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Abstract The theory of graph games is the foundation for modeling amd s
thesizing reactive processes. In the synthesis of stdchasicesses, we uﬁ%-
player games where some transitions of the game graph atelbed by two
adversarial players, the System and the Environment, amattrer transitions
are determined probabilistically. We consid%r—player games where the objec-
tive of the System is the conjunction of a qualitative ohjexi{specified as a
parity condition) and a quantitative objective (specifischanean-payoff condi-
tion). We establish that the problem of deciding whetherSgistem can ensure
that the probability to satisfy the mean-payoff parity abiee is at least a given
threshold is inNP N coNP, matching the best known bound in the special case
of 2-player games (where all transitions are deterministicy.pAésent an algo-
rithm running in timeO(d - n* - MeanGame) to compute the set aflmost-sure
winning states from which the objective can be ensured withability 1, where

n is the number of states of the gamkthe number of priorities of the parity
objective, andMleanGame is the complexity to compute the set of almost-sure
winning states inz%-player mean-payoff games. Our results are useful in the
synthesis of stochastic reactive systems with both funatioequirement (given
as a qualitative objective) and performance requiremeauéiigas a quantitative
objective).

1 Introduction

Perfect-information stochastic gamesA perfect-information stochastic graph
game [16] is played on a finite directed graph with three kiofdstates (or vertices):
playerMax, playerMin, and probabilistic states. At play&tax states, playeMax
chooses a successor state; at playiarstates, playevlin (the adversary of playérfax)
chooses a successor state; and at probabilistic statescassor state is chosen ac-
cording to a fixed probability distribution. The result ofaging the game forever is
an infinite path through the graph. If there are no probdhilstates, we refer to the
game as &-player graph gamgeotherwise, as a%-player graph gameThere has been
a long history of using 2-player graph games for modeling syrithesizing reactive
processes [7,23,26]: a reactive system and its environmreenesent the two players,
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whose states and transitions are specified by the statesdges ef a game graph.
Consequentlyzé-player graph games provide the theoretical foundatiomfodeling
and synthesizing processes that are both reactive andsticfil7,25]. They subsume
both2-player games which have no probabilistic states, and Medkgision processes
(MDPs) which have no playdwin states.

Qualitative and quantitative objectivelsl the analysis of reactive systems, the goal is
specified as a set of desired paths (such-asgular specifications), or as a quantitative
optimization objective for a payoff function on the pathsverification and synthesis
of reactive systems all commonly used properties are egpdassv-regular objectives,
and parity objectives are a canonical way to expresegular objectives [27]. In a
parity objective, an integer priority is assigned to eveates and a path satisfies the
objective for playetMax if the maximum priority visited infinitely often is even. The
most classical example of quantitative objective is the mgayoff objective [17,24],
where a reward is associated with every state and the palafpath is the long-run
average of the rewards of the path. While traditionally teefication and the synthesis
problems were considered with qualitative objectivesently combinations of quali-
tative and quantitative objectives have received a lotteidibn. Qualitative objectives
such asv-regular objectives specify the functional requiremeritseactive systems,
whereas the quantitative objectives specify resourcewropton requirements (such as
for embedded systems or power-limited systems). Combigiramtitative and qualita-
tive objectives is crucial in the design of reactive systeaitls both resource constraints
and functional requirements [9,14,5,3]. For example, reayoff parity objectives are
relevant in synthesis of optimal performance lock-synoiration for concurrent pro-
grams [8], where one player is the synchronizer, the oppdeehe environment, and
the randomization arises due to the randomized schedbkeipdrformance objective
is specified as mean-payoff condition and the functionaliregnent (e.g., data-race
freedom or liveness) as anregular objective. Mean-payoff parity objectives hawaoal
been used in other applications such as to define permis&iviparity games [6]. Thus
2%-player mean-payoff parity games provide the theoreticahtlation for analysis of
stochastic reactive systems with functional as well asgper&nce requirements.

Algorithmic questions ia%-player gamesThe study oQ%-pIayer games has a wealth
of algorithmic problems. For example, giverizé-player game with reachability ob-
jective (where the goal is to reach a target set of statesgttven the playeMax can
ensure the objective with probability at Iea}it(called the value-strategy problem) is
in NP NcoNP [16]. This is one of the rare combinatorial problems thatohgl to
NP N coNP, but are not known to be solvable in polynomial time. It is ajonand
long-standing open question whether the problem can bedadiv polynomial time.
Moreover2-player games with mean-payoff (resp. parity) objectii@sinNP N coNP
(even inUP NcoUP) [21,29,20], and again no polynomial time algorithm is kmow
Both2-player parity games aritiplayer mean-payoff games admit a polynomial reduc-
tion to the value-strategy problem @%-player reachability games. The value-strategy
problem for2%—player mean-payoff (resp. parity) games also lidlihn coNP: the key
property to show that the problem isht N coNP for mean-payoff (resp. parity) games
is to show that it is sufficient to consider positional stgis (that are independent of the
past history and depend only on the current state), see f22héan-payoff and [15]



