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Abstract. We study observation-based strategies foartially-observable
Markov decision processé®OMDPSs) with parity objectives. An observation-
based strategy relies on partial information about theohjsbf a play, namely,
on the past sequence of observations. We consider quaditatialysis prob-
lems: given aPOMDP with a parity objective, decide whether there exists an
observation-based strategy to achieve the objective witbagbility 1 (almost-
sure winning), or with positive probability (positive wimg). Our main results
are twofold. First, we present a complete picture of the agaifonal complex-
ity of the qualitative analysis problem ffOMDPs with parity objectives and
its subclasses: safety, reachability, Biichi, and coBabfectives. We establish
several upper and lower bounds that were not known in thatitee. Second, we
give optimal bounds (matching upper and lower bounds) fentlemory required
by pure and randomized observation-based strategiesdbrobass of objectives.

1 Introduction

Markov decision processesA Markov decision process (MDB a model for systems
that exhibit both probabilistic and nondeterministic beba MDPs have been used to
model and solve control problems for stochastic systenesetmondeterminism rep-
resents the freedom of the controller to choose a contr@mavhile the probabilistic
component of the behavior describes the system responsetitokactions. MDPs have
also been adopted as models for concurrent probabilisiiesys, probabilistic systems
operating in open environments [21], and under-specifietigilistic systems [5].

System specificationsThe specificationdescribes the set of desired behaviors of the
system, and is typically aw-regular set of paths. Parity objectives are a canonical
way to define such specifications in MDPs. They include reaitiha safety, Biichi
and coBuchi objectives as special cases. Thus MDPs witity pasjectives provide
the theoretical framework to study problems such as thdieation and the control of
stochastic systems.

Perfect vs. partial observations.Most results about MDPs make the hypothesis of
perfect observatiarin this setting, the controller always knows, while intetnag with

the system (or MDP), the exact state of the MDP. In practits, typothesis is often
unrealistic. For example, in the control of multiple proges each process has only
access to the public variables of the other processes, btd tiwir private variables. In
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control of hybrid systems [13], or automated planning [1fi§ controller usually has

noisy information about the state of the systems due to fiméeision sensors. In such
applications, MDPs wittpartial observation(POMDPSs) provide a more appropriate
model.

Qualitative and quantitative analysis.Given an MDP with parity objective, thgual-
itative analysisasks for the computation of the setadinost-sure winningtates (resp.,
positive winningstates) in which the controller can achieve the parity dbjeavith
probability 1 (resp., positive probability); the more gealegjuantitative analysisisks
for the computation at each state of the maximal probabilitih which the controller
can satisfy the parity objective. The analysis of POMDPsoisstderably more com-
plicated than the analysis of MDPs. First, the decision j@mis for POMDPS usu-
ally lie in higher complexity classes than their perfecsetvation counterparts: for
example, the quantitative analysis of POMDPs with readitpbind safety objectives
is undecidable [19], whereas for MDPs with perfect obséowathis question can be
solved in polynomialtime [11, 10]. Second, in the conteX@@MDPs, witness winning
strategies for the controller need memory even for the sropjectives of safety and
reachability. This is again in contrast to the perfect-obeson case, where memoryless
strategies suffice for all parity objectives. Since the di@tive analysis of POMDPs
is undecidable (even for computing approximations of th&imal probabilities [17]),
we study the qualitative analysis of POMDPs with parity ahijee and its subclasses.

