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Abstract The theory of graph games is the foundation for modeling and syn-
thesizing reactive processes. In the synthesis of stochastic processes, we use2 1

2
-

player games where some transitions of the game graph are controlled by two
adversarial players, the System and the Environment, and the other transitions
are determined probabilistically. We consider2 1

2
-player games where the objec-

tive of the System is the conjunction of a qualitative objective (specified as a
parity condition) and a quantitative objective (specified as a mean-payoff condi-
tion). We establish that the problem of deciding whether theSystem can ensure
that the probability to satisfy the mean-payoff parity objective is at least a given
threshold is inNP∩ coNP, matching the best known bound in the special case
of 2-player games (where all transitions are deterministic). We present an algo-
rithm running in timeO(d · n2d

·MeanGame) to compute the set ofalmost-sure
winning states from which the objective can be ensured with probability 1, where
n is the number of states of the game,d the number of priorities of the parity
objective, andMeanGame is the complexity to compute the set of almost-sure
winning states in2 1

2
-player mean-payoff games. Our results are useful in the

synthesis of stochastic reactive systems with both functional requirement (given
as a qualitative objective) and performance requirement (given as a quantitative
objective).

1 Introduction

Perfect-information stochastic games.A perfect-information stochastic graph
game [16] is played on a finite directed graph with three kindsof states (or vertices):
player-Max, player-Min, and probabilistic states. At player-Max states, playerMax

chooses a successor state; at player-Min states, playerMin (the adversary of playerMax)
chooses a successor state; and at probabilistic states, a successor state is chosen ac-
cording to a fixed probability distribution. The result of playing the game forever is
an infinite path through the graph. If there are no probabilistic states, we refer to the
game as a2-player graph game; otherwise, as a2 1

2 -player graph game. There has been
a long history of using 2-player graph games for modeling andsynthesizing reactive
processes [7,23,26]: a reactive system and its environmentrepresent the two players,
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whose states and transitions are specified by the states and edges of a game graph.
Consequently,2 1

2 -player graph games provide the theoretical foundation formodeling
and synthesizing processes that are both reactive and stochastic [17,25]. They subsume
both2-player games which have no probabilistic states, and Markov decision processes
(MDPs) which have no player-Min states.

Qualitative and quantitative objectives.In the analysis of reactive systems, the goal is
specified as a set of desired paths (such asω-regular specifications), or as a quantitative
optimization objective for a payoff function on the paths. In verification and synthesis
of reactive systems all commonly used properties are expressed asω-regular objectives,
and parity objectives are a canonical way to expressω-regular objectives [27]. In a
parity objective, an integer priority is assigned to every state, and a path satisfies the
objective for playerMax if the maximum priority visited infinitely often is even. The
most classical example of quantitative objective is the mean-payoff objective [17,24],
where a reward is associated with every state and the payoff of a path is the long-run
average of the rewards of the path. While traditionally the verification and the synthesis
problems were considered with qualitative objectives, recently combinations of quali-
tative and quantitative objectives have received a lot of attention. Qualitative objectives
such asω-regular objectives specify the functional requirements of reactive systems,
whereas the quantitative objectives specify resource consumption requirements (such as
for embedded systems or power-limited systems). Combiningquantitative and qualita-
tive objectives is crucial in the design of reactive systemswith both resource constraints
and functional requirements [9,14,5,3]. For example, mean-payoff parity objectives are
relevant in synthesis of optimal performance lock-synchronization for concurrent pro-
grams [8], where one player is the synchronizer, the opponent is the environment, and
the randomization arises due to the randomized scheduler; the performance objective
is specified as mean-payoff condition and the functional requirement (e.g., data-race
freedom or liveness) as anω-regular objective. Mean-payoff parity objectives have also
been used in other applications such as to define permissivity for parity games [6]. Thus
2 1
2 -player mean-payoff parity games provide the theoretical foundation for analysis of

stochastic reactive systems with functional as well as performance requirements.

Algorithmic questions in2 1
2 -player games.The study of2 1

2 -player games has a wealth
of algorithmic problems. For example, given a2 1

2 -player game with reachability ob-
jective (where the goal is to reach a target set of states), whether the playerMax can
ensure the objective with probability at least1

2 (called the value-strategy problem) is
in NP∩ coNP [16]. This is one of the rare combinatorial problems that belong to
NP∩ coNP, but are not known to be solvable in polynomial time. It is a major and
long-standing open question whether the problem can be solved in polynomial time.
Moreover,2-player games with mean-payoff (resp. parity) objectives lies inNP∩ coNP

(even inUP∩ coUP) [21,29,20], and again no polynomial time algorithm is known.
Both2-player parity games and2-player mean-payoff games admit a polynomial reduc-
tion to the value-strategy problem of2 1

2 -player reachability games. The value-strategy
problem for2 1

2 -player mean-payoff (resp. parity) games also lie inNP∩ coNP: the key
property to show that the problem is inNP∩ coNP for mean-payoff (resp. parity) games
is to show that it is sufficient to consider positional strategies (that are independent of the
past history and depend only on the current state), see [22] for mean-payoff and [15]



for parity objectives. In this work we consider2 1
2 -player games with conjunction of

mean-payoff and parity objectives for playerMax. The study of2 1
2 -player games with

conjunction of mean-payoff and parity objectives poses newalgorithmic challenges as
infinite-memorystrategies are required. The key challenge is to obtainsuccinct(polyno-
mial) witnesses for the infinite-memory strategies and their characterization to obtain
complexity results matching the simpler classes of games where positional strategies
suffice. Besides the complexity result, our characterization of strategies will also allow
us to obtain algorithms to solve2 1

2 -player mean-payoff parity games.