for parity objectives. In this work we considé%-player games with conjunction of
mean-payoff and parity objectives for playdeax. The study ofzé-player games with
conjunction of mean-payoff and parity objectives poses akgarithmic challenges as
infinite-memongtrategies are required. The key challenge is to olstatainctpolyno-
mial) witnesses for the infinite-memory strategies andrtblearacterization to obtain
complexity results matching the simpler classes of game=revpositional strategies
suffice. Besides the complexity result, our characteoradf strategies will also allow
us to obtain algorithms to soI\B-:-}-pIayer mean-payoff parity games.

Contributions.The details of our contributions are as follows:

1. We first present polynomial witnesses for infinite-memetsategies required
by playerMax, and a polynomial-time verification procedure for the wises,
thereby establishing that the value-strategy problem (oéther playeMax can
ensure that the probability to satisfy the objective is asta given threshold) is in
NP. The fact that playelax requires infinite-memory strategies follows from the
special case di-player mean-payoff parity games [14].

2. We show that positional strategies are sufficient for @lapin (note that
playerMax andMin are asymmetric since play®&tax has a conjunction of par-
ity and mean-payoff objectives to satisfy, whereas playier has disjunction of
parity or mean-payoff objectives to falsify). From the eé&isce of positional strate-
gies for playeMin it follows that the value-strategy problem is alsactNP. Our
NP N coNP bound for the problem matches the special casesmhyer mean-
payoff parity games.

3. We present an algorithm for the computation of the alnsase winning set (the
set of states where the objective can be ensured with piidigdbby playerMax)
for 23-player mean-payoff parity games in tinid - n*? - MeanGame), where
n is the number of states of the game graphthe number of priorities of the
parity objective, andMeanGame denotes the complexity to compute the almost-
sure winning set im%-player mean-payoff games.

In summary, we present results that establish computdistnategy, and algorith-
mic complexity of solvingzé-player mean-payoff parity games.

Technical difficulty.For 2-player games th&lP N coNP result for mean-payoff par-
ity objectives was established in [10]: the technique celi@ reduction of2-player
mean-payoff parity games t-player energy-parity games, and 2nplayer energy-
parity games finite-memory strategies suffice (for detailated to energy objectives
see [10,12]). However the technique of reduction of mearefiagames to energy
games (even without the parity condition) for almost-suiening does not hold in the
presence of stochastic transitions because for energytmorsd(which are like safety
conditions) the precise probabilities do not matter, wastbey matter for mean-payoff
conditions. Hence the techniques foplayer mean-payoff parity games do not extend
to 2%—player games, and we need to explicitly construct sucairtrtess to show the
NP N coNP result. The succinct witness construction of infinite-meyrgirategies in
the presence of adversary and stochastic transitions im#e technical challenge in
2%-player mean-payoff parity games.



Related worksThe problem of2-player mean-payoff parity games was first studied
in [14]. The NP NncoNP complexity bound was established in [10], and an improved
algorithm for the problem was given in [6]. The algorithmitdysis ofz%-player mean-
payoff games has been studied in [1,4]: a reducticﬁ'%tqnlayer reachability games was
presented in [1], and approximation schemes were consider@]. The polynomial
time complexity for MDPs with mean-payoff parity objectsivevas established in [11]
and the polynomial time complexity for MDPs with positiveeasge parity objectives
was shown in [19]. The generalization ﬂ%-player games with mean-payoff parity
objectives gives rise to many delicate issues, such asngeatithe same time with
infinite-memory strategies, stochastic transitions, dasghe opponent.

2 Definitions

In this section we present definitions of game graphs, dlbgs;tand the basic decision
problems.

Probability distributions. For a finite setS, we denote byA(.S) the set of all prob-
ability distributions overS, i.e., the set of function» : S — [0,1] such that
> .csp(s) = 1. ForaselU C S we use the following notationi(U) = > p(s).

Stochastic gamesA perfect-information stochastic game graffbr brevity, stochas-
tic game) is a tupleg = (S, (Smax, Smin), 4,9), where S is a finite set of states,
(Smax, Smin) IS @ partition of S such thatSw.x is the set of states controlled by
playerMax and S, is the set of states controlled by playdin, A is a finite set of
actions, and : S x A — A(S) is a probabilistic transition function. Stochastic games
are also known az%—player games where probabilistic states are explicitgspnt. In
our model, the probabilistic states can be embedded in titwapilistic transition func-
tion. A Markov decision procegMDP) is the special case of a stochastic game where
eitherSyax = 0, or Smin = 0. Typically in this paper, we obtain MDPs from stochastic
games after fixing the action choices of one of the players.