Contribution. For the qualitative analysis of POMDPSs, the following résudre
known: (a) the problems of deciding if a state is almost-sureing for reachability
and Buchi objectives can be solved in EXPTIME [1]; (b) theldems for almost-sure
winning for coBiichi objectives and positive winning foudii objectives are unde-
cidable [1, 7]; and (c) the EXPTIME-completeness of almsste winning for safety
objectives follows from the results on games with partiadetvation [8, 4]. Our new
contributions are as follows:

1. First, we show that (a) positive winning for reachabiligbjectives is
NLOGSPACE-complete; and (b) almost-sure winning for redadlity and Buchi
objectives, and positive winning for safety and coBiicljectives are EXPTIME-
hard. We also present a new proof that positive winning féetgaand coBlichi ob-
jectives can be solved in EXPTIMEIt follows that almost-sure winning for reach-
ability and Buichi, and positive winning for safety and eai, are EXPTIME-
complete. This completes the picture for the complexityhef qualitative analysis
for POMDPs with parity objectives. Moreover our new prodfEXPTIME upper-
bound proofs yield efficient and symbolic algorithms to sgbositive winning for
safety and coBiichi objectives in POMDPs.

2. Second, we present a complete characterization of themtrobmemaory required
by pure (deterministic) and randomized strategies for thalitative analysis of
POMDPs. For the first time, we present optimal memory boundgching upper
and lower bounds) for pure and randomized strategies: we #hat (a) for posi-
tive winning of reachability objectives, randomized megiess strategies suffice,

3 A different proof that positive safety can be solved in EXMH is given in [14] (see the
discussion after Theorem 2 for a comparison).



while for pure strategies linear memory is necessary arfatgift; (b) for almost-
sure winning of safety, reachability, and Biichi objecsivend for positive winning
of safety and coBiichi objectives, exponential memory iseseary and sufficient
for both pure and randomized strategies.

Related work. Though MDPs have been widely studied under the hypothegemf

fect observations, there are a few works that consider PQ3/BR., [18, 16] for sev-
eral finite-horizon quantitative objectives. The resuftilpshows the upper bounds for
almost-sure winning for reachability and Biichi objecsivand the work of [6] consid-

ers a subclass (fOMDPs with Biichi objectives and presents a PSPACE upper bound

for the subclass. The undecidability of almost-sure wigrfior coBuichi and positive

winning for Bichi objectives is established by [1, 7]. Wegent a solution to the re-
maining problems related to the qualitative analysis of FI with parity objectives,

and complete the picture. Partial information has beenietliich the context of two-

player games [20, 8], a model that is incomparable to MDRsjgh some techniques
(like the subset construction) can be adapted in the confe©MDPs. More general
models of stochastic games with partial information havenlstudied in [2, 14], and lie
in higher complexity classes. For example, a result of [2lshthat the decision prob-
lem for positive winning of safety objectives is 2EXPTIMBraplete in the general
model, while for POMDPs, we show that the same problem is BXEFcomplete.

2 Definitions

A probability distributionon a finite setd is a functionk : A — [0, 1] such that
> aca kla) = 1. Thesupportof « is the setSupp(k) = {a € A | k(a) > 0}. We
denote byD(A) the set of probability distributions oA.

Games and MDP# two-player game structurer aMarkov decision process (MDP)
(of partial observatiohis a tupleG = (L, X, 6, O), whereL is a finite set of states,

is a finite set of actiong) C 2% is a set of observations that partitithe state spack.
We denote bybs(¢) the unique observatione O such that € o. In the case of games,
0 C L x X x Lis aset of labeled transitions; in the case of MDPSL x ¥ — D(L)

is a probabilistic transition function. For games, we reguiat for all¢ € L and all
o € X, there exist?’ € L such that(¢,0,¢') € 6. We refer to an MDP of partial
observation as ROMDP. We say thati is a game or MDP operfect observatioif
O ={{t} |t e L} Foroc € ¥ ands C L, definePosti(s) = {¢' e L | I € s :
(¢,0,0') € 6} whenG is a game, an@ost® (s) = {¢' € L | 3 € s : §(¢,0)(¢') > 0}
whendG is an MDP.

