′
i = {{s′} | s′ ∈

SA ∪ SP }; otherwiseO′
i = {o ∪ o×A1 ×A2 | o ∈ Oi}.

• Transition function.The transition function is as follows:

1. We have the following three cases: (a) ifs is a player 1 turn-based state,
then pick an actiona∗2 and for alla2 let δ′(s, a1, a2) = (s, a1, a

∗
2); (b) if

s is a player 2 turn-based state, then pick an actiona∗1 and for alla1 let
δ′(s, a1, a2) = (s, a∗1, a2); and (c) otherwise,δ′(s, a1, a2) = (s, a1, a2);

2. for all (s, a1, a2) ∈ SP we have δ′((s, a1, a2),−,−)(s′) =
δ(s, a1, a2)(s

′).

• Objective mapping.Given the objectiveϕ in G we obtain the objectiveϕ′ =
{s0s

′
0s1s

′
1 . . . | s0s1 . . . ∈ ϕ} in G′.

It is easy to map observation-based strategies of the gameG to observation-based
strategies inG′ and vice-versa to preserve satisfaction ofϕ andϕ′ in G andG′, re-
spectively. Then we have the following theorem.

Theorem 2. There exists a reduction from the class of partial-observation concurrent
games (PaC games) to the class ofPaC games with interaction separation such that
this reduction is

1. threshold-preserving,
2. restriction-preserving, and
3. computable in polynomial time.
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Figure 4: Example of interaction separation forδ(s, a1, b1)(s1) = 1
3 and

δ(s, a1, b1)(s2) =
2
3 .

Since the reduction is restriction-preserving, we have a reduction that separates the
interaction and probabilistic transition maintaining therestriction of observation and
mode of interaction.

Uniform-n-ary concurrent games. The class ofuniform-n-ary gamesis the special
class of games satisfying interaction separation and such that for every states ∈ SP

the probabilityδ(s,−,−)(s′) to a successor states′ is a multiple of 1
n

. It follows
from the results of [28] that everyCoC game with rational transition probabilities can
be reduced in polynomial time to an equivalent polynomial-size uniform-binary (i.e.,
n = 2) CoC game for all parity objectives. The reduction is achieved byadding
dummy states to simulate the probability, and the reductionextends to all objectives (in
the reduced game we need to consider the objective whose projection in the original
game gives the original objective).

In the case of partial information, the reduction to uniform-binary games of [28]
does not work. To see this, consider Figure 5 where two probabilistic statess1, s2 have
the same observation (i.e.,obs1(s1) = obs1(s2)) and the outgoing probabilities are
〈14 ,

3
4 〉 from s1 and〈13 ,

2
3 〉 from s2. The corresponding uniform-binary game (given in

Figure 5) is not equivalent to the original game because the number of steps needed to
simulate the probabilities is not always the same froms1 and froms2. Froms1 two
steps are always sufficient, while froms2 more than two steps may be necessary (with
probability 1

4 ). Therefore with probability14 , player 1 observing more than 2 steps
would infer that the game was for sure ins2, thus artificially improving his knowledge
and increasing his value function.

Therefore in the case of a partial-observation gameG satisfying interaction sepa-
ration, we present a reduction to a uniform-n-ary gameG′ wheren = 1/r wherer is
the greatest common divisor of all probabilities in the original gameG (a rationalr is
a divisor of a rationalp if p = q · r for some integerq). Note that the numbern = 1/r
is an integer. We denote by[n] the set{0, 1, . . . , n − 1}. For a probabilistic state
s ∈ SP , we define then-tupleSucc(s) = 〈s′0, . . . , s

′
n−1〉 in which each states′ ∈ S

occursn · δ(s,−,−)(s′) times. Then, we can view the transition relationδ(s,−,−)
as a function assigning the same probabilityr = 1/n to each element ofSucc(s) (and
then adding up the probabilities of identical elements). Hence it is straightforward to
obtain a uniform-n-ary gameG′.

11
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Figure 5: An example showing why the uniform-binary reduction cannot be used with
partial observation.

Theorem 3. There exists a reduction from the class ofPaC games to the class of
uniform-n-ary PaC games (where1/n is the greatest common divisor of all proba-
bilities in the original game) such that this reduction is

1. threshold-preserving,
2. restriction-preserving, and
3. computable in exponential time (and in polynomial time for CoC games [28]).

