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Abstract. Nondeterministic weighted automata are finite automata
with numerical weights on transitions. They define quantitative lan-
guages L that assign to each word w a real number L(w). The value of
an infinite word w is computed as the maximal value of all runs over w,
and the value of a run as the supremum, limsup, liminf, limit average,
or discounted sum of the transition weights.
We introduce probabilistic weighted automata, in which the transitions
are chosen in a randomized (rather than nondeterministic) fashion. Un-
der almost-sure semantics (resp. positive semantics), the value of a word
w is the largest real v such that the runs over w have value at least v

with probability 1 (resp. positive probability).
We study the classical questions of automata theory for probabilistic
weighted automata: emptiness and universality, expressiveness, and clo-
sure under various operations on languages. For quantitative languages,
emptiness and universality are defined as whether the value of some (resp.
every) word exceeds a given threshold. We prove some of these questions
to be decidable, and others undecidable. Regarding expressive power, we
show that probabilities allow us to define a wide variety of new classes
of quantitative languages, except for discounted-sum automata, where
probabilistic choice is no more expressive than nondeterminism. Finally,
we give an almost complete picture of the closure of various classes of
probabilistic weighted automata for the following pointwise operations
on quantitative languages: max, min, sum, and numerical complement.

1 Introduction

In formal design, specifications describe the set of correct behaviors of a system.
An implementation satisfies a specification if all its behaviors are correct. If we
view a behavior as a word, then a specification is a language, i.e., a set of words.
Languages can be specified using finite automata, for which a large number of
results and techniques are known; see [20, 24]. We call them boolean languages
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Fig. 1. Two specifications of a channel.

because a given behavior is either good or bad according to the specification.
Boolean languages are useful to specify functional requirements.

In a generalization of this approach, we consider quantitative languages L,
where each word w is assigned a real number L(w). The value of a word can
be interpreted as the amount of some resource (e.g., memory or power) needed
to produce it, or as a quality measurement for the corresponding behavior [5,
6]. Therefore, quantitative languages are useful to specify nonfunctional require-
ments such as resource constraints, reliability properties, or levels of quality
(such as quality of service). Note that a boolean language L is a special case of
quantitative language that assigns value 1 to the words in L and value 0 to the
words not in L.

Quantitative languages can be defined using nondeterministic weighted au-
tomata, i.e., finite automata with numerical weights on transitions [13, 17]. In [7],
we studied quantitative languages of infinite words and defined the value of an
infinite word w as the maximal value of all runs of an automaton over w (if
the automaton is nondeterministic, then there may be many runs over w). The
value of a run r is a function of the infinite sequence of weights that appear
along r. There are several natural functions to consider, such as Sup, LimSup,
LimInf, limit average, and discounted sum of weights. For example, peak power
consumption can be modeled as the maximum of a sequence of weights repre-
senting power usage; energy use, as a discounted sum; average response time, as
a limit average [4, 5].

In this paper, we present probabilistic weighted automata as a new model
defining quantitative languages. In such automata, nondeterministic choice is
replaced by probability distributions on successor states. The value of an in-
finite word w is defined to be the maximal value v such that the set of runs
over w with value at least v has either positive probability (positive semantics),
or probability 1 (almost-sure semantics). This simple definition combines in a
general model the natural quantitative extensions of logics and automata [14,
15, 7], and the probabilistic models of automata for which boolean properties
have been studied [22, 3, 2]. Note that the probabilistic Büchi and coBüchi au-
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tomata of [2] are a special case of probabilistic weighted automata with weights 0
and 1 only (and the value of an infinite run computed as LimSup or LimInf, re-
spectively). While quantitative objectives are standard in the branching-time
context of stochastic games [23, 16, 18, 5, 11, 19], we are not aware of any model
combining probabilities and weights in the linear-time context of words and lan-
guages, though such a model is very natural for the specification of quantitative
properties. Consider the specification of two types of communication channels
given in Fig. 1. One has low cost (sending costs 1 unit) and low reliability (a
failure occurs in 10% of the cases and entails an increased cost for the opera-
tion), while the second is expensive (sending costs 5 units), but the reliability
is high (though the cost of a failure is prohibitive). In the figure, we omit the
self-loops with cost 0 in state q0 and q′0 over ack, and in q1, q2, q