Contributions.The details of our contributions are as follows:

1. We first present polynomial witnesses for infinite-memorystrategies required
by playerMax, and a polynomial-time verification procedure for the witnesses,
thereby establishing that the value-strategy problem (of whether playerMax can
ensure that the probability to satisfy the objective is at least a given threshold) is in
NP. The fact that playerMax requires infinite-memory strategies follows from the
special case of2-player mean-payoff parity games [14].

2. We show that positional strategies are sufficient for player Min (note that
playerMax andMin are asymmetric since playerMax has a conjunction of par-
ity and mean-payoff objectives to satisfy, whereas playerMin has disjunction of
parity or mean-payoff objectives to falsify). From the existence of positional strate-
gies for playerMin it follows that the value-strategy problem is also incoNP. Our
NP∩ coNP bound for the problem matches the special cases of2-player mean-
payoff parity games.

3. We present an algorithm for the computation of the almost-sure winning set (the
set of states where the objective can be ensured with probability 1 by playerMax)
for 2 1

2 -player mean-payoff parity games in timeO(d · n2d · MeanGame), where
n is the number of states of the game graph,d the number of priorities of the
parity objective, andMeanGame denotes the complexity to compute the almost-
sure winning set in2 1

2 -player mean-payoff games.

In summary, we present results that establish computational, strategy, and algorith-
mic complexity of solving2 1

2 -player mean-payoff parity games.

Technical difficulty.For 2-player games theNP∩ coNP result for mean-payoff par-
ity objectives was established in [10]: the technique relied on reduction of2-player
mean-payoff parity games to2-player energy-parity games, and in2-player energy-
parity games finite-memory strategies suffice (for details related to energy objectives
see [10,12]). However the technique of reduction of mean-payoff games to energy
games (even without the parity condition) for almost-sure winning does not hold in the
presence of stochastic transitions because for energy conditions (which are like safety
conditions) the precise probabilities do not matter, whereas they matter for mean-payoff
conditions. Hence the techniques for2-player mean-payoff parity games do not extend
to 2 1

2 -player games, and we need to explicitly construct succinctwitness to show the
NP∩ coNP result. The succinct witness construction of infinite-memory strategies in
the presence of adversary and stochastic transitions is themain technical challenge in
2 1
2 -player mean-payoff parity games.



Related works.The problem of2-player mean-payoff parity games was first studied
in [14]. TheNP∩ coNP complexity bound was established in [10], and an improved
algorithm for the problem was given in [6]. The algorithmic analysis of2 1

2 -player mean-
payoff games has been studied in [1,4]: a reduction to2 1

2 -player reachability games was
presented in [1], and approximation schemes were considered in [4]. The polynomial
time complexity for MDPs with mean-payoff parity objectives was established in [11]
and the polynomial time complexity for MDPs with positive average parity objectives
was shown in [19]. The generalization to2 1

2 -player games with mean-payoff parity
objectives gives rise to many delicate issues, such as dealing at the same time with
infinite-memory strategies, stochastic transitions, as well as the opponent.

2 Definitions

In this section we present definitions of game graphs, objectives, and the basic decision
problems.

Probability distributions. For a finite setS, we denote by∆(S) the set of all prob-
ability distributions overS, i.e., the set of functionsp : S → [0, 1] such that
∑

s∈S p(s) = 1. For a setU ⊆ S we use the following notation:p(U) =
∑

s∈U p(s).

Stochastic games.A perfect-information stochastic game graph(for brevity, stochas-
tic game) is a tupleG = (S, (SMax, SMin), A, δ), whereS is a finite set of states,
(SMax, SMin) is a partition ofS such thatSMax is the set of states controlled by
playerMax andSMin is the set of states controlled by playerMin, A is a finite set of
actions, andδ : S ×A → ∆(S) is a probabilistic transition function. Stochastic games
are also known as2 1

2 -player games where probabilistic states are explicitly present. In
our model, the probabilistic states can be embedded in the probabilistic transition func-
tion. A Markov decision process(MDP) is the special case of a stochastic game where
eitherSMax = ∅, orSMin = ∅. Typically in this paper, we obtain MDPs from stochastic
games after fixing the action choices of one of the players.

For complexity issues, we assume that the probabilities in stochastic games are
rational numbers whose numerator and denominator are encoded in binary. We denote
by |δ| the size of the encoding of the probabilistic transition functionδ.