Note that the above reduction is worst-case exponential (because so can be the
inverse of the greatest common divisor of the transition probabilities). This is necessary
to have the property that all probabilistic states in the game have the same number
of successors. This property is crucial because it determines the number of actions
available to player 1 in the reductions presented in Section3.2 and 3.3, and the number
of available actions should not differ in states that have the same observation.

3.2. Simulating probability by complete-observation concurrent determinism
In this section, we show that probabilistic states can be simulated byCoC determin-

istic gadgets (and hence also byOsC andPaC deterministic gadgets). By Theorem 2
and Theorem 3, we focus on uniform-n-ary games. A probabilistic state with uniform
probability over the successors is simulated by a complete-observation concurrent de-
terministic state where the optimal strategy for both players is to play uniformly over
the set of available actions.

Theorem 4. Let a ∈ {Pa,Os,Co} and b ∈ {C,T}, and letC = ab and C′ = aC.
There exists a reduction from the class of gamesGC to the class of gamesGC′ ∩ GD

(thus with deterministic transition function) such that this reduction is
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1
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Figure 6: The reduction of uniform-binaryCoC games.

1. threshold-preserving, and
2. computable in polynomial time ifa = Co, and in exponential time ifa = Pa or

a = Os.

Proof. To prove the result we show that a uniform-n-ary probabilistic state can be
simulated by aCoC deterministic gadget. For simplicity we present the details for the
case whenn = 2, and the gadget for the general case is presented later. Our reduction
is as follows: we consider a uniform-binaryCoC game such that there is only one
probabilistic state, and reduce it to aCoC deterministic game. For uniform-binary
CoC games with multiple probabilistic states the reduction canbe applied to each
state one at a time and we would obtain the desired reduction from uniform-binary
CoC games toCoC deterministic games. It is easy to see that the reduction canbe
computed in polynomial time from uniform-n-ary games. The complexity result (item
(2) of the theorem) then follows from Theorem 2 and Theorem 3.

The reduction is illustrated in Figure 6 and is defined as follows. Consider a
uniform-binaryCoC gameG with a single probabilistic states∗ with two successors
s1 ands2. Construct theCoC deterministic gameG′ obtained fromG by transform-
ing the states∗ to a concurrent deterministic state as follows: the actionsavailable
for player 1 ats∗ area1 anda2, and the actions available for player 2 ats∗ areb1
andb2; the transition function is as follows:δ(s∗, a1, b1) = δ(s∗, a2, b2) = s1 and
δ(s∗, a1, b2) = δ(s∗, a2, b1) = s2. Note that the state space ofG′ is the same as in
G, thusϕ′ = ϕ. Then for all objectivesϕ, we show that the reduction is threshold-
preserving as follows.

1. First assume that there exists an observation-based strategy σ for player 1 in
G such that∀π ∈ ΠO

G : Prσ,πs (ϕ) ⊲⊳ η for some arbitraryη ∈ R, s ∈ S,
and⊲⊳∈ {>,≥}, and construct a strategyσ′ for player 1 inG′ as follows: the
strategyσ′ copies the strategyσ for all histories other than when the current state
is s∗, and if the current state iss∗, then the strategyσ′ plays the actionsa1 anda2
uniformly with probability1

2 . Given the strategyσ′, if the current state iss∗, then
for any probability distribution over player2’s actionsb1 andb2, the successor
states ares1 ands2 with probability 1

2 (i.e., it plays exactly the role of states∗ in
G). It follows that for all strategiesπ′ of player2 in G′, there is a strategyπ in
G (that plays likeπ′ for all histories inG) such thatPrσ,πs (ϕ) = Prσ

′,π′

s (ϕ) and
thusPrσ

′,π′

s (ϕ) ⊲⊳ η.

2. Second assume that there exists an observation-based strategyσ′ for player 1 in
G′ such that∀π′ ∈ ΠO

G′ : Prσ
′,π′

s (ϕ) ⊲⊳ η for some arbitraryη ∈ R, s ∈ S,
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and⊲⊳∈{>,≥}, and consider the strategyσ for player 1 inG that plays likeσ′

for all histories inG. Assume towards contradiction that againstσ there exists
a strategyπ ∈ ΠO

G such that¬Prσ,πs (ϕ) ⊲⊳ η. Then consider the strategyπ′ in
G′ that copies the strategyπ for all histories other than when the current state
is s∗, and if the current state iss∗, then the strategyπ′ plays the actionsb1 and
b2 uniformly with probability 1