′

1, q
′

2 over send.
Natural questions can be formulated in this framework, such as whether the
average cost of every word w ∈ {send, ack}ω is really smaller in the low-cost
channel, or to construct a probabilistic weighted automaton that assigns to each
infinite word w ∈ {send, ack}ω the minimum of the average cost of the two
types of channels (the answers are yes for both the questions for Fig. 1). In this
paper, we attempt a comprehensive study of such fundamental questions, about
the expressive power, closure properties, and decision problems for probabilistic
weighted automata. We focus on the positive and the almost-sure semantics. In
future work, we will consider another semantics where the value of a word w is
defined to be the expectation of the values of the runs over w.

First, we compare the expressiveness of the various classes of probabilistic
and nondeterministic weighted automata over infinite words. For LimSup, LimInf,
and limit average, we show that a wide variety of new classes of quantitative
languages can be defined using probabilities, which are not expressible using
nondeterminism. Our results rely on reachability properties of closed recurrent
sets in Markov chains. For discounted sum, we show that probabilistic weighted
automata under the positive semantics have the same expressive power as non-
deterministic weighted automata, while under the almost-sure semantics, they
have the same expressive power as weighted automata with universal branch-
ing, where the value of a word is the minimal (instead of maximal) value of all
runs. The question of whether the positive semantics of weighted limit-average
automata is more expressive than nondeterminism remains open.

Second, we give an almost complete picture of the closure of probabilistic
weighted automata under the pointwise operations of maximum, minimum, and
sum for quantitative languages. We also consider the numerical complement
Lc of a quantitative language L defined by Lc(w) = 1 − L(w) for all words w.1

Note that maximum and minimum provide natural generalization of the classical
union and intersection operations on boolean languages, and they define the
least upper bound and greatest lower bound for the pointwise natural order
on quantitative languages (where L1 ≤ L2 if L1(w) ≤ L2(w) for all words w).
The numerical complement applied to boolean languages also defines the usual
complement operation.

1 One can define L
c(w) = k − L(w) for any constant k without changing our results.
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Closure under max trivially holds for the positive semantics, and closure un-
der min for the almost-sure semantics. Only LimSup-automata under positive
semantics and LimInf-automata under almost-sure semantics are closed under
all four operations; these results extend corresponding results for the boolean
case [1]. To establish the closure properties of limit-average automata, we char-
acterize the expected limit-average reward of Markov chains. Our characteriza-
tion answers all closure questions except for the language sum in the case of
positive semantics, which we leave open. Note that expressiveness results and
closure properties are tightly connected. For instance, because they are closed
under max, the LimInf-automata with positive semantics are no more expressive
than to LimInf-automata with almost-sure semantics and to LimSup-automata
with positive semantics; and because they are not closed under complement, the
LimSup-automata with almost-sure semantics and LimInf-automata with positive
semantics have incomparable expressive powers.

Third, we investigate the emptiness and universality problems for probabilis-
tic weighted automata, which ask to decide if some (resp. all) words have a
value above a given threshold. Using our expressiveness results, as well as [1,
9], we establish some decidability and undecidability results for Sup, LimSup,
and LimInf automata; in particular, emptiness and universality are undecid-
able for LimSup-automata with positive semantics and for LimInf-automata with
almost-sure semantics, while the question is open for the emptiness of LimInf-
automata with positive semantics and for the universality of LimSup-automata
with almost-sure semantics. We also prove the decidability of emptiness for prob-
abilistic discounted-sum automata with positive semantics, while the universality
problem is as hard as for nondeterministic discounted-sum automata, for which
no decidability result is known. We leave open the case of limit average. Due to
lack of space, we omit detailed proofs; they can be found in [10].

2 Definitions

A quantitative language over a finite alphabet Σ is a function L : Σω → R. A
boolean language (or a set of infinite words) is a special case where L(w) ∈ {0, 1}
for all words w ∈ Σω. Nondeterministic weighted automata define the value of
a word as the maximal value of a run [7]. In this paper, we study probabilistic
weighted automata as generator of quantitative languages.