Subgames and traps.Given a stochastic gameG, a setU ⊆ S of states induces a
subgame if for alls ∈ U , there exists an actionas ∈ A such thatδ(s, as)(U) = 1; the
induced subgame isG[U ] = (U, (U∩SMax, U ∩SMin), A, δ

′) where, for all statess ∈ U

and actiona ∈ A, we haveδ′(s, a) = δ(s, a) if δ(s, a)(U) = 1, andδ′(s, a) = δ(s, as)
otherwise. We take this definition of subgame to keep the samealphabet of actions in
every state. The subgameG[U ] is a trap for playerMin in the original gameG if for
all s ∈ U ∩ SMin and for alla ∈ A we haveδ(s, a)(U) = 1. A trap for playerMax is
defined similarly.

Plays and strategies.A play ρ = s0s1 · · · ∈ Sω is an infinite sequence of states such
that for all i ≥ 0 there existsa ∈ A such thatδ(si, a)(si+1) > 0. A strategyfor
Max is a recipe to describe what is the next action to play; formally, it is a function
σ : S∗SMax → A. A positionalstrategy is independent of the past and depends only on
the current state. We view it as a functionσ : SMax → A.



A strategyσ usesfinite memoryif there exists an equivalence relation∼ onSω of
finite index, such thatσ(ρ1) = σ(ρ2) for all playsρ1, ρ2 such thatρ1 ∼ ρ2. We define
strategies, positional strategies, and finite-memory strategies analogously forMin. A
strategy that is not finite-memory is refered to as an infinite-memory strategies.

Probability measures.Given a finite prefixρ ∈ S∗ of a play, denote by|ρ| the length
of ρ and byCone(ρ) the set of plays with prefixρ. If ρ ∈ S+ is nonempty, we denote
by Last(ρ) the last state ofρ. Given a pair of strategies(σ, τ) for Max andMin, and an
initial states, we first define the probability measure on cones inductivelyas follows:
for all s′ ∈ S, let

Pσ,τ
s (Cone(s′)) =

{

1 if s′ = s

0 if s′ 6= s

and for allρ ∈ S+ (whereS+ = S∗ \ {ǫ} andǫ is the empty string), let

Pσ,τ
s (Cone(ρ · s′)) =







Pσ,τ
s (Cone(ρ)) · δ(Last(ρ), σ(ρ))(s′) if Last(ρ) ∈ SMax

Pσ,τ
s (Cone(ρ)) · δ(Last(ρ), τ(ρ))(s′) if Last(ρ) ∈ SMin

By Caratheodary’s extension theorem, there is a unique extension of this probability
measure toSω which is also denoted asPσ,τ

s (·) [2].

Mean-payoff parity objectives.An objectiveis a measurable setϕ ⊆ Sω of plays. Let
rwd : S × S → Q be areward functiondefined on edges andχ : S → N be apriority
functiondefined on states. Given a set of statesU ⊆ S and a priorityd ∈ N, we de-
note byU(d) the set{s ∈ U | χ(s) = d} of states with priorityd. The mean-payoff

objectiveMean =
{

s0s1 · · · ∈ Sω | lim supn→∞
1
n
·
∑n−1

i=0 rwd(si, si+1) ≥ 0
}

re-

quires that the long-run average of rewards be non-negative. The parity objective
Par = {s0s1 · · · ∈ Sω | lim supn→∞ χ(sn) is even} requires that the maximal pri-
ority visited infinitely often be even. Themean-payoff parity objectiveMean∩Par is
the conjunction of a mean-payoff objectiveMean and a parity objectivePar.

Almost-sure and positive winning.We say that playerMax wins almost-surely (resp.,
positively) from an initial states for an objectiveϕ if there exists a strategyσ for Max

such that for every strategyτ of playerMin we havePσ,τ
s (ϕ) = 1 (resp.,Pσ,τ

s (ϕ) > 0).
The states is calledalmost-sure(resp.,positive) winning forMax. In the sequel, we say
that a gameG is almost-sure (resp., positive) winning, if every state inG is almost-sure
(resp., positive) winning forMax. We use analogous definitions for playerMin. Note
that almost-sure winning forMax is the dual of positive winning forMin.

Value-strategy problem and reduction to almost-sure winning. Given a threshold
λ, thevalue-strategyproblem for an objective asks whether there exists a strategy for
playerMax to ensure against all strategies of playerMin that the objective is satis-
fied with probability at leastλ. A strategy for playerMax is optimal if it ensures the
maximal valueλ (for stochastic mean-payoff parity games, optimal strategies are guar-
anteed to exist [18]). In this paper we focus on thealmost-sure winning problem, which
is to decide whether there exists an almost-sure winning strategy for playerMax for
a mean-payoff parity objective, that is the value-strategyproblem forλ = 1. While
for playerMax infinite-memory strategies are necessary [14], we will showthat for
playerMin positional strategies are sufficient, and that the almost-sure winning prob-
lem is inNP∩ coNP.