2 . Given the strategyπ′ in G′, if the current state
is s∗, then for any probability distribution over player1’s actionsa1 anda2, the
successor states ares1 ands2 with probability 1

2 (i.e., it plays exactly the role of

states∗ in G). It follows thatPrσ
′,π′

s (ϕ) = Prσ,πs (ϕ) and thus¬Prσ
′,π′

s (ϕ) ⊲⊳ η,
in contradiction with the assumption onσ′. Therefore, such a strategyπ cannot
exist, and we havePrσ,πs (ϕ) ⊲⊳ η for all π ∈ ΠO

G, which concludes the proof that
the reduction is threshold-preserving.

Gadget for uniform-n-ary probability reduction.We now show how to simulate a prob-
abilistic states∗, with n successorss0, s1, . . . , sn−1 such that the transition probability
is 1/n to each of the successors, by a concurrent deterministic state. In the concurrent
deterministic states∗ there aren actionsa0, a1, . . . , an−1 available for player 1 andn
actionsb0, b1, . . . , bn−1 available for player 2. The transition function is as follows:
for 0 ≤ i < n and0 ≤ j < n we haveδ(s∗, ai, bj) = s(i+j) mod n. Intuitively,
the transition function matrix is obtained as follows: the first row is filled with states
s0, s1, . . . , sn−1, and from a rowi, the rowi + 1 is obtained by moving the state of
the first column of rowi to the last column in rowi + 1 and left-shifting by one po-
sition all the other states; the construction is illustrated on an example withn = 4
successors in (1). The construction ensures that in every row and every column each
states0, s1, . . . , sn−1 appears exactly once. It follows that if player 1 plays all actions
uniformly at random, then against any probability distribution of player 2 the succes-
sor states ares0, s1, . . . , sn−1 with probability1/n each; and a similar result holds if
player 2 plays all actions uniformly at random. The correctness of the reduction for
uniform-n-ary probabilistic state is then exactly as for the case ofn = 2.









s0 s1 s2 s3
s1 s2 s3 s0
s2 s3 s0 s1
s3 s0 s1 s2









(1)

The desired result follows.

3.3. Simulating probability by one-sided complete-observation turn-based determin-
ism

We show that probabilistic states can be simulated byOsT (one-sided complete-
observation turn-based) states, and by Theorem 2 we consider games that satisfy inter-
action separation. The reduction is illustrated in Figure 7: each probabilistic states is
transformed into a player-2 state withn successor player-1 states (wheren is chosen
such that the probabilities froms are integer multiples of1/n, in the examplen = 3).
Because all successors ofs have the same observation, player1 has no advantage in
playing after player2, and because by playing all actions uniformly at random each
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player can unilaterally decide to simulate the probabilistic state, the value and proper-
ties of strategies of the game are preserved.

Theorem 5. Let a ∈ {Pa,Os,Co} andb ∈ {C,T}, and leta′ = Os if a = Co, and
a′ = a otherwise. LetC = ab andC′ = a′b. There exists a reduction from the class of
gamesGC to the class of gamesGC′ ∩ GD (thus with deterministic transition function)
such that this reduction is

1. threshold-preserving, and
2. computable in polynomial time ifa = Co, and in exponential time ifa = Pa or

a = Os.

Proof. First, we present the proof fora 6= Pa, assuming that player2 has complete
observation. A similar construction where player-1 instead of player-2 has complete
observation is obtained symmetrically. LetG = 〈SA ∪ SP , A1, A2, δ,O1〉 and assume
w.l.o.g. (according to Theorem 2 and Theorem 3) thatG satisfies interaction separation
(i.e., states inSA are deterministic states, andSP are probabilistic states) andG is
uniform-n-ary, i.e. all probabilities are equal to1

n
. For each probabilistic states ∈ SP ,

let Succ(s) = 〈s′0, . . . , s
′
n−1〉 be then-tuple of states such thatδ(s,−,−)(s′i) =

1
n

for
each1 ≤ i ≤ n.