For complexity issues, we assume that the probabilitietaohaistic games are
rational numbers whose numerator and denominator are eddodinary. We denote
by |§| the size of the encoding of the probabilistic transitiondiimn 6.

Subgames and trapsGiven a stochastic gamg, a setU C S of states induces a
subgame if for alls € U, there exists an action, € A such that(s, as)(U) = 1; the
induced subgame B[U] = (U, (UNSmax, UNSwmin), A, 8") where, for all states € U
and actioru € A, we haveY'(s,a) = d(s,a) if 0(s,a)(U) =1, andd’(s,a) = (s, as)
otherwise. We take this definition of subgame to keep the sdpi@bet of actions in
every state. The subganggU] is atrap for playerMin in the original gameg if for
all s € U N Swin and for alla € A we haved(s,a)(U) = 1. A trap for playerMax is
defined similarly.

Plays and strategiesA play p = sos1 --- € S“ is an infinite sequence of states such
that for alli > 0 there existss € A such thati(s;,a)(s;+1) > 0. A strategyfor

Max is a recipe to describe what is the next action to play; folynélis a function

o : S*Suvax — A. A positionalstrategy is independent of the past and depends only on
the current state. We view it as a function Sy, — A.



A strategyo usesfinite memoryif there exists an equivalence relatienon S of
finite index, such that (p1) = o(p2) for all playsps, p2 such thap; ~ po. We define
strategies, positional strategies, and finite-memornytesiias analogously fokin. A
strategy that is not finite-memory is refered to as an infimtmory strategies.

Probability measures.Given a finite prefixp € S* of a play, denote byp| the length
of p and byCone(p) the set of plays with prefix. If p € ST is nonempty, we denote
by Last(p) the last state 0. Given a pair of strategi€@, 7) for Max andMin, and an
initial states, we first define the probability measure on cones inductigslyollows:
forall s’ € S, let
Pom(Cone(s')) = 4 L IF s =5
s 0ifs' #s

and for allp € S* (whereS™ = S* \ {¢} ande is the empty string), let

P77 (Cone(p)) - §(Last(p),c(p))(s’) if Last(p) € Smax

P77 (Cone(p)) - 8(Last(p), 7(p)) (") if Last(p) € S

By Caratheodary’s extension theorem, there is a uniquasixte of this probability
measure t&6“ which is also denoted &7 (-) [2].

PZ7(Cone(p - s)) =

Mean-payoff parity objectives. An objectiveis a measurable set C S“ of plays. Let
rwd : S x S — Q be areward functiondefined on edges and: S — N be apriority

functiondefined on states. Given a set of states S and a priorityd € N, we de-
note byU (d) the set{s € U | x(s) = d} of states with priorityd. The mean-payoff

objective Mean = <spsy--- € S¥ | limsup,,_, % . Z;:ol rwd(s;, Sit1) > O} re-
quires that the long-run average of rewards be non-negakive parity objective
Par = {sps1--- € S* | limsup,,_,. x(sn) is ever} requires that the maximal pri-
ority visited infinitely often be even. Thmean-payoff parity objectivislean N Par is

the conjunction of a mean-payoff objectiveean and a parity objectiv®@ar.

Almost-sure and positive winning.We say that playelMax wins almost-surely (resp.,
positively) from an initial state for an objectivep if there exists a strategy for Max
such that for every strategyof playerMin we haveP?" (p) = 1 (resp.,P27 () > 0).
The states is calledalmost-surdresp. positive winning for Max. In the sequel, we say
that a gamé; is almost-sure (resp., positive) winning, if every stat€ iis almost-sure
(resp., positive) winning foMax. We use analogous definitions for playdin. Note
that almost-sure winning fdvlax is the dual of positive winning fofin.

Value-strategy problem and reduction to almost-sure winning. Given a threshold
A, thevalue-strategyroblem for an objective asks whether there exists a sydteg
player Max to ensure against all strategies of play«in that the objective is satis-
fied with probability at leash. A strategy for playeMax is optimalif it ensures the
maximal value\ (for stochastic mean-payoff parity games, optimal stiategre guar-
anteed to exist [18]). In this paper we focus ondfrmost-sure winning problemvhich
is to decide whether there exists an almost-sure winniregegy for playeMax for
a mean-payoff parity objective, that is the value-strategyblem forA = 1. While
for player Max infinite-memory strategies are necessary [14], we will shioat for
playerMin positional strategies are sufficient, and that the almost-&/inning prob-
lem is inNP N coNP.