Remark 1.It follows from the results of [13, Lemma 7] and [18, Theorem 4.1] that
since mean-payoff parity objectives aretail objectives (independent of finite prefixes),
the memory requirement for optimal strategies of both players is the same as for almost-
sure winning strategies, and if the almost-sure winning problem is inNP∩ coNP, then
the value-strategy problem is also inNP∩ coNP. The details are as follows: The re-
sults of [13, Lemma 7] and [18, Theorem 4.1] show that for the quantitative analysis
of tail objectives it suffices to guess thevalue classes(where a value class forr, with
0 ≤ r ≤ 1, is the set of states with valuer), almost-sure winning witness in a modified
game for each value class, and then the verification problem requires the almost-sure
witness verification in each value class, and verification ofMDPs which is polynomial
time. SinceNP∩ coNP bound for the almost-sure problem imply polynomial witness
and polynomial-time verification for the witness, it follows (using the results of [13,18])
that theNP∩ coNP bound for almost-sure winning imply that there exists polynomial
witness and polynomial-time verification for quantitativeanalysis, and thereby estab-
lish theNP∩ coNP bound. Thus from our results it will follow that the value-strategy
problem is inNP∩ coNP for 2 1

2 -player mean-payoff parity games.

Positive attractors.Given a stochastic gameG, letU ⊆ S induce a subgameG[U ] with
probabilistic transition functionδ : U ×A → ∆(U). ForT ⊆ U , let fT : 2U → 2U be
the operator such that for allZ ⊆ U ,

fT (Z) = T ∪{s ∈ SMax ∩ U | ∃a ∈ A : δ(s, a)(Z) > 0}
∪ {s ∈ SMin ∩ U | ∀a ∈ A : δ(s, a)(Z) > 0} .

ThenAttrMax(T,G[U ]) is the least fixed point offT , called thepositive attractorfor
Max to T in G[U ]. It can be computed as the limit of the iteration(f i

T (∅))i∈N. There
exists a positional strategy forMax (referred to aspositive-attractorstrategy) to ensure
that from all states inAttrMax(T,G[U ]), the setT is reached within|U | steps with
positive probability. We defineAttrMin(T,G[U ]) as the positive attractor forMin in
an analogous way. An important property of positive attractors is that ifX is a positive
attractor forMax in G[U ], thenG[U\X ] is a subgame and it is a trap forMax. Analogous
statement holds forMin.

3 Characterization of the Almost-sure Winning Set

In this section we present the key lemmas that enable an inductive characterization of
certificates and a polynomial-time verification procedure for the existence of almost-
sure winning strategies, showing that the almost-sure winning problem is inNP for
stochastic games with mean-payoff parity objectives.

It follows from the results of [14] that finite-memory strategies are not suffi-
cient for Max and infinite-memory strategies are required for almost-sure winning.
We present polynomial witnesses and polynomial-time verification procedure for the
infinite-memory almost-sure winning strategies. The polynomial witnesses consists of
a trapU for playerMin that defines a subgame where all states are almost-sure winning
for playerMax, together with a certificate defined as an inductive decomposition of the
subgame induced byU constructed according to the parity of the largest priorityd in
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Figure 1. Stochastic gameG with largest priority even.

U . If d is even we refer to the certificate as aneven certificate, if d is odd as an odd
certificate.

Intuitive description.To present the intuition of the (inductive) certificates, weinfor-
mally explain some key properties in establishing that all states in a (sub)game are
almost-sure winning forMax. In figures, we denote states of playerMax by circles, and
states of playerMin by square boxes. Probability distributions over states areshown
by a diamond. We omit actions and assume that every outgoing edge from player-Max

and player-Min states corresponds to a different action. LetG be a (sub)game with state
spaceS where all states are almost-sure winning. Then, we describea certificate ac-
cording to the parity of the largest priorityd in G as follows.

1. If d is even (see Example 1 and Figure 1), letX = AttrMax(S(d),G) andY =
S \ X . An even certificate forG ensures that(1) in G all states are almost-sure
winning for the objectiveMean; and(2) in G[Y ] all states are almost-sure winning
for Max for the objectiveMean∩Par (using a certificate defined recursively in the
subgameG[Y ], which has at least one less priority as there is no priority-d state in
Y ). In other words, the even certificate consists of (i) a positional positive attractor
strategy inX for the targetS(d); (ii) a positional almost-sure winning strategy inG
for the mean-payoff objective; and (iii) a certificate forG[Y ]. We establish that the
above two conditions ensure that inG all states are almost-sure winning forMax for
the objectiveMean∩Par. An almost-sure winning strategy forMax is as follows: if
the current state is in the subgameG[Y ], then playerMax ignores the history of the
play up to the last state that was not inY , and uses an almost-sure winning strategy
in G[Y ] (such a strategy exists inG[Y ] by the certificate). If the opponent decides
to visit the positive attractorX , then playerMax switches to a (positional) positive-
attractor strategy for at most|S| steps. Then, either after|S| steps or before (e.g., if
a state with priorityd is reached), playerMax switches to an almost-sure winning
strategy forMean and plays it for a long finite time (that increases over the play).
After that, the play might be inY or in X , and playerMax restarts from scratch
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Figure 2. Stochastic gameG with largest priority odd.

the same process of playing. Intuitively, if the play keeps visiting X , then with
probability1 the positive-attractor strategy ensures infinitely many visits to a state
with priority d (thus the parity condition is satisfied), and the almost-sure winning
strategy forMean played for increasing number of steps ensures that the mean-
payoff objective is satisfied. On the other hand, if the play eventually stays inG[Y ]
forever, then the almost-sure winning strategy inG[Y ] ensures the mean-payoff
parity objective is satisfied with probability1 (since the objective is independent of
finite prefixes).