Value functions. We consider the following value functions Val : Qω → R to
define quantitative languages. Given an infinite sequence v = v0v1 . . . of rational
numbers, define

– Sup(v) = sup{vn | n ≥ 0};

– LimSup(v) = lim sup
n→∞

vn = lim
n→∞

sup{vi | i ≥ n};

– LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

– LimAvg(v) = lim inf
n→∞

1

n
·

n−1∑

i=0

vi;
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– for 0 < λ < 1, Discλ(v) =
∞∑

i=0

λi · vi.

Given a finite set S, a probability distribution over S is a function f : S →
[0, 1] such that

∑
s∈S f(s) = 1. We denote by D(S) the set of all probability

distributions over S.

Probabilistic weighted automata. A probabilistic weighted automaton is a
tuple A = 〈Q, ρI , Σ, δ, γ〉, where

– Q is a finite set of states;
– ρI ∈ D(Q) is the initial probability distribution;
– Σ is a finite alphabet;
– δ : Q × Σ → D(Q) is a probabilistic transition function;
– γ : Q × Σ × Q → Q is a weight function.

The automaton A is deterministic if ρI(qI) = 1 for some qI ∈ Q, and for all
q ∈ Q and σ ∈ Σ, there exists q′ ∈ Q such that δ(q, σ)(q′) = 1.

A run of A over a finite (resp. infinite) word w = σ1σ2 . . . is a finite (resp.
infinite) sequence r = q0σ1q1σ2 . . . of states and letters such that (i) ρI(q0) >
0, and (ii) δ(qi, σi+1)(qi+1) > 0 for all 0 ≤ i < |w|. We denote by γ(r) =
v0v1 . . . the sequence of weights that occur in r where vi = γ(qi, σi+1, qi+1) for
all 0 ≤ i < |w|. The probability of a finite run r = q0σ1q1σ2 . . . σkqk over a finite

word w = σ1 . . . σk is PA(r) = ρI(q0).
∏k

i=1 δ(qi−1, σi)(qi). For a finite run r, let
Cone(r) denote the set of infinite runs r′ such that r is a prefix of r′. The set of
cones forms the basis for the Borel sets for runs. For each w ∈ Σω, the function
PA(·) defines a unique probability measure over Borel sets of runs of A over w.

Given a value function Val : Qω → R, we say that the probabilistic
Val-automaton A generates the quantitative languages defined for all words
w ∈ Σω by L=1

A (w) = sup{η | PA({r ∈ RunA(w) such that Val(γ(r)) ≥
η}) = 1} under the almost-sure semantics, and L>0

A (w) = sup{η | PA({r ∈

RunA(w) such that Val(γ(r)) ≥ η}) > 0} under the positive semantics. In clas-
sical (non-probabilistic) semantics, the value of a word is defined either as the
maximal value of the runs (i.e., Lmax

A (w) = sup{Val(γ(r)) | r ∈ RunA(w)} for all
w ∈ Σω) and the automaton is then called nondeterministic, or as the minimal
value of the runs, and the automaton is then called universal [8]. Note that
the above four semantics coincide for deterministic weighted automata (because
then every word has exactly one run), and that Büchi and coBüchi automata [2]
are special cases of respectively LimSup- and LimInf-automata, where all weights
are either 0 or 1.

Reducibility. A class C of weighted automata is reducible to a class C′

of weighted automata if for every A ∈ C there exists A′ ∈ C′ such that
LA = LA′ , i.e., LA(w) = LA′(w) for all words w. Reducibility relationships
for (non)deterministic weighted automata are given in [7].

Composition. Given two quantitative languages L, L′ : Σω → R, we denote by
max(L, L′) (resp. min(L, L′) and L + L′) the quantitative language that assigns
max{L(w), L′(w)} (resp. min{L(w), L′(w)} and L(w) + L′(w)) to each word
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w ∈ Σω. The language 1 − L is called the complement of L. The max, min
and complement operators for quantitative languages generalize respectively the
union, intersection and complement operator for boolean languages. The closure
properties of (non)deterministic weighted automata are given in [9].