Remark 1.1t follows from the results of [13, Lemma 7] and [18, Theoreri]4hat
since mean-payoff parity objectives dedl objectives (independent of finite prefixes),
the memory requirement for optimal strategies of both pigigethe same as for almost-
sure winning strategies, and if the almost-sure winnindpfgnm is inNP N coNP, then
the value-strategy problem is also MP N coNP. The details are as follows: The re-
sults of [13, Lemma 7] and [18, Theorem 4.1] show that for tberditative analysis
of tail objectives it suffices to guess thialue classe$where a value class fof, with

0 < r <1, isthe set of states with valug, almost-sure winning witness in a modified
game for each value class, and then the verification probéemires the almost-sure
witness verification in each value class, and verificatioNMBfPs which is polynomial
time. SinceNP N coNP bound for the almost-sure problem imply polynomial withess
and polynomial-time verification for the witness, it folleusing the results of [13,18])
that theNP N coNP bound for almost-sure winning imply that there exists polyial
witness and polynomial-time verification for quantitateealysis, and thereby estab-
lish theNP NncoNP bound. Thus from our results it will follow that the valueategy
problem is inNP N coNP for 2%—player mean-payoff parity games.

Positive attractors.Given a stochastic gangg letU C S induce a subgam@[U] with
probabilistic transition functiod : U x A — A(U). ForT C U, let fr : 2V — 2V be
the operator such that for &l C U,

fr(Z)=TU{s € SmaxNU |Ja € A:(s,a)(Z) > 0}
U{s € SvinNU |Vae A:6(s,a)(Z) > 0}.

ThenAttrvax (T, G[U]) is the least fixed point of -, called thepositive attractorfor
Max to 7" in G[U]. It can be computed as the limit of the iteratioff-(0));en. There
exists a positional strategy fdfax (referred to apositive-attractorstrategy) to ensure
that from all states imttrvax (7, G[U]), the setT is reached withinU| steps with
positive probability. We defind\ttry;, (T, G[U]) as the positive attractor fdvlin in
an analogous way. An important property of positive attescts that if X is a positive
attractor foMax in G[U], thenG[U'\ X ] is a subgame and it is a trap figtax. Analogous
statement holds favlin.

3 Characterization of the AlImost-sure Winning Set

In this section we present the key lemmas that enable anftindwharacterization of
certificates and a polynomial-time verification procedurethe existence of almost-
sure winning strategies, showing that the almost-sure wgproblem is inNP for
stochastic games with mean-payoff parity objectives.

It follows from the results of [14] that finite-memory strgies are not suffi-
cient for Max and infinite-memory strategies are required for almose-suminning.
We present polynomial witnesses and polynomial-time \aaiion procedure for the
infinite-memory almost-sure winning strategies. The polyial witnesses consists of
a trapU for playerMin that defines a subgame where all states are almost-surewginni
for playerMax, together with a certificate defined as an inductive decoitipo®f the
subgame induced bl constructed according to the parity of the largest priafiin
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Figure 1. Stochastic gamég with largest priority even.

U. If d is even we refer to the certificate as ewen certificateif d is odd as an odd
certificate.

Intuitive description.To present the intuition of the (inductive) certificates, iwtor-
mally explain some key properties in establishing that t@tes in a (sub)game are
almost-sure winning fokax. In figures, we denote states of playésx by circles, and
states of playeMin by square boxes. Probability distributions over statesshoavn
by a diamond. We omit actions and assume that every outgdigg om playeax
and playerMin states corresponds to a different action. &éte a (sub)game with state
spaceS where all states are almost-sure winning. Then, we deseritertificate ac-
cording to the parity of the largest priorityin G as follows.

1. If d is even (see Example 1 and Figure 1), }et= Attryax(S(d),G) andY =
S\ X. An even certificate fog ensures thafl) in G all states are almost-sure
winning for the objectivéMean; and(2) in G[Y'] all states are almost-sure winning
for Max for the objectiveMean N Par (using a certificate defined recursively in the
subgame’[Y], which has at least one less priority as there is no priatityate in
Y). In other words, the even certificate consists of (i) a pas#l positive attractor
strategy inX for the targetS(d); (ii) a positional almost-sure winning strategygn
for the mean-payoff objective; and (iii) a certificate fY"]. We establish that the
above two conditions ensure thatrall states are almost-sure winning fdex for
the objectiveMean N Par. An almost-sure winning strategy fbtax is as follows: if
the current state is in the subgam@’], then playeMax ignores the history of the
play up to the last state that was notrinand uses an almost-sure winning strategy
in G[Y'] (such a strategy exists @[Y] by the certificate). If the opponent decides
to visit the positive attractak’, then playeMax switches to a (positional) positive-
attractor strategy for at mok$| steps. Then, either aftg$| steps or before (e.g., if
a state with priorityd is reached), playevax switches to an almost-sure winning
strategy forMean and plays it for a long finite time (that increases over thgpla
After that, the play might be i or in X, and playeMax restarts from scratch
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Figure 2. Stochastic gamg with largest priority odd.