Plays. Games are played in rounds in which Playechooses an action iy, and
Player2 resolves nondeterminism by choosing the successor stak¢DPs the suc-
cessor state is chosen according to the probabilisticitrams$unction. Aplayin G is
an infinite sequence = (oo0/; . .. 0y_1£,0, . .. suchthat,; € PostS ({£;}) for all

i > 0. The infinite sequencebs(r) = obs(£y)opobs(¢1) ... op_10bs(ly)oy, ... is the
observatiorof 7.

4 A slightly more general model with overlapping observasiman be reduced in polynomial
time to partitioning observations [8].



The set of infinite plays irG is denotedPlays(G), and the set of finite prefixes
Lyog . . .on—1Ly, Of plays is denote®refs(G). A statel € L is reachablen G if there
exists a prefiy € Prefs(G) such thatast(p) = ¢ whereLast(p) is the last state of.

StrategiesA pure strategyin G for Player1 is a functiona : Prefs(G) — X. A
randomized strategin G for Playerl is a functiona : Prefs(G) — D(X). A (pure
or randomized) strategy for Player1 is observation-based for all prefixesp, p’ €
Prefs(G), if obs(p) = obs(p’), thena(p) = a(p’). In the sequel, we are interested
in the existence of observation-based strategies for Play& pure strategyin G for
Player2 is a functions : Prefs(G) x X — L such that for allp € Prefs(G) and all
o € X, we have(Last(p), o, B(p,0)) € §. A randomized strategin G for Player2 is

a functiong : Prefs(G) x X' — D(L) such that for alp € Prefs(G), all o € ¥, and
all £ € Supp(B3(p, o)), we have(Last(p), o, £) € 6. We denote byd¢, A9, andBg the
set of all Playert strategies, the set of all observation-based Playgrategies, and the
set of all Player2 strategies irnG, respectively.

Memory requirement of strategie&n equivalent definition of strategies is as follows.
Let Mem be a set callednemory An observation-based strategy with memory can be
described by two functions,raemory-updatunctiona,: Mem x O x X — Mem that
given the current memory, observation and the action updhtememory, and aext-
action function a,,: Mem x O — D(X) that given the current memory and current
observation specifies the probability distribufionf the next action, respectively. A
strategy idfinite-memoryif the memoryMem is finite and the size of a finite-memory
strategyw is the sizdMem| of its memory. A strategy imemorylessf |[Mem| = 1. The
memoryless strategies do not depend on the history of a ipleygnly on the current
state. Memoryless strategies for player 1 can be viewedrasifunsa: O — D(X).

Objectives An objectivefor G is a set¢ of infinite sequences of states and actions,
thatis,¢ C (L x X)“. We consider objectives that are Borel measurable, i.ts ise
the Cantor topology ofi. x X)¥ [15]. We specifically consider reachability, safety,
Biichi, coBiichi, and parity objectives, all of them beingr& measurable. The parity
objectives are a canonical form to express.atiegular objectives [22]. For a play =
Loooly ..., we denote bynf(r) = {£ € L | ¢ = ¢, for infinitely manyi’s} the set of
states that appear infinitely oftenin

— Reachability and safety objectiveSiven a set/’ C L of target states, theeach-
ability objectiveReach(7) = { fyoolio1 ... € Plays(G) | 3k > 0: 4, € T }
requires that a target stateInbe visited at least once. Dually, teafetyobjective
Safe(7) = { lyooly01 ... € Plays(G) | Vk > 0 : £, € T } requires that only
states in7 be visited; the objectivéntil(71,72) = {lyooli01 ... € Plays(G) |
Ik >0:40, € TNV < k:{; €T} requires that only states Iy be visited
before a state iff; is visited.

— Buchi and coBichi objectivesTheBuchiobjectiveBiichi(7) = {x | Inf(x)NT #
('} requires that a state i be visited infinitely often. Dually, theoBlichiobjective
coBiichi(7) = {x | Inf(x) C T } requires that only states i be visited infinitely
often.