We present a reduction that replaces the probabilistic states in G by a gadget
with player-1 and player-2 turn-based states. FromG, we construct the one-sided
complete-observation gameG′ where player-2 has complete observation. The game
G′ = 〈S′, A′

1, A
′
2, δ

′,O′
1〉 is defined as follows:S′ = S ∪ (S × [n]) ∪ {sink},

A′
1 = A1 ∪ [n], A′

2 = A2 ∪ [n], O′
1 = {o ∪ (o × [n]) | o ∈ O1}, andδ′ is ob-

tained fromδ by applying the following transformation for each states ∈ S:

1. if s is a deterministic state inG, thenδ′(s, a, b) = δ(s, a, b) for all a ∈ A1, b ∈
A2, andδ′(s, i, j) = sink for all i, j ∈ [n];

2. if s is a probabilistic state inG, thens is a player-2 state inG′ and for alli, j ∈
[n] we defineδ′(s,−, i) = (s, i) andδ′((s, i), j,−) = s′k such thats′k is the
element in positionk in Succ(s) with k = i + j mod n (and letδ′(s,−, b) =
δ′((s, i), a,−) = δ′(sink,−,−) = sink for all a ∈ A1, b ∈ A2).

Note that turn-based states inG remain turn-based inG′ and the states(s, i) are
player-1 states with the same observation ass. As usual, the objectiveϕ′ is defined as
the set of plays inG′ whose projection onSω belongs toϕ.

Intuitively, each player inG′ has the possibility to ensure exact simulation of the
probabilistic states ofG by playing actions in[n] uniformly at random. For instance,
if player 1 does so, then irrespective of the (possibly randomized) choice of player2
among the states(s, 1), . . . , (s, n), the states inSucc(s) are reached with probability
1/n, as inG. The same property holds if player2 plays the actions in[n] uniformly
at random, no matter what player1 does. Therefore, by arguments similar to the proof
of Theorem 4, player1 can ensure the objectiveϕ′ in G′ is satisfied with the same
probability asϕ in G, against any strategy of player2, and the reduction is threshold-
preserving.
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Figure 7: For the probabilistic states (on the left), we haveSucc(s) = 〈s′0, s
′
1, s

′
1〉 and

n = 3 is the gcd of the probabilities denominators. Therefore, weapply the reduction
of Theorem 5 to obtain the turn-based game on the right, wheres is a player-2 state.

The reduction can be easily adapted to the casea = Pa of games with partial in-
formation for both players. Since the construction ofG′ is polynomial, the complexity
result (item (2) of the theorem) follows from Theorem 2 and Theorem 3.

3.4. Impossibility Results
We have shown that forCoC games andOsT games, randomness is for free in

the transition function. We complete the picture (Figure 2)by showing that forCoT
(complete-observation turn-based) games, randomness in the transition function cannot
be obtained for free.

Remark 1 (Role of probabilistic transition in CoT games andPOMDPs). It fol-
lows from the result of Martin [20] that for allCoT deterministic games and all
objectives, the values are either 1 or 0; however, evenMDPs with reachability
objectives can have values in the interval[0, 1] (not value 0 and 1 only). It follows
that “randomness in the transition function” cannot be replaced by “randomness in
the strategies” inCoT deterministic games. ForPOMDPs, we show in Theorem 7
that pure strategies are sufficient, and it follows that forPOMDPs with deterministic
transition function the values are 0 or 1, and sinceMDPs with reachability objectives
can have values other than 0 and 1 it follows that randomness in the transition
function cannot be obtained for free forPOMDPs. The probabilistic transitions also
play an important role in the complexity of solving games in case ofCoT games:
for example,CoT deterministic games with reachability objectives can be solved in
linear time, but with probabilistic transition function the problem is in NP∩ coNP
and no polynomial-time algorithm is known. In contrast, forCoC games we present
a polynomial-time reduction from probabilistic to deterministic transition function.
Table 2 summarizes our results characterizing the classes of games where randomness
in the transition function can be obtained for free.
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21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based not (Rmk. 1) free (Th. 5) free (Th. 5) not (Rmk. 1) not (Rmk. 1)

concurrent free (Th. 4) free (Th. 4) free (Th. 4) (NA) (NA)

Table 2: When randomness is for free in the transition function. In particular, proba-
bilities can be eliminated in all classes of 2-player games except complete-observation
turn-based games. In the table, Rmk. 1 refers to Remark 1, Th.5 refers to Theorem 5,
and Th. 4 refers to Theorem 4.

3.5. Concurrency for free

The idea of the reduction in Theorem 5 can be extended to provethat concurrency
is for free in one-sided complete-observation games, i.e.,we present a polynomial re-
duction ofOsC games toOsT games, and fromPaC games toPaT games.