the same process of playing. Intuitively, if the play keepsting X, then with
probability 1 the positive-attractor strategy ensures infinitely margjtyito a state
with priority d (thus the parity condition is satisfied), and the almosésuinning
strategy forMean played for increasing number of steps ensures that the mean-
payoff objective is satisfied. On the other hand, if the plegrgually stays iG[Y]
forever, then the almost-sure winning strategydifY’] ensures the mean-payoff
parity objective is satisfied with probability(since the objective is independent of
finite prefixes).

Example 1.Consider the stochastic gargen Figure 1 where the largest priority
is 2. All states are almost-sure winning for théean objective, and a positional
strategy for playeMax is as follows: for stat@; choose the edge labeled reward 1;
and for statey, choose the edge . The positive attractor fovax to the largest
priority is X = {q4, g7, ¢s}. In the subgame induced By = {¢1, 2,43, ¢5,96 }
there is one less priority, and playidin can decide to leave the subgame in states
gs andggs. An (odd) certificate defined in the subgagi@’] witnesses that all states
in G[Y'] are almost-sure winning for the mean-payoff parity objectiThus the
even certificate consists of the positional strategyMegn, the positive-attractor
strategy, and a certificate fgifY’].

. If dis odd (see Example 2 and Figure 2), an odd certificatéagea-decomposition
of the state space @ into non-empty setd?,,..., R, and Zy, ..., Z; defined
recursively as follows(1) R; C S\ S(d) is a trap for playeMin in G that contains
no priority-d state, and such that all statesin are almost-sure winning fdviax



for the objectiveMean N Par (using a certificate defined recursively in the subgame
G[R:], which has at least one less priority since priortgoes not occur iRR,),

(2) Z1 = Attrmax(R1,G) is the positive attractor for playérax to R; in G, and

(3) the setskR, andZ, are defined analogously in the subga@ié \ 7], and the
setsR3 andZs in the subgamg|[S \ Z2] whereZs = Attryax(R2, G[S'\ Z1]), and

so on to obtain the layer-decompositiorthfSuch a decomposition must cover the
state space, and thus the s&ts. .., Z; form a partition ofS (andk < |S]). An
almost-sure winning strategy for playlglax is as follows: if the current state is in
a subgameR;, then playeiMax ignores the history of the play up to the last state
that was not inR;, and uses an almost-sure winning strategy (that exiskg iby
the certificate). If the current state isih \ R;, then playeMax uses the positive-
attractor strategy defined irf;. We show that almost-surely, one of the sBjsis
never left from some point on, and then the almost-sure wistrategy irG[R;]
ensures that the mean-payoff parity objective is satisfigh probability 1 (since
the objective is independent of finite prefixes).

Example 2.Consider the stochastic gargen Figure 2 where the largest priority
is 1. A layer-decomposition is shown whefe, = {¢ } is a trap of almost-sure
winning states foMax, andZ; = {q1, ¢2} is the positive attractor t&®;. In the
subgame’[S \ Z1], there is no edge fromy to g2, and it follows that the states in
Ry = {g3,q4} form a trap of almost-sure winning states in this subgame the
positive attractor tdrs is Zo = R2U{gs}. The last layer consists @f; = {¢s, ¢7}
andZ; = R3 U {gs}. As this layer-decomposition covers the state spadg, af
gives an odd certificate for play&fax.

Given the basic intuitions, we now present the formal prodfs start with a basic
lemma, and then consider the two cases when the largesityiseven or odd.

Lemma 1. Let G be a stochastic mean-payoff game with state spgoghere all
states are almost-sure winning for the mean-payoff objedean. Then there ex-
ists a positional strategy for player Max such that against all strategiesfor Min,
for all s € S and for alle > 0, there existsk. such that for allk > k. we have

Pg"T ({8081 ...esv | Zf;ol % . rWd(Si,Si+1) > —E}) >1-—e

Lemma 2. LetG be a stochastic mean-payoff parity game with state spaaed such
that the largest priorityd in G is even. LetX = Attryax(S(d),G) andY = S\ X.
All states inG are almost-sure winning for playévlax with the mean-payoff parity
objectiveMean N Par if and only if:

1. all states inG are almost-sure winning for the mean-payoff objectitean for
Max, and

2. all states inG[Y'] are almost-sure winning for the mean-payoff parity objeeti
Mean N Par for Max.