5 For a pure strategy, the next-action function specifies glesiaction rather than a probability
distribution.



— Parity objectivesFord € N, letp : L — {0,1,...,d } be apriority functionthat
maps each state to a nonnegative integer priority. jaréty objectiveParity(p) =
{7 | min{ p(¢) | ¢ € Inf(r) }is even} requires that the smallest priority that
appears infinitely often be even.

Note that the objectiveBiichi(7") andcoBiichi(7') are special cases of parity objec-
tives defined by respective priority functiopg p2 such thap; (¢) = 0 andpz(¢) = 2
if £ € T, andp;(¢) = p2(¢) = 1 otherwise. An objective is visible if it depends only
on the observations; formally, is visibleif, wheneverr € ¢ andobs(w) = obs(7’),
thenn’ € ¢. In this work, all our upper bound results are for the gengaaity objec-
tives (not necessarily visible), and all the lower bounditssfor POMDPs are for the
special case of visible objectives.

Almost-sure and positive winningn eventis a measurable set of plays, and given
strategiesy and § for the two players (resp., a strategyfor Player 1 in MDPs), the
probabilities of events are uniquely defined [23]. For a Bobgectiveg, we denote by
Pr?'ﬂ((b) (resp.,Pry(¢) for MDPs) the probability thap is satisfied from the starting
state/ given the strategies andj (resp., given the strategy). Given a games and

a statel, a strategya for Player1 is almost-sure winnindresp.,positive winning
for the objectiveg from £ if for all randomized strategie§ for Player2, we have
Pr?’ﬁ(qb) =1 (resp.,Pr;“B(@ > 0). Given an MDPG and a staté, a strategyx for
Playerl is almost-sure winning (resp. positive winning) for theeattjve¢ from ¢ if we
havePry (¢) = 1 (resp.,Pry(¢) > 0). We also say that statels almost-sure winning,
or positive winning for¢ respectively. We are interested in the problems of deciding
the existence of an observation-based strategy for Platreatis almost-sure winning
(resp., positive winning) from a given state

3 Upper Bounds for the Qualitative Analysis ofPOMDPs

In this section, we present upper bounds for the qualitathedysis ofPOMDPs. We
first describe the known results. For qualitative analyENDPs, polynomial time up-
per bounds are known for all parity objectives [11, 10]. ltdavs from the results of [8,
1] that the decision problems for almost-sure winningR@MDPs with reachability,
safety, and Biichi objectives can be solved in EXPTIME.dbdbllows from the results
of [1] that the decision problem for almost-sure winninghwitoBiichi objectives and
for positive winning with Biichi objectives is undecidaiflehe strategies are restricted
to be pure, and the results of [7] shows that the problem nesnamdecidable even if
randomized strategies are considered. In this sectionpwmplete the results on upper
bounds for the qualitative analysis BOMDPSs: we present complexity upper bounds
for the decision problems of positive winning with reachitgisafety and coBiichi ob-
jectives. The following result for reachability objects/és simple, and follows from
equivalence to the graph reachability problem.

Theorem 1. Given aPOMDP G with a reachability objective and a starting state
the problem of deciding whether there is a positive winnitigtsgy from/ in G is
NLOGSPACE-complete.



Positive winning for safety and coBuchi objectivesWe now show that the decision
problem for positive winning with safety and coBuichi olijees forPOMDPs can be
solved in EXPTIME. Our result for positive safety and coBilobjectives is based on
the computation of almost-sure winning states for safejgailves, and on the follow-
ing lemma (proof in [9]).

Lemmal. LetG = (L, X,6,O) be aPOMDP and let7 C L be the set of target
states. If Playel has an observation-based strategyGrto satisfySafe(7") with posi-
tive probability from some statg then there exists a statésuch that (a) Playet has
an observation-based strategy @ to satisfyUntil(7, {¢'}) with positive probability
from ¢, and (b) Playerl has an observation-based almost-sure winning stratedy in
for Safe(7") from ¢'.