Theorem 6. There exists a reduction fromOsC games toOsT games, and fromPaC
games toPaT games, such that these reductions are

1. threshold-preserving, and
2. computable in polynomial time.

Proof. We present the reduction fromOsC games toOsT games, for the case where
player1 has complete information. The reduction for one-sided games where player2
has complete information is symmetric. Finally, the reduction fromPaC games toPaT
games is obtained analogously.

Let G = 〈S,A1, A2, δ,O2〉 be aOsC game where player1 has complete informa-
tion, and we construct aOsT gameG′ = 〈S′, A1, A2, δ

′,O′
1〉 as follows:

1. S′ = S ∪ (S ×A1),

2. O′
2 = {o ∪ (o×A1) | o ∈ O2}, and

3. δ′ is defined as follows, for each states ∈ S and actionsa ∈ A1, b ∈ A2:
δ′(s, a,−) = (s, a) andδ′((s, a),−, b) = δ(s, a, b).

Hence the transition functionδ′ lets player1 play first an actiona, then player2
plays an actionb, and the successor state ofs is chosen according to the tran-
sition relation δ(s, a, b) from the original game. As usual, the objectiveϕ′ =
{s0(s0, a0)s1(s1, a1) · · · | s0s1 · · · ∈ ϕ ∧ ∀i ≥ 0 : ai ∈ A1} in G′ requires that
the projection of a play onSω satisfiesϕ. Since player1 plays first inG′, player1
can achieve the objectiveϕ′ in G′ with at most the same probability as forϕ in G, and
since for alls ∈ S and actionsa ∈ A1, the statess and(s, a) are indistinguishable for
player2, player2 does not know the last action chosen by player1 and therefore does
not gain any advantage in playing after player1 rather than concurrently. Therefore the
reduction is threshold-preserving and since it is computable in polynomial time, the
result follows.
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Role of concurrency in complete-observation games.We have shown that concur-
rency can be obtained for free in partial-observation games(OsT andPaT games).
In contrast, for complete-observation games, the value is irrational in general for con-
current games with deterministic transitions (CoC deterministic games) [11], while
the value is always rational in turn-based stochastic gameswith rational probabilities
(CoT stochastic games) [12]. This rules out any value-preserving reduction ofCoC
(deterministic) games toCoT (stochastic) games with rational probabilities.

4. Randomness for Free in Strategies

In this section we present our results for randomness for free in strategies. We start
with a remark.

Remark 2 (Randomness in strategies).It is known from the results of [15] that in
CoC games randomized strategies are more powerful than pure strategies: values
achieved by pure strategies are lower than values achieved by randomized strategies
and randomized almost-sure winning strategies may exist whereas no pure almost-sure
winning strategy exists. Similar results also hold in the case ofOsT games (see [10]
for an example, also see Example 1). By contrast we show that in POMDPs, restrict-
ing the set of strategies to pure strategies does not decrease the value nor affect the
existence of almost-sure and positive winning strategies.

We start with a lemma, and then present our results preciselyin Theorem 7. The
main argument in the proof of Lemma 1 relies on showing that the valuePrσs (ϕ) of any
randomized observation-based strategyσ is equal to the average of the valuesPrσi

s (ϕ)
of (uncountably many) pure observation-based strategiesσi. Therefore, one of the pure
strategiesσi has to achieve at least the value of the randomized strategyσ. The theory
of integration and Fubini’s theorem make this argument precise.

Lemma 1. Let G be a POMDP (with countable state spaceS), let s∗ ∈ S be an
initial state, and letϕ ⊆ Sω be an objective. For every randomized observation-based
strategyσ ∈ ΣO

G there exists apureobservation-based strategyσP ∈ ΣP
G ∩ ΣO

G such
thatPrσs∗(ϕ) ≤ PrσP

s∗
(ϕ).

Proof. LetG = 〈S,A1, δ,O1〉 be aPOMDP (remember thatA2 is a singleton in
POMDPs and thereforeO2 is irrelevant), letσ : Prefs(G) → D(A1) be a randomized
observation-based strategy, and fixs∗ ∈ S an initial state.

To simplify notations, we suppose thatA1 = {0, 1} contains only two actions, and
that given a states ∈ S and an actiona ∈ {0, 1} there are only two possible successors
L(s, a) ∈ S andR(s, a) ∈ S chosen with respective probabilitiesδ(s, a, L(s, a)) and
δ(s, a, R(s, a)) = 1 − δ(s, a, L(s, a)). The proof for an arbitrary finite set of actions
and more than two successors is essentially the same, with more complicated notations.