Proof. Let G satisfy the conditions of the lemma. We first show that altestan G
are almost-sure winning fdviax for the objectiveMean N Par. Let o, be an almost-
sure winning strategy foean N Par in the subgamg[Y'] induced byY’, let oaw, be



a positional positive-attractor strategy $4d) in G, and letoye.n be an almost-sure
winning strategy foMean in G. LetWW = max; s cg|rwd(s, s")| be the largest absolute
reward and for every > 0, lete; = % and letK; = max {k.,,j? - W} wherek,, is
defined in Lemma 1.

The strategy thatMax uses is played imundsnumbered, 2, - - -, and at round
1, the strategy is defined as follows:

Phase 1: (Mean-payoff phase). Let be the length of the current play prefix until the
end of phase 3 of round— 1; then play according to the positional strategyean,
for K; steps. Switch to Phage

Phase 2: (Subgame phase). While the current plais in Y, let p’ be the suffix ofp
obtained by ignoring the prefix gf up to the end of Phase 1 of the current round.
Playosu,(p’). If the play leaved” (and thus reacheX), then switch to Phase 3.

Phase 3: (Attractor phase). Play g, for at most|S| steps, or until a state with pri-
ority d is reached, or the positive attractar is left. Switch to Phase 1 in round
i+ 1.

We show that is almost-sure winning for thi¥lean N Par objective. Consider the
following events:

A:{S()Sl"'|E|JZO'V_].ZJZSJ'€Y},
B:{8051|VJ203_]ZJ8J€X}

Intuitively, A denotes that from some point on the play remains only in thgaune
Y (and thus the strategy remains forever in the subgame phase), &denotes that
the setX (the positive attractor to priorityl) is visited infinitely often. Letr be a
strategy forMin, then any play consistent witla, 7) belongs toA U B and sinced N
B = () we havelP?" (A U B) = P77 (A) + P77 (B) = 1. We now consider two cases
to establish that is almost-sure winning.

1. (Under eventd). Observe that both parity and mean-payoff objectives arepad-
dent of finite prefixes, and if a play belongsAo then the finite prefix of the play
after which the play only visits states i does not change the mean-payoff nor
the parity objective. Sinces,;, is almost-sure winning in the subgame induced by
Y, it follows that for alls € S and all strategies of playerMin in G we have
P27 (MeanNPar | A) =1 (if P27 (A) # 0).

2. (Under eventB). We now reason under the evetand show that both the parity
and the mean-payoff objectives are satisfied almost-suiddyfirst show that the
parity objective is satisfied almost-surely. Consider diteary strategy- for player
Minin G and a state € S.

Parity objective almost-surel@iven the evenf3, the strategy is in attractor mode
infinitely often. Given the strategy is in the attractor phabke probability to reach

a priority-d state within the nextS| steps after the attractor mode starts is at least
2 = (Pmin)'! > 0, wherep,,i, is the minimum positive transition probability (i.e.,
Pmin = min{d(s,a)(t) > 0| s,t € S,a € A}). It follows that if the strategy is
switchingk times to the attractor phase, then the probability not tib thie priority-

d set is at most1 — x)*. The eventB ensures that the strategy is in the attractor



phase infinitely often, and thus the probability that giviee eventB after some
point a priorityd state is not visited at all iimy ., (1 — 2)* = 0. Hence given
eventB, the best even priority is visited infinitely often almost-surely, ensuring
that the parity objective is satisfied, thatis foralt S and all strategies of player
Min in G we haveP?" (Par | B) = 1 (if P27(B) # 0).
In other words, given that the positive attractor to alsé visited infinitely often,
it follows that the sef’ is visited infinitely often with probabilityt, and we refer to
this property as thalmost-sure positive attractor property
Mean-payoff objective almost-surelyfe now prove that the mean-payoff objective
is almost-surely satisfied. Given the evéhtthe strategy is in the mean-payoff
phase infinitely often. Consider the finite prefixes of glay s¢ - - - 5,41 consistent
with (o, 7) that are in the mean-payoff phase for the first time in thessunround.
Then by the definition of the strategy every play prefixe’ = p - sji1--- 8544
consistent with(c, 7) that extendg, for all 0 < ¢ < K, is in the mean-payoff
phase. The sum of the rewards for all prefixes of length at least—;j - W and
then applying Lemma 1 we have

J+K; .
PZT S081 | j+1Kj . Z rwd(s;, Sit1) > —% | Cone(p) | > 1—¢;