By Lemma 1, positive winning states can be computed as thef states from which
Player1 can force with positive probability to reach an almost-suirening state while
visiting only safe states. Almost-sure winning states aandmputed using the follow-
ing subset construction.

Given aPOMDP G = (L,X,6,0) and a setlT C L of states, th&nowledge-
based subset constructidor G is the game of perfect observatioi = (£, X, 6%),
where£ = 25\{0}, and for alls;, sy € L (in particularsy # () ando € %, we
have (s1,0,52) € K iff there exists an observatiom € O such that eitheg, =
Post?(s1) NoN T, or sy = (PostS(s1) No) \ 7. We refer to states iG:¥ ascells
The following result is established using standard tealesqsee e.g., Lemma 3.2 and
Lemma 3.3 in [8]).

Lemma 2. LetG = (L, ¥, §,0) be aPOMDP and7 C L a set of target states. Let
GX be the knowledge-based subset constructiorfand F'r = {s C 7} be the set
of safe cells. Playet has an almost-sure winning observation-based stratedy far
Safe(T) from ¢ if and only if Playerl has an almost-sure winning strategy @ for
Safe(F') from the cell{¢}.

Theorem 2. Given aPOMDP G with a safety objective and a starting statethe
problem of deciding whether there exists a positive winwipgervation-based strategy
from ¢ can be solved in EXPTIME.

Algorithms. The complexity bound of Theorem 2 has been established qurslyi
in [14], using an extension of the knowledge-based subssitnection which is not
necessary (where the state spacé is 2%). Our proof (of Theorem 2, details in [9])
is simpler and also yield efficient and symbolic algorithinattan be obtained from
the antichain algorithm of [8] for almost-sure winning ofedg objectives, and simple
graph reachability for positive winning of reachabilityjettives.

The positive winning states for a coBiichi objective are patad as the set of
almost-sure winning states for safety that can be reachédpaesitive probability (for
details see [9]).

Theorem 3. Given aPOMDP G with a coBichi objective and a starting state the
problem of deciding whether there exists a positive winingervation-based strategy
from ¢ can be solved in EXPTIME.



4 Lower Bounds for the Qualitative Analysis of POMDPs

In this section we present lower bounds for the qualitativalysis ofPOMDPs. We
first present the lower bounds for MDPs with perfect obsémwgiproofs in [9]).

Theorem 4. Given an MDPG of perfect observation, the following assertions hold:
(a) the positive winning problem for reachability objeettvis NLOGSPACE-complete,
and the positive winning problem for safetyijdi, coBichi and parity objectives is
PTIME-complete; and (b) the almost-sure winning problemréachability, safety,
Biichi, coBichi and parity objectives is PTIME-complete.

Lower bounds for POMDPs. We have already shown that positive winning with reach-
ability objectives inPOMDPs is NLOGSPACE-complete. As in the case of MDPs with
perfect observation, for safety objectives and almosg-suinning, aPOMDP can be
equivalently considered as a game of partial observatiaravRlayer 2 makes choices
of the successors from the support of the probability distion of the transition func-
tion, and the almost-sure winning set is the same in®& DP and the game. Since
the problem of almost-sure winning in games of partial obs@on with safety objec-
tive is EXPTIME-complete [4], the EXPTIME-completenessuk follows. We now
show that almost-sure winning with reachability objecsiaad positive winning with
safety objectives is EXPTIME-complete. Before the resutfirst present a discussion
on polynomial-space alternating Turing machines (ATM).

DiscussionLet M be a polynomial-space ATM and let be an input word. Then,
there is an exponential bound on the number of configuratbtise machine. Hence
if M can accept the word, then it can do so within somg,,| steps, wheréw| is the
length of the wordw, andk,, is bounded by an exponential jw|. We construct an
equivalent polynomial-space ATMI/’ that behaves a&/ but keeps track (in polyno-
mial space) of the number of steps executedbyand given a wordhw|, if the number
of steps reachek,,| without accepting, then the word is rejected. The machifie
is equivalent toM and reaches the accepting or rejecting states in a numbéeps s
bounded by an exponential in the length of the input word. pitedlem of deciding,
given a polynomial-space ATM/ and a wordw, whetherM acceptav is EXPTIME-
complete.