Example 1.Consider the stochastic gameG in Figure 1 where the largest priority
is 2. All states are almost-sure winning for theMean objective, and a positional
strategy for playerMax is as follows: for stateq1 choose the edge labeled reward 1;
and for stateq4 choose the edge toq3. The positive attractor forMax to the largest
priority is X = {q4, q7, q8}. In the subgame induced byY = {q1, q2, q3, q5, q6}
there is one less priority, and playerMin can decide to leave the subgame in states
q3 andq6. An (odd) certificate defined in the subgameG[Y ] witnesses that all states
in G[Y ] are almost-sure winning for the mean-payoff parity objective. Thus the
even certificate consists of the positional strategy forMean, the positive-attractor
strategy, and a certificate forG[Y ].

2. If d is odd (see Example 2 and Figure 2), an odd certificate is alayer-decomposition
of the state space ofG into non-empty setsR1, . . . , Rk andZ1, . . . , Zk defined
recursively as follows:(1)R1 ⊆ S \S(d) is a trap for playerMin in G that contains
no priority-d state, and such that all states inR1 are almost-sure winning forMax



for the objectiveMean∩Par (using a certificate defined recursively in the subgame
G[R1], which has at least one less priority since priorityd does not occur inR1),
(2) Z1 = AttrMax(R1,G) is the positive attractor for playerMax to R1 in G, and
(3) the setsR2 andZ2 are defined analogously in the subgameG[S \ Z1], and the
setsR3 andZ3 in the subgameG[S \Z2] whereZ2 = AttrMax(R2,G[S \Z1]), and
so on to obtain the layer-decomposition ofG. Such a decomposition must cover the
state space, and thus the setsZ1, . . . , Zk form a partition ofS (andk ≤ |S|). An
almost-sure winning strategy for playerMax is as follows: if the current state is in
a subgameRi, then playerMax ignores the history of the play up to the last state
that was not inRi, and uses an almost-sure winning strategy (that exists inRi by
the certificate). If the current state is inZi \Ri, then playerMax uses the positive-
attractor strategy defined inZi. We show that almost-surely, one of the setsRi is
never left from some point on, and then the almost-sure winning strategy inG[Ri]
ensures that the mean-payoff parity objective is satisfied with probability1 (since
the objective is independent of finite prefixes).

Example 2.Consider the stochastic gameG in Figure 2 where the largest priority
is 1. A layer-decomposition is shown whereR1 = {q1} is a trap of almost-sure
winning states forMax, andZ1 = {q1, q2} is the positive attractor toR1. In the
subgameG[S \ Z1], there is no edge fromq4 to q2, and it follows that the states in
R2 = {q3, q4} form a trap of almost-sure winning states in this subgame, and the
positive attractor toR2 isZ2 = R2∪{q5}. The last layer consists ofR3 = {q6, q7}
andZ3 = R3 ∪ {q8}. As this layer-decomposition covers the state space ofG, it
gives an odd certificate for playerMax.

Given the basic intuitions, we now present the formal proofs. We start with a basic
lemma, and then consider the two cases when the largest priority is even or odd.

Lemma 1. Let G be a stochastic mean-payoff game with state spaceS where all
states are almost-sure winning for the mean-payoff objective Mean. Then there ex-
ists a positional strategyσ for playerMax such that against all strategiesτ for Min,
for all s ∈ S and for all ǫ > 0, there existskǫ such that for allk ≥ kǫ we have

Pσ,τ
s

({

s0s1 . . . ∈ Sω |
∑k−1

i=0
1
k
· rwd(si, si+1) ≥ −ǫ

})

≥ 1− ǫ.

Lemma 2. LetG be a stochastic mean-payoff parity game with state spaceS and such
that the largest priorityd in G is even. LetX = AttrMax(S(d),G) andY = S \ X .
All states inG are almost-sure winning for playerMax with the mean-payoff parity
objectiveMean∩Par if and only if:

1. all states inG are almost-sure winning for the mean-payoff objectiveMean for
Max, and

2. all states inG[Y ] are almost-sure winning for the mean-payoff parity objective
Mean∩Par for Max.

Proof. Let G satisfy the conditions of the lemma. We first show that all states inG
are almost-sure winning forMax for the objectiveMean∩Par. Let σSub be an almost-
sure winning strategy forMean∩Par in the subgameG[Y ] induced byY , let σAttr be



a positional positive-attractor strategy toS(d) in G, and letσMean be an almost-sure
winning strategy forMean in G. LetW = maxs,s′∈S |rwd(s, s′)| be the largest absolute
reward and for everyj > 0, let ǫj = 1

j
and letKj = max

{

kǫj , j
2 ·W

}

wherekǫj is
defined in Lemma 1.