There is a natural way to “derandomize” the randomized strategyσ. Fix an infinite
sequencex = (xn)n∈N ∈ [0, 1]ω and define the pure strategyσx : Prefs(G) → A1 as
follows. For every play prefixh = s0 a1 s1 a2 s2 . . . sn, let

σx(h) =

{

0 if xn ≤ σ(h)(0)

1 otherwise.
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Intuitively, the sequencex fixes in advance the sequence of results of coin tosses used
for playing withσ. Note that ifσ is observation-based, then for every sequencex the
strategyσx is both observation-based and pure.

To prove the lemma, we show that[0, 1]ω can be equipped with a probability mea-
sureν such that the mappingx 7→ Prσx

s∗
(ϕ) from [0, 1]ω to [0, 1] is measurable, and:

Prσs∗(ϕ) =

∫

x∈[0,1]ω
Prσx

s∗
(ϕ) dν(x) . (2)

Suppose that (2) holds. Then there existsx ∈ [0, 1]ω (actually manyx’s) such that
Prσs∗(ϕ) ≤ Prσx

s∗
(ϕ) and since strategyσx is deterministic, this proves the lemma.

To complete the proof, it is thus enough to construct a probability measureν on
[0, 1]ω such that (2) holds.

We start with the definition of the probability measureν. The set[0, 1]ω is equipped
with the sigma-field generated bysequence-cylinderswhich are defined as follows.
For every finite sequencex = x0, x1, . . . , xn ∈ [0, 1]∗ the sequence-cylinderC(x)
is the subset[0, x0] × [0, x1] × . . . × [0, xn] × [0, 1]ω ⊆ [0, 1]ω. According to Tul-
cea’s theorem [4], there is a unique product probability measureν on [0, 1]ω such that
ν(C(ǫ)) = 1 and for every sequencex0, . . . , xn, xn+1 in [0, 1],

ν(C(x0, . . . , xn, xn+1)) = xn+1 · ν(C(x0, . . . , xn)) .

Now thatν is defined, it remains to prove that the mappingx 7→ Prσx

s∗
(ϕ) from

[0, 1]ω to [0, 1] is measurable and that (2) holds. For that, we introduce the following
mapping:

fs∗,σ : [0, 1]ω × [0, 1]ω → (SA1)
ω ,

that associates with every pair of sequences((xn)n∈N, (yn)n∈N) the infinite history
h = s0 a1 s1 a2 . . . ∈ (SA1)

ω defined recursively as follows. Firsts0 = s∗, and for
everyn ∈ N,

an+1 =

{

0 if xn ≤ σ(s0 a1 s1 · · · sn)(0),

1 otherwise.

sn+1 =

{

L(sn, an+1) if yn ≤ δ(sn, an+1, L(sn, an+1)),

R(sn, an+1) otherwise.

Intuitively, (xn)n∈N fixes in advance the coin tosses used by the strategy, while
(yn)n∈N takes care of the coin tosses used by the probabilistic transitions, andfs∗,σ
produces the resulting description of the play. Thanks to the mappingfs∗,σ, random-
ness related to the use of the randomized strategyσ is separated from randomness due
to transitions of the game, which allows to represent the randomized strategyσ by
mean of a probability measure over the set of pure strategies{σx | x ∈ [0, 1]ω}.

We equip both sets(SA1)
ω and[0, 1]ω × [0, 1]ω with sigma-fields that makefs∗,σ

measurable. First,(SA1)
ω is equipped with the sigma-field generated by cylinders,

defined as follows. Anaction-cylinderis a subsetC(h) ⊆ (SA1)
ω such thatC(h) =

h(SA1)
ω for someh ∈ (SA1)

∗. A state-cylinderis a subsetC(h) ⊆ (SA1)
ω such

thatC(h) = h(A1S)
ω for someh ∈ (SA1)

∗S. The set ofcylindersis the union of
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the sets of action-cylinders and state-cylinders. Second,[0, 1]ω × [0, 1]ω is equipped
with the sigma-field generated by products of sequence-cylinders. Checking thatfs∗,σ
is measurable is an elementary exercise.