Reduction from Alternating PSPACE Turing machine. Let M be a polynomial-
space ATM such that for every input word, the accepting or the rejecting state
is reached within exponential steps fi@|. A polynomial-time reductionRs of a
polynomial-space ATMM and an input wordv to a gameG = Rg (M, w) of par-
tial observation is given in [8] such that (a) there is a sple@tcepting state it, and
(b) M acceptsv iff there is an observation-based strategy for Playerc to reach the
accepting state with probability 1. If the above reductmapplied taV/, then the game
structure satisfies the following additional propertiésre is a special rejecting state
thatis absorbing, and for every observation-based syréde@layer 1, either (a) against
all Player 2 strategies the accepting state is reached wothapility 1; or (b) there is a
pure Player 2 strategy that reaches the rejecting statepwétitive probability; > 0 in
2|1 steps and the accepting or the rejecting state is reachdowabability 1 in2! -
steps. We now present the reductioPOMDPs:



1. Almost-sure winning for reachabilitsiven a polynomial-space ATM{ andw an
inputword, letG = Rq(M, w). We construct #OMDP G’ from G as follows: we
only modify the transition function i’ by uniformly choosing over the successor
choices. Formally, for a statec L and an actior € X' the probabilistic transition
functiond’ in G’ is as follows:d’ (¢, 0)(¢') = 0if (¢,0,¢") & 6; andd’ (¢, 0)(¢') =
/{1 ] (,0,61) € §}|if (¢,0,¢") € 4. Given an observation-based strategy
for Player 1 inG, we consider the same strategyGt: (1) if the strategy reaches
the accepting state with probability 1 against all Playetr@tsgies inz, then the
strategy ensures that i’ the accepting state is reached with probability 1; and
(2) otherwise there is a pure Player 2 stratébin G that ensures the rejecting
state is reached ial”! steps with probability; > 0, and with probability at least
(1/|L|)2‘L‘ the choices of the successors of stratédggychosen irG’, and hence the
rejecting state is reached with probability at Ie(as‘dL|)2‘L‘ -n > 0. It follows that
in G’ there is an observation-based strategy for almost-sun@mgrihe reachability
objective with target of the accepting state iff there istsactrategy irG.

2. Positive winning for safetyhe reduction is same as above. We obtairR®&DP
G" from thePOMDP G’ above by making the following modification: from the
state accepting, thEOMDP goes back to the initial state with probability 1. If
there is an observation-based strategipr Player 1 inG’ to reach the accepting
state, then repeating the strategyach time the accepting state is visited, it can
be ensured that the rejecting state is reached with pratyalilOtherwise, against
every observation-based strategy for Player 1, the prtityatioi reach the rejecting
state ink- (212 +1) steps is at leadt— (1—»')*, wherey’ = n-(1/|L])?"" > 0 (this
is because there is a probability to reach the rejecting stih probability at least
n' in 2IX1 steps, and unless the rejecting state is reached the gtatéite is again
reached withire!“ + 1 steps). Hence the probability to reach the rejecting state
is 1. It follows thatG’ is almost-sure winning for the reachability objective with
the target of the accepting state iff@1’ there is an observation-based strategy for
Player 1 to ensure that the rejecting state is avoided witiitipe probability. This
completes the proof of correctness of the reduction.