The strategyσ thatMax uses is played inroundsnumbered1, 2, · · · , and at round
i, the strategyσ is defined as follows:

Phase 1: (Mean-payoff phase). Letj be the length of the current play prefix until the
end of phase 3 of roundi − 1; then play according to the positional strategyσMean

for Kj steps. Switch to Phase2.
Phase 2: (Subgame phase). While the current playρ is in Y , let ρ′ be the suffix ofρ

obtained by ignoring the prefix ofρ up to the end of Phase 1 of the current round.
PlayσSub(ρ

′). If the play leavesY (and thus reachesX), then switch to Phase 3.
Phase 3: (Attractor phase). PlayσAttr for at most|S| steps, or until a state with pri-

ority d is reached, or the positive attractorX is left. Switch to Phase 1 in round
i+ 1.

We show thatσ is almost-sure winning for theMean∩Par objective. Consider the
following events:

A = {s0s1 · · · | ∃J ≥ 0 · ∀j ≥ J : sj ∈ Y } ,

B = {s0s1 · · · | ∀J ≥ 0 · ∃j ≥ J : sj ∈ X} .

Intuitively,A denotes that from some point on the play remains only in the subgame
Y (and thus the strategyσ remains forever in the subgame phase), andB denotes that
the setX (the positive attractor to priorityd) is visited infinitely often. Letτ be a
strategy forMin, then any play consistent with(σ, τ) belongs toA ∪ B and sinceA ∩
B = ∅ we havePσ,τ

s (A ∪ B) = Pσ,τ
s (A) + Pσ,τ

s (B) = 1. We now consider two cases
to establish thatσ is almost-sure winning.

1. (Under eventA). Observe that both parity and mean-payoff objectives are indepen-
dent of finite prefixes, and if a play belongs toA, then the finite prefix of the play
after which the play only visits states inY does not change the mean-payoff nor
the parity objective. SinceσSub is almost-sure winning in the subgame induced by
Y , it follows that for alls ∈ S and all strategiesτ of playerMin in G we have
Pσ,τ
s (Mean∩Par | A) = 1 (if Pσ,τ

s (A) 6= 0).
2. (Under eventB). We now reason under the eventB and show that both the parity

and the mean-payoff objectives are satisfied almost-surely. We first show that the
parity objective is satisfied almost-surely. Consider an arbitrary strategyτ for player
Min in G and a states ∈ S.

Parity objective almost-surely.Given the eventB, the strategy is in attractor mode
infinitely often. Given the strategy is in the attractor phase, the probability to reach
a priority-d state within the next|S| steps after the attractor mode starts is at least
x = (pmin)

|S| > 0, wherepmin is the minimum positive transition probability (i.e.,
pmin = min {δ(s, a)(t) > 0 | s, t ∈ S, a ∈ A}). It follows that if the strategy is
switchingk times to the attractor phase, then the probability not to visit the priority-
d set is at most(1 − x)k. The eventB ensures that the strategy is in the attractor



phase infinitely often, and thus the probability that given the eventB after some
point a priorityd state is not visited at all islimk→∞(1 − x)k = 0. Hence given
eventB, the best even priorityd is visited infinitely often almost-surely, ensuring
that the parity objective is satisfied, that is for alls ∈ S and all strategiesτ of player
Min in G we havePσ,τ

s (Par | B) = 1 (if Pσ,τ
s (B) 6= 0).

In other words, given that the positive attractor to a setT is visited infinitely often,
it follows that the setT is visited infinitely often with probability1, and we refer to
this property as thealmost-sure positive attractor property.
Mean-payoff objective almost-surely.We now prove that the mean-payoff objective
is almost-surely satisfied. Given the eventB, the strategyσ is in the mean-payoff
phase infinitely often. Consider the finite prefixes of playρ = s0 · · · sj+1 consistent
with (σ, τ) that are in the mean-payoff phase for the first time in the current round.
Then by the definition of the strategyσ, every play prefixρ′ = ρ · sj+1 · · · sj+i

consistent with(σ, τ) that extendsρ, for all 0 < i ≤ Kj, is in the mean-payoff
phase. The sum of the rewards for all prefixes of lengthj is at least−j · W and
then applying Lemma 1 we have

Pσ,τ
s











s0s1 · · · |
1

j +Kj

·

j+Kj
∑

i=0

rwd(si, si+1) ≥ −
ǫj ·Kj + j ·W

j +Kj







| Cone(ρ)



 ≥ 1−ǫj

By the choice ofKj (thatKj ≥ j2 · W ) andǫj = 1
j
, we have− ǫj ·Kj+j·W

j+Kj
≥

− ǫj·Kj

Kj
− j·W

j2·W ≥ − 2
j
. Consider the functionf that given a numberℓ returns the

maximum numberj such thatj+Kj ≤ ℓ. Note thatf is a non-decreasing function
and asℓ tends to∞, alsof(ℓ) tends to∞. Given the eventB, there are infinitely
many prefixesρ consistent with(σ, τ) that are in the mean-payoff phase for the first
time in the current round. Hence we have

lim sup
ℓ→∞

Pσ,τ
s

({

s0s1 · · · |
1

ℓ
·

ℓ
∑

i=0

rwd(si, si+1) ≥ −
2

f(ℓ)

}

| B

)

≥ lim sup
ℓ→∞

1−
1

f(ℓ)
= 1.