By the choice ofK; (thatK- > j2. W) ande; = l we have—
S - j'W > —=., Consider the functiorf that glven a numbef returns the

K;
maxfmum numbey such thay + K; < £. Note thatf is a non-decreasing function
and as/ tends tooo, also f (¢ )tends toco. Given the evenB, there are infinitely
many prefixeg consistent witi{o, 7) that are in the mean-payoff phase for the first

time in the current round. Hence we have

¢
1 2 1
lim sup PJ"" soS1 - | = - rwd(s;, s; > —— B | >limsupl——— = 1.
z—mop <{ 051 | 7 ; ( +1) f(ﬁ)}' ) é_}oop f(é)

By Fatou’s lemma [2] we know that for an event sequeégcewe have that
limsup,_, . P(&) < P(limsup,_, . &). Hence an application of the Fatou’s
lemma gives us that

¢
1 2
PZ7 [ imsup | sgs1--- | = (84, 8i —_— Bl =1
s <ZHOOP{01 7 ; +1) f(£)}| )

Letyp, = {5051 e % . Zf:o rwd(s;, Sit1) > —%} andy = limsup,_, ., @¢.

Consider a playp = sgs1--- € ¢. Fix ¢ > 0, and consider/, such that
% < e. Sincep € ¢, there exists infinitely many > ¢, such thatp € ¢y,
and hence for infinitely many we have% . Zf frwd(sl,swfl) > —¢. Hence
limsup,_, ., + - Zz frwd(sz,szﬂ) > —e. Since this holds for alk > 0, it

follows thatlimsup,_, . + Zf frwd(sz,szﬂ) > 0. In other words, we have
» C Mean and hence for alt € S and all strategies of playerMin in G we have
P77 (Mean | B) = 1 (if P27 (B) # 0).

€j~K]‘+j'W
J+K; z




Thus given either event or B, the mean-payoff parity objective is satisfied almost-
surely. Note that if one of the event has probability O, thendther has probability 1. It
follows that the mean-payoff parity objective is satisfidd@st-surely. This concludes
one direction of the proof that if the conditions of the lemana satisfied, then almost-
sure winning forMean N Par is ensured with probability.

We now prove the converse. Consider a gghseich that all states in its state space
S are almost-sure winning for the objectivéean N Par for playerMax. First, observe
that sinceMean N Par C Mean, almost-sure winning foMean N Par implies almost-
sure winning forMean. This implies the first condition. Second, observe thais a
trap for playeMax. If player Max does not have an almost-sure winning strategy for a
non-empty seZ C Y in the subgam¢g/[Y], then playeMax does not have an almost-
sure winning strategy fror#f in G, which contradicts that all statesdhare almost-sure
winning. This proves the second condition of the lemma amdpietes the proof. O

Lemma 3. LetG be a stochastic mean-payoff parity game with state spaead such
that the largest priorityd in G is odd. All states irG are almost-sure winning for the
objectiveMean N Par if and only if there exists a partitiofiZ; }1<;<, of S and non-
empty setR;, U, fori = 1,...,k, andUy; such thaty; = Sandforalll <i <
k: (1) R; € U; \ U;(d) is a trap for Min in G[U;], and all states inR; are almost-
sure winning for the objectiviglean N Par in G[U;]; (2) Z; = Attrmax(R;, G[U;]); and
B Uit1 = Ui\ Z;.

Lemma 3 presents a characterization of the certificate foosi-sure winning when
the largest priority is odd. The key correctness argumesd tise almost-sure positive
attractor property to show that the event that from sometpironly states ir; are
visited for some has probability 1. From the above fact and the almost-sunaiwg
strategies ink; we obtain an almost-sure winning strategygin

We remark that it follows from our proofs that the infinite-mery required by the
strategies can be captured in terms of counter-basedgtatthat keep track of the
number of steps that certain positional strategies need payed.

4  Algorithm

In this section we present an algorithm for the almost-summing problem. Let be

a stochastic mean-payoff parity game with largest priafitpur algorithm computes
the setR of almost-sure winning states ffax, by iterations that, from the state space
S of G remove positive winning states of playiin. When a fixpoint is obtained, we
show that it satisfies the characterization of Lemma 2 andrhar8, hence it is the
almost-sure winning set. Starting with = .S, the algorithm considers two cases:

(a) If dis even: First, compute the almost-sure wining rediofor the Mean objective
in G[R]. Compute the positive attractof for playerMax to the set of states with
priority d in U, and letY” be the complement. Recursively compute the almost-sure
winning regionR’ in G[Y] for the mean-payoff parity objective, and iterate (until
R’ = Y) in the subgame induced by the complem&nt Z of the playerMin
positive attracto?Z = Attryi (Y \ R', G[U]) (i.e., removing some positive winning
states for playeMin).