Notation. The first letter in acronyms for classes of automata can be
N(ondeterministic), D(eterministic), U(niversal), Pos for the language in the
positive semantics, or As for the language in the almost-sure semantics. For
X, Y ∈ {N, D, U, Pos, As}, we sometimes use the notation X

Y for classes of
automata where the X and Y versions are reducible to each other. For Büchi
and coBüchi automata, we use the classical acronyms NBW, DBW, NCW, etc.
When the type of an automaton A is clear from the context, we often denote its
language simply by LA(·) or even A(·), instead of L=1

A , Lmax
A , etc.

Remark. We sometimes use automata with weight functions γ : Q → Q that
assign a weight to states instead of transitions. This is a convenient notation for
weighted automata in which from each state, all outgoing transitions have the
same weight. In pictorial descriptions of probabilistic weighted automata, the
transitions are labeled with probabilities, and states with weights.

3 Expressive Power of Probabilistic Weighted Automata

We complete the picture given in [7] about reducibility for nondeterministic
weighted automata, by adding the relations with probabilistic automata. The
results for LimInf, LimSup, and LimAvg are summarized in Fig. 2s, and for Sup-
and Disc-automata in Theorems 1 and 6.

As for probabilistic automata over finite words, the quantitative languages
definable by probabilistic and (non)deterministic Sup-automata coincide.

Theorem 1. DSup is as expressive as PosSup and AsSup.

In many of our results, we use the following definitions and properties related
to Markov chains. A Markov chain M = (S, E, δ) consists of a finite set S of
states, a set E of edges, and a probabilistic transition function δ : S → D(S).
For all s, t ∈ S, there is an edge (s, t) ∈ E iff δ(s)(t) > 0. A closed recurrent
set C of states in M is a bottom strongly connected set of states in the graph
(S, E). The proof of the Lemma 1 relies on the following basic properties [21].
Lemma 1 will be used in the proof of some of the following results.

1. Property 1. Given a Markov chain M , and a start state s, with probability 1,
the set of closed recurrent states is reached from s in finite time. Hence for
any ǫ > 0, there exists k0 such that for all k > k0, for all starting state s,
the set of closed recurrent states are reached with probability at least 1 − ǫ
in k steps.

2. Property 2. If a closed recurrent set C is reached, and the limit of the expec-
tation of the average weights of C is α, then for all ǫ > 0, there exists a k0

such that for all k > k0 the expectation of the average weights for k steps is
at least α − ǫ.
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Fig. 2. Reducibility relation. C is reducible to C
′ if C → C

′. Classes that are not
connected by an arrow are incomparable. Reducibility for the dashed arrow is open.
The Disc-automata are incomparable with the automata in the figure. Their reducibility
relation is given in Theorem 6.

Lemma 1. Let A be a probabilistic weighted automaton with alphabet Σ =
{a, b}. Consider the Markov chain arising from A on input bω (we refer to this
as the b-Markov chain) and the a-Markov chain is defined symmetrically. The
following assertions hold:

1. If for all closed recurrent sets C in the b-Markov chain, the expected limit-
average value is at least 1, then there exists j such that for all closed recurrent
sets arising from A on input (bj · a)ω the expected limit-average reward is
positive.

2. If for all closed recurrent sets C in the b-Markov chain, the expected limit-
average value is at most 0, then there exists j such that for all closed recurrent
sets arising from A on input (bj · a)ω the expected limit-average reward is
strictly less than 1.

3. If for all closed recurrent sets C in the b-Markov chain, the expected limit-
average value is at most 0,and if for all closed recurrent sets C in the a-
Markov chain, the expected limit-average value is at most 0, then there exists
j such that for all closed recurrent sets arising from A on input (bj ·aj)ω the
expected limit-average reward is strictly less than 1/2.