A very brief (two line proof) sketch was presented as the pobdheorem 1 of [12]
to show that positive winning ifOMDPs with safety objectives is EXPTIME-hard.
We were unable to reconstruct the proof: the proof suggéstgthulate a nondetermin-
istic Turing machine. The simulation of a polynomial-spac&deterministic Turing
machine only shows PSPACE-hardness, and the simulatiomohdeterministic EX-
PTIME Turing machine would have shown NEXPTIME-hardnessl an EXPTIME
upper bound is known for the problem. Our proof presentsfarifit and detailed proof
of the result of Theorem 1 of [12]. Hence we have the follovtimgprem, and the results
are summarized in Table 1.

Theorem 5. Given aPOMDP G, the following assertions hold: (a) the positive win-
ning problem for reachability objectives is NLOGSPACE-ptate, the positive winning
problem for safety and caghi objectives is EXPTIME-complete, and the positive win-
ning problem for Bichi and parity objectives is undecidable; and (b) the alvsse



Positive Almost-sure
Reachability NLOGSPACE-complete (up+loEXPTIME-complete (lo
Safety EXPTIME-complete (up+lo) | EXPTIME-complete [4]

Buchi Undecidable [1] EXPTIME-complete (lo
coBlichi EXPTIME-complete (up+lo) Undecidable [1]
Parity Undecidable [1] Undecidable [1]

Table 1. Computational complexity oPOMDPs with different classes of parity objectives for
positive and almost-sure winning. Our contribution of upged lower bounds are indicated as
“up” and “lo” respectively in parenthesis.

winning problem for reachability, safety andiéhi objectives is EXPTIME-complete,
and the almost-sure winning problem for diod®i and parity objectives is undecidable.

5 Optimal Memory Bounds for Strategies

In this section we present optimal bounds on the memory red iy pure and random-
ized strategies for positive and almost-sure winning fachability, safety, Biichi and
coBuchi objectives.

Bounds for safety objectivesFirst, we consider positive and almost-sure winning with
safety objectives ilPOMDPs. It follows from the correctness argument of Theorem 2
that pure strategies with exponential memory are suffidi@npositive winning with
safety objectives ilPOMDPs, and the exponential upper bound on memory of pure
strategies for almost-sure winning with safety objectiveBOMDPs follows from the
reduction to games. We now present a matching exponentiaklbound for random-
ized strategies.

Lemma 3. There exists a familyP, ),y of POMDPs of sizeO(p(n)) for a poly-
nomial p with a safety objective such that the following assertioolelh(a) Player1
has a (pure) almost-sure (and therefore also positive) wigstrategy in each of these
POMDPs; and (b) there exists a polynomiakuch that every finite-memory random-
ized strategy for Player 1 that is positive (or almost-sus)ning in P,, has at least
24(") states.

Proof sketch. The set of actions of theOMDP P, is X, U {#} where X, =
{1,...,n}. ThePOMDP is composed of an initial statg andn sub-MDPsA; with
state space€);, each consisting of a loop ovey states;!, . .. ,q;i wherep; is thei-th
prime number. From each staﬁ;(l < j < p;), every action in¥,, leads to the next
stateq;'-Jrl with probability%, and to the initial state, with probability%. The action#

is not allowed. Frony/, , the actioni is not allowed while the other actions i, lead
back the first statg{ and to the initial state, both with probabilityl. Moreover, the
action# leads back to the initial state (with probability. The disallowed actions lead
to a bad state. The states of thgs are indistinguishable (they have the same observa-
tion), while the initial statey, is visible. There are two observations, the stajg} is
labelled by observation,, and the other states @, U- - - U Q,, (that we call the loops)
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Fig. 1. The POMDP Ps. Fig. 2. ThePOMDP P;.

by observations. Fig. 1 shows the gam#,: the witness family of POMDPs have sim-
ilarities with analogous constructions for games [3]. Hearethe construction of [3]
shows lower bounds only for pure strategies and in games,eabave present lower
bound for randomized strategies and for POMDPs (the prooffammal definition of
the POMDP family (P, )nen can be found in [9]). Intuitively, exponential memory is
required to win inP,, (even positively) because the acti¢gihneeds to be played after
pi, = [I, p: steps in the loops, and cannot be played before. Therefavérang
strategy has to be able to count ugfpwhich requires exponential memory.