(b) If dis odd: In each iteration of the main loop, the algorithm catep a set of
positive winning states for play&fin as the positive attractor (fddin) to the set/
computed in the inner loop. The inner loop computeR/ithe almost-sure winning
states of playeMax in the subgame induced by the complemgnaf playerMin
positive attractor to priorityl, using a recursive call. The positive attractor Kax
to R’ is removed, and the next iteration startsf # () with a strictly smaller
state spac&. The main loop terminates when there is nothing to reméve-().

Correctness and terminatioithe correctness and termination of our algorithm (which
we refer to a\lgStMPP, algorithm for stochastic mean-payoff parity games) ialest
lished using an argument by induction on the depth of thersdaei calls, which are
always invoked with games that have at least one less prihv@n the current game,
and using Lemma 2 and Lemma 3.

The complexity ofAlgStMPP is exponential in the number of priorities in the game,
like the basic algorithm for parity games [28]. The key diffieces to the basic algorithm
for parity games are as follows: (i) in our algorithm theraisextra nested loop when
the maximum priority is odd; and (ii) in addition to the basittractor computation
for parity games we also need to compute the almost-sureingrset for stochastic
mean-payoff games.

Theorem 1. Given a stochastic mean-payoff parity gaghavith n states, probabilis-
tic transition functiond, priorities in {0,1,...,d — 1}, and largest absolute reward
W, AlgStMPP computes the almost-sure winning regionfin time O(d - n?? -
MeanGame(n, |0|, W)) whereMeanGame(n, |6], W) is the time complexity of solving
the almost-sure winning problem for stochastic games witly @ mean-payoff objec-
tive.

Note thatMeanGame(n, |§|, W) € |A|™ - Poly(n, |0], W) by simply enumerating
over all positional strategies and then solving in polynaitime the MDP obtained by
fixing the positional strategy.

5 Computational Complexity

In this section we establish tidP N coNP complexity bound for the almost-sure win-
ning problem.

The NP Membership. Although infinite-memory strategies are necessary for
player Max to win mean-payoff parity games almost surely [14], we shbat the
almost-sure winning problem can be solved\iR by guessing a polynomial-size de-
composition of the state space along with positional sgiatethat allow to construct an
almost-sure winning strategy, possibly with infinite megndhe polynomial certificate

is obtained from the characterization of Lemma 2 and Lemman8;the verification
procedure requires solving MDPs with mean-payoff paritjeotives, which can be
done in polynomial time [11].

Lemma 4. The almost-sure winning problem for stochastic mean-gaafty games
isin NP.



The coNP Membership. We show that positional strategies are sufficient for
player Min to win positively in stochastic mean-payoff parity gamesirg the fact
thatAlgStMPP maintains in variablé? an over-approximation of the almost-sure win-
ning set for playeMax, we construct a positional strategy for plajin from all states
that are removed fronk by the algorithm.

Lemma 5. To win positively in stochastic mean-payoff parity gamesijtpnal strate-
gies are sufficient for playeviin.

We then show how to use the positional strategy for positirening to obtain a
positional strategy for almost-sure winning for plajin. By Remark 1 it follows that
positional optimal strategies exist for playdin. Lemma 4, the existence of positional
optimal strategies for playévlin, and the fact that MDPs with mean-payoff parity ob-
jectives can be solved in polynomial time [11], gives us thiofving result.

Theorem 2. The following assertions hold: (1) Positional optimal d&gies exist for
player Min in stochastic mean-payoff parity games (2) The almost-aimaing and
the value-strategy problem for stochastic mean-payofitypgames can be decided in
NP N coNP.

Remark 2.The complexity result of Theorem 2 matches the best knowrptexity for
stochastic mean-payoff games [22], stochastic parity gddtg (also see [1] for rela-
tionship of stochastic mean-payoff and stochastic pardtyes), and (non-stochastic)
mean-payoff parity games [12].

Concluding remarks. In this work we studied the computational and strategy cemypl
ity of the value-strategy problem fdr%-player mean-payoff parity games. In addition
we presented an algorithm for computing the almost-suraewgstates which requires
the computation of the almost-sure winning states2f§>rplayer mean-payoff games.
Improved algorithmic solutions for the computation of theast-sure winning states
in 2%—player mean-payoff games is an interesting question. @arithm for almost-
sure winning and the general technique mentioned in Reméok ZL%-pIayer games
with tail objectives provide an exponential-time algonitifior the value-strategy prob-
lem. Whether more specialized algorithms (such as strateggtion algorithms) can
be developed for the value-strategy probler@%r-iplayer mean-payoff parity games is
another interesting algorithmic question.
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