Proof. We present the proof of the first part. Let β be the maximum absolute
value of the weights of A. From any state s ∈ A, there is a path of length at
most n to a closed recurrent set C in the b-Markov chain, where n is the number
of states of A. Hence if we choose j > n, then any closed recurrent set in the
Markov chain arising on the input (bj · a)ω contains closed recurrent sets of the
b-Markov chain. For ǫ > 0, there exists kǫ such that from any state s ∈ A, for
all k > kǫ, on input bk from s, the closed recurrent sets of the b-Markov chain
is reached with probability at least 1 − ǫ (by property 1). If all closed recurrent
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sets in the b-Markov chain have expected limit-average value at least 1, then by
property 2 it follows that for all ǫ > 0, there exists lǫ such that for all l > lǫ,
from all states s of a closed recurrent set on the input bl the expected average
of the weights is at least 1 − ǫ, (i.e., expected sum of the weights is l − l · ǫ).
Consider 0 < ǫ ≤ min{1/4, 1/(20 · β)}, we choose j = k + l, where k = kǫ > 0
and l > max{lǫ, k}. Observe that by our choice j + 1 ≤ 2l. Consider a closed
recurrent set in the Markov chain on (bj ·a)ω and we obtain a lower bound on the
expected average reward as follows: with probability 1 − ǫ the closed recurrent
set of the b-Markov chain is reached within k steps, and then in the next l steps
at the expected sum of the weights is at least l − l · ǫ, and since the worst case
weight is −β we obtain the following bound on the expected sum of the rewards:

(1 − ǫ) · (l − l · ǫ) − ǫ · β · (j + 1) ≥
l

2
−

l

10
=

2l

5

Hence the expected average reward is at least 1/5 and hence positive. �

3.1 Probabilistic LimAvg-automata

We consider the alphabet Σ = {a, b} and we define the boolean language LF of
finitely many a’s, i.e., LF (w) = 1 if w ∈ Σω consists of finitely many a’s, and
LF (w) = 0 otherwise. We also consider the language LI of words with infinitely
many a’s, i.e., the complement of LF .

Lemma 2. Consider the language LF of finitely many a’s. The following asser-
tions hold.

1. There is no NLimAvg that specifies LF .
2. There exists a PosLimAvg that specifies LF (see Fig. 3).
3. There is no AsLimAvg that specifies LF .

Proof. We present the proof of the third part. Assume that there exists an
AsLimAvg automaton A that specifies LF . Consider the Markov chain M that
arises from A if the input is only b (i.e., on bω), we refer to it as the b-Markov
chain. If there is a closed recurrent set C in M that can be reached from the
starting state in A (reached by any sequence of a and b’s in A), then the expected
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Fig. 5. A probabilistic weighted automaton (PosLimAvg, PosLimSup, or PosLimInf)
for Lemma 4.

limit-average reward in C must be at least 1 (otherwise, if there is a closed
recurrent set C in M with limit-average reward less than 1, we can construct a
finite word w that will reach C with positive probability in A, and then follow
w by bω yielding A(w · bω) < 1). Thus any closed recurrent set in M has limit-
average reward at least 1 and by Lemma 1 there exists j such that the A((bj ·
a)ω) > 0. It follows that A cannot specify LF . �

Lemma 3. Consider the language LI of infinitely many a’s. The following as-
sertions hold.

1. There is no NLimAvg that specifies LI .
2. There is no PosLimAvg that specifies LI.
3. There exists an AsLimAvg that specifies LI (see Fig. 4).

Lemma 4. There exists a language L such that: (a) there exists a PosLimAvg,
a PosLimSup and a PosLimInf that specifies L (see Fig. 5); and (b) there is
no NLimAvg, no NLimSup and no NLimInf that specifies L.

The next theorem summarizes the results for limit-average automata ob-
tained in this section.

Theorem 2. AsLimAvg is incomparable in expressive power with PosLimAvg

and NLimAvg, and NLimAvg is not as expressive as PosLimAvg.

Open question. Whether NLimAvg is reducible to PosLimAvg or NLimAvg

is incomparable to PosLimAvg (i.e., whether there is a language expressible by
NLimAvg but not by PosLimAvg) remains open.

3.2 Probabilistic LimInf- and LimSup-automata

To compare the expressiveness of probabilistic LimInf- and LimSup-automata, we
use and extend results from [1, 7], Lemma 3 and 4, and the notion of determinism
in the limit [12, 25]. A nondeterministic weighted automaton A is deterministic
in the limit if for all states s of A with weight greater than the minimum weight,
all states t reachable from s have deterministic transitions.
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Lemma 5. For every NLimSup A, there exists a NLimSup B that is determin-
istic in the limit and specifies the same quantitative language.

Lemma 5 is useful to translate a nondeterministic automaton into a proba-
bilistic one with positive semantics. The next lemma presents the results about
reducibility of liminf automata.