Now we define two probability measuresµ andµ′ on (SA1)
ω and prove that they

coincide. On one hand, the measurable mappingfs∗,σ : [0, 1]ω × [0, 1]ω → (SA1)
ω

defines naturally a probability measureµ′ on (SA1)
ω . Equip the set[0, 1]ω × [0, 1]ω

with the product measureν × ν. Then for every measurable subsetB ⊆ (SA1)
ω,

µ′(B) = (ν × ν)(f−1
s∗,σ

(B)) .

On the other hand, the strategyσ and the initial states∗ naturally define another proba-
bility measureµ on (SA1)

ω. According to Tulcea’s theorem [4], there exists a unique
product probability measureµ on (SA1)

ω such thatµ(C(s∗)) = 1, µ(C(s)) = 0 for
s ∈ S \ {s∗}, and forh = s0 a1 s1 a2 · · · sn ∈ (SA1)

∗S and(a, t) ∈ A1 × S,

µ(C(ha)) = µ(C(h)) · σ(h)(a)

µ(C(hat)) = µ(C(ha)) · δ(sn, a, t).

To prove thatµ andµ′ coincide, it is enough to prove thatµ andµ′ coincide on the
set of cylinders, that is for every cylinderC(h) ⊆ (SA1)

ω,

µ(C(h)) = (ν × ν)(f−1
s∗,σ

(C(h))) . (3)

This is obvious forh = s∗ andh = s ∈ S \ {s∗}. The general case goes by induction.
Let h = s0 a1 s1 a2 · · · sn ∈ (SA1)

∗S and (a, t) ∈ A1 × S. Let I = [0, 1]. Let
Ia = [0, σ(h)(a)] if a = 0 andIa = [σ(h)(a), 1] if a = 1. Let It = [0, δ(sn, a, t)] if
t = L(sn, a) andIt = [δ(sn, a, t), 1] if t = R(sn, a). Then:

µ(C(ha) | C(h)) = σ(h)(a)

= (ν × ν)((I × I)n(Ia × I)(I × I)ω)

= (ν × ν)(f−1
s∗,σ

(C(ha)) | f−1
s∗,σ

(C(h)))

µ(C(hat) | C(ha)) = δ(sn, a, t)

= (ν × ν)((I × I)n(I × It)(I × I)ω)

= (ν × ν)(f−1
s∗,σ

(C(hat)) | f−1
s∗,σ

(C(ha))) ,

which proves that (3) holds for every cylinderC(h).

Now all the tools needed to prove (2) have been introduced, and we can state the
main relation betweenfs∗,σ andPrσs∗(ϕ). Let ϕ′ ⊆ (SA1)

ω be the set of histories
s0 a1 s1 a2 . . . such thats0s1 · · · ∈ ϕ, and let1ϕ and1ϕ′ be the indicator functions of
ϕ andϕ′. Then:

Prσs∗(ϕ) =

∫

p∈Sω

1ϕ(p) dPr
σ
s∗
(p) =

∫

p∈(SA1)ω
1ϕ′(p) dµ(p) =

∫

p∈(SA1)ω
1ϕ′(p) dµ′(p)

=

∫

(x,y)∈[0,1]ω×[0,1]ω
1ϕ′(fs∗,σ(x, y)) d(ν × ν)(x, y)

=

∫

x∈[0,1]ω

(

∫

y∈[0,1]ω
1ϕ′(fs∗,σ(x, y)) dν(y)

)

dν(x) , (4)
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21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based ǫ > 0 (Th. 1) not (Rmk. 2) not (Rmk. 2) ǫ ≥ 0 (Th. 7) ǫ ≥ 0 (Th. 7)

concurrent not (Rmk. 2) not (Rmk. 2) not (Rmk. 2) (NA) (NA)

Table 3: When pure (ǫ-optimal) strategies are as powerful as randomized strategies.
The caseǫ = 0 in complete-observation turn-based games is open. In the table, Th. 1
refers to Theorem 1, Rmk. 2 refers to Remark 2, Th. 7 refers to Theorem 7.

where the first and second equalities are by definition ofPrσs∗(ϕ), the third equality
holds becauseµ = µ′, the fourth equality is a basic property of image measures, and
the last equality holds by Fubini’s theorem [4] that we can use since1ϕ′ ◦ fs∗,σ is
positive.