Bounds for reachability objectives.The bounds for positive winning with reachability
objectives are as follows: randomized memoryless stresegiffice, and for pure strate-
gies, memory linear in the number of states is both necessatysufficient (details

in [9]). It follows from the results of [1] that for almost-seiwinning with reachability
objectives inPOMDPs pure strategies with exponential memory suffice, and we now
prove an exponential lower bound for randomized strategies

Lemma 4. There exists a familyP,,),en 0f POMDPs of sizeO(p(n)) for a polyno-
mial p with a reachability objective such that the following as&ars hold: (a) Playen
has an almost-sure winning strategy in each of the@MDPs; and (b) there exists a
polynomialg such that every finite-memory randomized strategy for Playdat is
almost-sure winning itP, has at leas2?(™ states.

Proof sketch. Fix the action set a&' = {#, tick}. ThePOMDP P/ is composed of an
initial stateqy andn sub-MDPsH;, each consisting of a loop over statesy: , . . ., qui
wherep; is thei-th prime number. From each state in the loops, the aetidkcan be
played and leads to the next state in the loop (with prolgti)i The action# can be
played in the last state of each loop and leads td:the state. The objective is to reach
Goal with probability 1. Actions that are not allowed lead to aksgtate from which

it is impossible to reackioal. There is a unique observation that consists of the whole
state space. Intuitively, the argument for exponential wgns analogous to the case
of Lemma 3. Fig. 2 showg®; and see [9] for a proof of Lemma 4.



Pure PositiveRandomized Positiv@ure AlmosfRandomized Almost
Reachability Linear Memoryless | Exponentia Exponential
Safety | Exponential Exponential Exponentia Exponential
Buchi No Bound No Bound Exponentia Exponential
coBliichi | Exponential Exponential No Bound No Bound
Parity No Bound No Bound No Bound No Bound

Table 2. Optimal memory bounds for pure and randomized strategies.

Bounds for Biichi and coBichi objectivesAn exponential upper bound for memory
of pure strategies for almost-sure winning of Biichi obije follows from the results
of [1], and the matching lower bound for randomized strateddllows from our result
for reachability objectives. Since positive winning is ectlable for Biichi objectives
there is no bound on memory for pure or randomized stratégig@®sitive winning. An
exponential upper bound for memory of pure strategies feitppe winning of coBuichi
objectives follows from the correctness proof of Theorerha iteratively combines
the positive winning strategies for safety and reachattiditobtain a positive winning
strategy for coBuchi objective. The matching lower bouadrandomized strategies
follows from our result for safety objectives. Since almsste winning is undecidable
for coBuichi objectives there is no bound on memory for pureaadomized strategies
for positive winning. This gives us the following theorens@asummarized in Table 2),
which is in contrast to the results for MDPs with perfect aliaon where pure mem-
oryless strategies suffice for almost-sure and positivaingnfor all parity objectives.

Theorem 6. The optimal memory bounds for strategie®@MDPs are as follows.

1. Reachability objectives: for positive winning randoegimemoryless strategies are
sufficient, and linear memory is necessary and sufficiengdcs strategies; and for
almost-sure winning exponential memory is necessary affidisat for both pure
and randomized strategies.

2. Safety objectives: for positive winning and almost-surming exponential mem-
ory is necessary and sufficient for both pure and randomitretegjies.

3. Buchi objectives: for almost-sure winning exponential mgnis necessary and
sufficient for both pure and randomized strategies; anddli®no bound on mem-
ory for pure and randomized strategies for positive winning

4. coBichi objectives: for positive winning exponential memargeécessary and suf-
ficient for both pure and randomized strategies; and themoi®ound on memory
for pure and randomized strategies for almost-sure winning
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