Lemma 6. The following assertions hold: (a) both AsLimInf and PosLimInf

are as expressive as NLimInf; (b) there exists an AsLimInf that specifies the
language LI , there is no NLimInf and there is no PosLimInf that specifies LI;
(c) AsLimInf is as expressive as PosLimInf.

As a corollary of Lemma 4 and Lemma 6, we get the following theorem.

Theorem 3. AsLimInf is strictly more expressive than PosLimInf; and
PosLimInf is strictly more expressive than NLimInf.

The following lemma presents the results about reducibility of limsup au-
tomata.

Lemma 7. The following assertions hold: (a) NLimSup and AsLimSup are
not as expressive as PosLimSup; (b) PosLimSup is as expressive as NLim-

Sup; (c) PosLimSup is as expressive as AsLimSup; (d) AsLimSup is not as
expressive as NLimSup.

Theorem 4. AsLimSup and NLimSup are incomparable in expressive power,
and PosLimSup is strictly more expressive than AsLimSup and NLimSup.

The above theorem summarizes the reducibility results for limsup automata.
Finally, we establish the reducibility relation between probabilistic LimSup- and
LimInf-automata.

Theorem 5. AsLimInf and PosLimSup have the same expressive power;
AsLimSup and PosLimInf have incomparable expressive power.

Proof. This result is an easy consequence of the fact that an automaton inter-
preted as AsLimInf specifies the complement of the language of the same au-
tomaton interpreted as PosLimSup (and similarly for AsLimSup and PosLim-

Inf), and from the fact that AsLimInf and PosLimSup are closed under com-
plement, while AsLimSup and PosLimInf are not (see Lemma 13). �

3.3 Probabilistic Disc-automata

For probabilistic discounted-sum automata, the nondeterministic and the posi-
tive semantics have the same expressive power. Intuitively, this is because the
run with maximal value can be approached arbitrarily close by a finite run, and
therefore the set of infinite runs sharing that finite run as a prefix has posi-
tive probability. This also shows that the positive semantics does not depend
on the actual values of the probabilities, but only on whether they are positive
or not. Analogous results hold for the universal semantics and the almost-sure
semantics.
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Theorem 6. The following assertions hold: (a) NDisc and PosDisc have the
same expressive power; (b) UDisc and AsDisc have the same expressive power.

Proof. (a) Let A = 〈Q, ρI , Σ, δA, γ〉 be a NDisc, and let vmin, vmax be
its minimum and maximum weights respectively. Consider the PosDisc B =
〈Q, ρI , Σ, δB, γ〉 where δB(q, σ) is the uniform probability distribution over the
set of states q′ such that (q, σ, {q′}) ∈ δA. Let r = q0σ1q1σ2 . . . be a run of A
(over w = σ1σ2 . . . ) with value η. For all ǫ > 0, we show that PB({r ∈ RunB(w) |
Val(γ(r)) ≥ η − ǫ}) > 0}. Let n ∈ N such that λn

1−λ
· (vmax − vmin) ≤ ǫ, and

let rn = q0σ1q1σ2 . . . σnqn. The discounted sum of the weights in rn is at least
η− λn

1−λ
·(vmax). The probability of the set of runs over w that are continuations of

rn is positive, and the value of all these runs is at least η− λn

1−λ
·(vmax−vmin), and

therefore at least η − ǫ. This shows that LB(w) ≥ η, and thus LB(w) ≥ LA(w).
Note that LB(w) ≤ LA(w) since there is no run in A (nor in B) over w with
value greater than LA(w). Hence LB = LA.

Now, we prove that PosDisc is reducible to NDisc. Given a PosDisc

B = 〈Q, ρI , Σ, δB, γ〉, we construct a NDisc A = 〈Q, ρI , Σ, δA, γ〉 where
(q, σ, {q′}) ∈ δA if and only if δB(q, σ)(q′) > 0, for all q, q′ ∈ Q, σ ∈ Σ. By
analogous arguments as in the first part of the proof, it is easy to see that
LB = LA.