By Fatou’s lemma [2] we know that for an event sequenceEℓ we have that
lim supℓ→∞ P(Eℓ) ≤ P(lim supℓ→∞ Eℓ). Hence an application of the Fatou’s
lemma gives us that

Pσ,τ
s

(

lim sup
ℓ→∞

{

s0s1 · · · |
1

ℓ
·

ℓ
∑

i=0

rwd(si, si+1) ≥ −
2

f(ℓ)

}

| B

)

= 1.

Let ϕℓ =
{

s0s1 · · · |
1
ℓ
·
∑ℓ

i=0 rwd(si, si+1) ≥ − 2
f(ℓ)

}

andϕ = lim supℓ→∞ ϕℓ.

Consider a playρ = s0s1 · · · ∈ ϕ. Fix ǫ > 0, and considerℓ0 such that
2

f(ℓ0)
≤ ǫ. Sinceρ ∈ ϕ, there exists infinitely manyℓ ≥ ℓ0 such thatρ ∈ ϕℓ,

and hence for infinitely manyℓ we have1
ℓ
·
∑ℓ−1

i=1 rwd(si, si+1) ≥ −ǫ. Hence

lim supℓ→∞
1
ℓ
·
∑ℓ−1

i=1 rwd(si, si+1) ≥ −ǫ. Since this holds for allǫ > 0, it

follows that lim supℓ→∞
1
ℓ
·
∑ℓ−1

i=1 rwd(si, si+1) ≥ 0. In other words, we have
ϕ ⊆ Mean and hence for alls ∈ S and all strategiesτ of playerMin in G we have
Pσ,τ
s (Mean | B) = 1 (if Pσ,τ

s (B) 6= 0).



Thus given either eventA orB, the mean-payoff parity objective is satisfied almost-
surely. Note that if one of the event has probability 0, then the other has probability 1. It
follows that the mean-payoff parity objective is satisfied almost-surely. This concludes
one direction of the proof that if the conditions of the lemmaare satisfied, then almost-
sure winning forMean∩Par is ensured with probability1.

We now prove the converse. Consider a gameG such that all states in its state space
S are almost-sure winning for the objectiveMean∩Par for playerMax. First, observe
that sinceMean∩Par ⊆ Mean, almost-sure winning forMean∩Par implies almost-
sure winning forMean. This implies the first condition. Second, observe thatY is a
trap for playerMax. If playerMax does not have an almost-sure winning strategy for a
non-empty setZ ⊆ Y in the subgameG[Y ], then playerMax does not have an almost-
sure winning strategy fromZ in G, which contradicts that all states inG are almost-sure
winning. This proves the second condition of the lemma and completes the proof. ⊓⊔

Lemma 3. LetG be a stochastic mean-payoff parity game with state spaceS, and such
that the largest priorityd in G is odd. All states inG are almost-sure winning for the
objectiveMean∩Par if and only if there exists a partition{Zi}1≤i≤k of S and non-
empty setsRi, Ui for i = 1, . . . , k, andUk+1 such thatU1 = S and for all 1 ≤ i ≤
k: (1) Ri ⊆ Ui \ Ui(d) is a trap forMin in G[Ui], and all states inRi are almost-
sure winning for the objectiveMean∩Par in G[Ui]; (2) Zi = AttrMax(Ri,G[Ui]); and
(3)Ui+1 = Ui \ Zi.

Lemma 3 presents a characterization of the certificate for almost-sure winning when
the largest priority is odd. The key correctness argument uses the almost-sure positive
attractor property to show that the event that from some point on only states inRi are
visited for somei has probability 1. From the above fact and the almost-sure winning
strategies inRi we obtain an almost-sure winning strategy inG.

We remark that it follows from our proofs that the infinite-memory required by the
strategies can be captured in terms of counter-based strategies that keep track of the
number of steps that certain positional strategies need to be played.

4 Algorithm

In this section we present an algorithm for the almost-sure winning problem. LetG be
a stochastic mean-payoff parity game with largest priorityd. Our algorithm computes
the setR of almost-sure winning states forMax, by iterations that, from the state space
S of G remove positive winning states of playerMin. When a fixpoint is obtained, we
show that it satisfies the characterization of Lemma 2 and Lemma 3, hence it is the
almost-sure winning set. Starting withR = S, the algorithm considers two cases:

(a) If d is even: First, compute the almost-sure wining regionU for theMean objective
in G[R]. Compute the positive attractorX for playerMax to the set of states with
priority d in U , and letY be the complement. Recursively compute the almost-sure
winning regionR′ in G[Y ] for the mean-payoff parity objective, and iterate (until
R′ = Y ) in the subgame induced by the complementU \ Z of the player-Min

positive attractorZ = AttrMin(Y \R′,G[U ]) (i.e., removing some positive winning
states for playerMin).