To complete the proof, we show that for everyx ∈ [0, 1]ω,
∫

y∈[0,1]ω
1ϕ′(fs∗,σ(x, y)) dν(y) = Prσx

s (ϕ), (5)

Equation (4) holds for every observation-based strategyσ, hence in particular for strat-
egyσx. But strategyσx has the following property: for everyx′ ∈ ]0, 1[ω and every
y ∈ [0, 1]ω, fs∗,σx

(x′, y) = fs∗,σ(x, y). Together with (4), this gives (5). This com-
pletes the proof, since (4) and (5) immediately give (2).

We obtain the following result as a consequence of Lemma 1.

Theorem 7. Let G be aPOMDP (with countable state spaceS), let s∗ ∈ S be an
initial state, and letϕ ⊆ Sω be an objective. Then the following assertions hold:

1. supσ∈ΣO

G

Prσs∗(ϕ) = supσ∈ΣO

G
∩ΣP

G

Prσs∗(ϕ).

2. If there is a randomized optimal (resp., almost-sure winning, positive winning)
strategy forϕ from s∗, then there is a pure optimal (resp., almost-sure winning,
positive winning) strategy forϕ from s∗.

Theorem 7 shows that the result of Theorem 1 can be generalized toPOMDPs, and
a stronger result (item (2) of Theorem 7) can be proved forPOMDPs (andMDPs as a
special case). It remains open whether a result similar to item (2) of Theorem 7 can be
proved forCoT stochastic games. Note that it was already shown in [13, Example 1]
that inCoT stochastic games with Borel objectives optimal strategiesneed not exist.
The results summarizing when randomness can be obtained forfree for strategies is
shown in Table 3.

Undecidability result for POMDPs. The results of [2] show that the emptiness prob-
lem for finite-state probabilistic coBüchi (resp., Büchi) automata under the almost-
sure (resp., positive) semantics [2] is undecidable. As a consequence it follows that
for finite-statePOMDPs the problem of deciding if there is a pure observation-based
almost-sure (resp., positive) winning strategy for coBüchi (resp., Büchi) objectives is
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undecidable, and as a consequence of Theorem 7 we obtain an analogous undecidabil-
ity result for randomized strategies. The undecidability result holds even if the coBüchi
(resp., Büchi) objectives is visible.

Corollary 1. LetG be a finite-statePOMDP with initial states∗ and letT ⊆ S be a
subset of states (or union of observations). Whether there exists a pure or randomized
almost-sure winning strategy for player 1 froms∗ in G for the objectivecoBuchi(T ) is
undecidable; and whether there exists a pure or randomized positive winning strategy
for player 1 froms∗ in G for the objectiveBuchi(T ) is undecidable.

Undecidability result for one-sided complete-observation turn-based games.The
undecidability results of Corollary 1 also holds for finite-stateOsT stochastic games
(as they subsume finite-statePOMDPs as a special case). It follows from Theorem 5
that finite-stateOsT stochastic games can be reduced to finite-stateOsT deterministic
games. The reduction holds for randomized strategies and thus we obtain the first
undecidability result for finite-stateOsT deterministic games (Corollary 2), solving
the open question of [10]. Note that for pure strategies,OsT deterministic games with
a parity objective are EXPTIME-complete [25, 10].

Corollary 2. LetG be a finite-stateOsT deterministic game with initial states∗ and
let T ⊆ S be a subset of states (or union of observations). Whether there exists
a randomized almost-sure winning strategy for player 1 froms∗ in G for the objec-
tive coBuchi(T ) is undecidable; and whether there exists a randomized positive win-
ning strategy for player 1 froms∗ in G for the objectiveBuchi(T ) is undecidable.

5. Conclusion

In this work we have presented a precise characterization for classes of games
where randomization can be obtained for free in transition functions and in strate-
gies. As a consequence of our characterization we obtain newundecidability results.
The other impact of our characterization is as follows: for the class of games where
randomization is free in transition function, future algorithmic and complexity analysis
can focus on the simpler class of deterministic games; and for the class of games where
randomization is free in strategies, future analysis of such games can focus on the sim-
pler class of pure strategies. Thus our results will be useful tools for simpler analysis
techniques in the study of games, as already demonstrated in[6, 7, 8, 9, 16, 17].

Finally, note that it can be expected that randomness would not be for free in both
the transition function and the strategies, and the resultsof this paper show that the
classes of games in which randomness is for free in the transition function (Table 2) are
those in which randomized strategies are more powerful thanpure strategies (Table 3),
i.e. randomness is not for free in strategies when randomness is for free in the transition
function.
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