(b) The complement of the quantitative language specified by an UDisc

(resp. AsDisc) can be specified by a NDisc (resp. PosDisc). Then, the result
follows from Part a) (essentially, given an UDisc, we obtain easily a NDisc for
the complement, then an equivalent PosDisc, and finally an AsDisc for the
complement of the complement, i.e., the original quantitative language). �

4 Closure Properties of Probabilistic Weighted Automata

We consider the closure properties of the probabilistic weighted automata under
the operations max, min, complement, and sum.

Closure under max and min. The closure under max holds for the posi-
tive semantics (and under min for the almost-sure semantics) using initial non-
determinism (Lemma 8), while a synchronized product can be used for AsLim-

Sup and PosLimInf (Lemma 9). In Lemma 10, we use the closure under in-
tersection of probabilistic Büchi automata [2], and the closure under max of
PosLimSup.

Lemma 8. PosLimSup, PosLimInf, and PosLimAvg are closed under max;
and AsLimSup, AsLimInf, and AsLimAvg are closed under min.

Lemma 9. AsLimSup is closed under max; PosLimInf is closed under min.

Lemma 10. PosLimSup is closed under min; AsLimInf is closed under max.
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max min comp. sum emptiness universality

p
o
si

ti
v
e

PosSup X X × X X X

PosLimSup X X X X × ×

PosLimInf X X × X X X

PosLimAvg X × × ? ? ?
PosDisc X × × X X ? (1)

a
lm

o
st

-s
u
re

AsSup X X × X X X

AsLimSup X X × X X X

AsLimInf X X X X × ×

AsLimAvg × X × × ? ?
AsDisc × X × X ? (1) X

The universality problem for NDisc can be reduced to (1).
It is not known whether this problem is decidable.

Table 1. Closure properties and decidability of emptiness and universality.

The closure properties of LimAvg-automata in the positive semantics rely on the
following lemma.

Lemma 11. Consider the alphabet Σ = {a, b}, and consider the languages La

and Lb that assign the long-run average number of a’s and b’s, respectively. Then
the following assertions hold:

1. There is no PosLimAvg that specifies the language Lm = min{La, Lb}.
2. There is no PosLimAvg that specifies the language L∗ = 1 − max{La, Lb}.

Lemma 12. PosLimAvg is not closed under min, and AsLimAvg is not closed
under max.

Proof. The result for PosLimAvg follows from Lemma 11. We show that
AsLimAvg is not closed under max. Consider the alphabet Σ = {a, b} and
the quantitative languages La and Lb that assign the long-run average number
of a’s and b’s, respectively. There exist DLimAvg (and hence AsLimAvg) to
specify La and Lb. We show that Lm = max(La, Lb) cannot be specified by an
AsLimAvg. By contradiction, assume that A is an AsLimAvg with set of states
Q that specifies Lm. Consider any closed recurrent set of the a-Markov chain of
A. The expected limit-average of the weights of the recurrent set must be 1, as
if we consider the word w∗ = wC · aω where wC is a finite word to reach C in
A, the value of w∗ in Lm is 1. Hence, the limit-average of the weights of all the
reachable a-closed recurrent set C in A is 1.

Given ǫ > 0, there exists jǫ such that the following properties hold:

1. from any state of A, given the word ajǫ with probability 1 − ǫ an a-closed
recurrent set is reached (by property 1 for Markov chains);

2. once an a-closed recurrent set is reached, given the word ajǫ , (as a conse-
quence of property 2 for Markov chains) we can show that the following

12



properties hold: (a) the expected average of the weights is at least jǫ · (1− ǫ),
and (b) the probability distribution of the states is with ǫ of the probability
distribution of the states for the word a2·jǫ (this holds as the probability
distribution of states on words aj converges to the probability distribution
of states on the word aω).

Let β > 1 be a number that is greater than the absolute maximum value of
weights in A. We chose ǫ > 0 such that ǫ < 1

40·β . Let j = 2 · jǫ (such that jǫ

satisfies the properties above). Consider the word (aj · b3j)ω and the answer by
A must be 3

4 , as Lm((aj · b3j)ω) = 3
4 . Consider the word ŵ = (a2j · b3j)ω and

consider a closed recurrent set in the Markov chain obtain from A on ŵ. We
obtain the following lower bound on the expected limit-average of the weights:
(a) with probability at least 1 − ǫ, after j/2 steps, a-closed recurrent sets are
reached; (b) the expected average of the weights for the segment between aj and
a2j is at least j · (1 − ǫ); and (c) the difference in probability distribution of the
states after aj and a2j is at most ǫ. Since the limit-average of the weights of
(aj · b3j)ω is 3