(b) If d is odd: In each iteration of the main loop, the algorithm computes a set of
positive winning states for playerMin as the positive attractor (forMin) to the setU
computed in the inner loop. The inner loop computes inR′ the almost-sure winning
states of playerMax in the subgame induced by the complementY of player-Min

positive attractor to priorityd, using a recursive call. The positive attractor forMax

to R′ is removed, and the next iteration starts (ifR′ 6= ∅) with a strictly smaller
state spaceU . The main loop terminates when there is nothing to remove (U = ∅).

Correctness and termination.The correctness and termination of our algorithm (which
we refer to asAlgStMPP, algorithm for stochastic mean-payoff parity games) is estab-
lished using an argument by induction on the depth of the recursive calls, which are
always invoked with games that have at least one less priority than the current game,
and using Lemma 2 and Lemma 3.

The complexity ofAlgStMPP is exponential in the number of priorities in the game,
like the basic algorithm for parity games [28]. The key differences to the basic algorithm
for parity games are as follows: (i) in our algorithm there isan extra nested loop when
the maximum priority is odd; and (ii) in addition to the basicattractor computation
for parity games we also need to compute the almost-sure winning set for stochastic
mean-payoff games.

Theorem 1. Given a stochastic mean-payoff parity gameG with n states, probabilis-
tic transition functionδ, priorities in {0, 1, . . . , d − 1}, and largest absolute reward
W , AlgStMPP computes the almost-sure winning region ofG in time O(d · n2d ·
MeanGame(n, |δ|,W )) whereMeanGame(n, |δ|,W ) is the time complexity of solving
the almost-sure winning problem for stochastic games with only a mean-payoff objec-
tive.

Note thatMeanGame(n, |δ|,W ) ∈ |A|n · Poly(n, |δ|,W ) by simply enumerating
over all positional strategies and then solving in polynomial time the MDP obtained by
fixing the positional strategy.

5 Computational Complexity

In this section we establish theNP∩ coNP complexity bound for the almost-sure win-
ning problem.

The NP Membership. Although infinite-memory strategies are necessary for
playerMax to win mean-payoff parity games almost surely [14], we show that the
almost-sure winning problem can be solved inNP by guessing a polynomial-size de-
composition of the state space along with positional strategies that allow to construct an
almost-sure winning strategy, possibly with infinite memory. The polynomial certificate
is obtained from the characterization of Lemma 2 and Lemma 3;and the verification
procedure requires solving MDPs with mean-payoff parity objectives, which can be
done in polynomial time [11].

Lemma 4. The almost-sure winning problem for stochastic mean-payoff parity games
is in NP.



The coNP Membership. We show that positional strategies are sufficient for
playerMin to win positively in stochastic mean-payoff parity games. Using the fact
thatAlgStMPP maintains in variableR an over-approximation of the almost-sure win-
ning set for playerMax, we construct a positional strategy for playerMin from all states
that are removed fromR by the algorithm.

Lemma 5. To win positively in stochastic mean-payoff parity games, positional strate-
gies are sufficient for playerMin.

We then show how to use the positional strategy for positive winning to obtain a
positional strategy for almost-sure winning for playerMin. By Remark 1 it follows that
positional optimal strategies exist for playerMin. Lemma 4, the existence of positional
optimal strategies for playerMin, and the fact that MDPs with mean-payoff parity ob-
jectives can be solved in polynomial time [11], gives us the following result.

Theorem 2. The following assertions hold: (1) Positional optimal strategies exist for
playerMin in stochastic mean-payoff parity games (2) The almost-surewinning and
the value-strategy problem for stochastic mean-payoff parity games can be decided in
NP∩ coNP.

Remark 2.The complexity result of Theorem 2 matches the best known complexity for
stochastic mean-payoff games [22], stochastic parity games [15] (also see [1] for rela-
tionship of stochastic mean-payoff and stochastic parity games), and (non-stochastic)
mean-payoff parity games [12].

Concluding remarks. In this work we studied the computational and strategy complex-
ity of the value-strategy problem for2 1

2 -player mean-payoff parity games. In addition
we presented an algorithm for computing the almost-sure winning states which requires
the computation of the almost-sure winning states for2 1

2 -player mean-payoff games.
Improved algorithmic solutions for the computation of the almost-sure winning states
in 2 1

2 -player mean-payoff games is an interesting question. Our algorithm for almost-
sure winning and the general technique mentioned in Remark 1for 2 1

2 -player games
with tail objectives provide an exponential-time algorithm for the value-strategy prob-
lem. Whether more specialized algorithms (such as strategy-iteration algorithms) can
be developed for the value-strategy problem in2 1

2 -player mean-payoff parity games is
another interesting algorithmic question.
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