4 , the lower bound on the limit-average of the weights is as follows

(1 − 3 · ǫ) · (3·j+j·(1−ǫ)
5j

) − 3 · ǫ · β = (1 − ǫ) · (4
5 − ǫ

5 ) − 3 · ǫ · β

≥ 4
5 − ǫ − 3 · ǫ · β ≥ 4

5 − 4 · ǫ · β
≥ 4

5 − 1
10 ≥ 7

10 > 3
5 .

It follows that A((a2j · b3j)ω) > 3
5 . This contradicts that A specifies Lm. �

Closure under complement and sum. We now consider closure under com-
plement and sum.

Lemma 13. PosLimSup and AsLimInf are closed under complement; all
other classes of probabilistic weighted automata are not closed under comple-
ment.

Proof. We give the proof for limit average. The fact that PosLimAvg is not
closed under complement follows from Lemma 11. We now show that AsLimAvg

is not closed under complement. Consider the DLimAvg A over alphabet Σ =
{a, b} that consists of a single self-loop state with weight 1 for a and 0 for b. Notice
that A(w.aω) = 1 and A(w.bω) = 0 for all w ∈ Σ∗. To obtain a contradiction,
assume that there exists a AsLimAvg B such that B = 1 − A. For all finite
words w ∈ Σ∗, let B(w) be the expected average weight of the finite run of B
over w. Fix 0 < ǫ < 1

2 . For all finite words w, there exists a number n such that
the average number of a’s in w.bn is at most ǫ, and there exists a number m
such that B(w.am) ≤ ǫ (since B(w.aω) = 0). Hence, we can construct a word
w = bn1am1bn2am2 . . . such that A(w) ≤ ǫ and B(w) ≤ ǫ. Since B = 1− A, this
implies that 1 ≤ 2ǫ, a contradiction. �

Lemma 14. The Sup-, LimSup-, LimInf-, and Disc-automata are closed under
sum under both the positive and almost-sure semantics. AsLimAvg is not closed
under sum.
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Theorem 7. The closure properties for probabilistic weighted automata under
max, min, complement, and sum are summarized in Table 1.

Open question. Whether PosLimAvg is closed under sum remains open.

5 Decision Problems

We conclude the paper with some decidability and undecidability results for clas-
sical decision problems about quantitative languages (see Table 1). Most of them
are direct corollaries of the results in [1]. Given a weighted automaton A and a
rational number ν ∈ Q, the quantitative emptiness problem asks whether there
exists a word w ∈ Σω such that LA(w) ≥ ν, and the quantitative universality
problem asks whether LA(w) ≥ ν for all words w ∈ Σω.

Theorem 8. The emptiness and universality problems for PosSup, AsSup,
AsLimSup, and PosLimInf are decidable.

Theorem 9. The emptiness and universality problems for PosLimSup and
AsLimInf are undecidable.

Finally, by Theorem 6 and the decidability of emptiness for NDisc, we get
the following result.

Theorem 10. The emptiness problem for PosDisc and the universality prob-
lem for AsDisc are decidable.

Note that by Theorem 6, the universality problem for NDisc (which is not
know to be decidable) can be reduced to the universality problem for PosDisc

and to the emptiness problem for AsDisc.

Language inclusion. Given two weighted automata A and B, the quantita-
tive language-inclusion problem asks whether for all words w ∈ Σω we have
LA(w) ≥ LB(w) and the quantitative language-equivalence problem asks whether
for all words w ∈ Σω we have LA(w) = LB(w). It follows from our results that
the language-inclusion problem is decidable for PosSup and AsSup, and is un-
decidable for PosLimSup and AsLimInf. The decidability of language inclusion
for PosLimInf and AsLimSup remains open; the problem is also open for the
respective boolean cases (i.e., for PosCW and AsBW). The decidability of
language inclusion for PosLimAvg, AsLimAvg, PosDisc, and AsDisc also re-
mains open as either the universality or the emptiness problem (or both) remain
open in the respective cases. The situation for language equivalence is the same
as for language inclusion.
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