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Abstract—We consider two-player stochastic games played on
finite graphs with reachability objectives where the first player
tries to ensure a target state to be visited almost-surely (i.e., with
probability 1), or positively (i.e., with positive probability), no
matter the strategy of the second player.

We classify such games according to the information and the
power of randomization available to the players. On the basis of
information, the game can be one-sided with either (a) player 1, or
(b) player 2 having partial observation (and the other player has
perfect observation), or two-sided with (c) both players having
partial observation. On the basis of randomization, the players
(a) may not be allowed to use randomization (pure strategies),
or (b) may choose a probability distribution over actions but the
actual random choice is external and not visible to the player
(actions invisible), or (c) may use full randomization.

Our main results for pure strategies are as follows. (1) For
one-sided games with player 1 having partial observation we
show that (in contrast to full randomized strategies) belief-based
(subset-construction based) strategies are not sufficient, and we
present an exponential upper bound on memory both for almost-
sure and positive winning strategies; we show that the problem
of deciding the existence of almost-sure and positive winning
strategies for player 1 is EXPTIME-complete. (2) For one-sided
games with player 2 having partial observation we show that
non-elementary memory is both necessary and sufficient for
both almost-sure and positive winning strategies. (3) We show
that for the general (two-sided) case finite-memory strategies are
sufficient for both positive and almost-sure winning, and at least
non-elementary memory is required.

We establish the equivalence of the almost-sure winning
problems for pure strategies and for randomized strategies with
actions invisible. Our equivalence result exhibits serious flaws
in previous results of the literature: we show a non-elementary
memory lower bound for almost-sure winning whereas an expo-
nential upper bound was previously claimed.

Keywords-Partial-observation games, Stochastic games, Reach-
ability and Büchi objectives, Positive and Almost-sure winning,
Complexity, Memory bounds.

I. INTRODUCTION

Games on graphs. Two-player games on graphs play a

central role in several important problems in computer science,

such as controller synthesis [33], [35], verification of open

systems [2], realizability and compatibility checking [1], [21],

[18], and many others. Most results about two-player games

on graphs make the hypothesis of perfect observation (i.e.,

both players have perfect or complete observation about the

state of the game). This assumption is often not realistic in

practice. For example in the context of hybrid systems, the

controller acquires information about the state of a plant using

digital sensors with finite precision, which gives imperfect

information about the state of the plant [20], [26]. Similarly,

in a concurrent system where the players represent individual

processes, each process has only access to the public variables

of the other processes, not to their private variables [37],

[2]. Such problems are better modeled in the more general

framework of partial-observation games [36], [37], [38], [16],

[6] and have been studied in the context of verification and

synthesis [30], [2], [20], [45].

Partial-observation stochastic games and subclasses. In

two-player partial-observation stochastic games on graphs with

a finite state space, in every round, both players independently

and simultaneously choose actions which along with the

current state give a probability distribution over the successor

states in the game. In a general setting, the players may not

be able to distinguish certain states which are observationally

equivalent for them (e.g., if they differ only by the value of

private variables). The state space is partitioned into observa-

tions defined as equivalence classes and the players do not see

the actual state of the game, but only an observation (which is

typically different for the two players). The model of partial-

observation games we consider is the same as the model of

stochastic games with signals [6] and is a standard model

in game theory [39], [41]. It subsumes other classical game

models such as concurrent games [40], [19], probabilistic

automata [34], [32], and partial-observation Markov decision

processes (POMDPs) [31] (see also the recent decidability and

complexity results for probabilistic automata [3], [4], [5], [9],

[10], [11], [24] and for POMDPs [15], [3], [43]).

The special case of perfect observation for a player cor-

responds to every observation for this player being a sin-

gleton. Depending on which player has perfect observation,

we consider the following one-sided subclasses of the general

two-sided partial-observation stochastic games: (1) player-1
partial and player-2 perfect where player 2 has perfect obser-

vation, and player 1 has partial observation; and (2) player-

1 perfect and player-2 partial where player 1 has perfect

observation, and player 2 has partial observation. The case

where the two players have perfect observation corresponds

to the well-known perfect-information (perfect-observation)

stochastic games [40], [17], [19].

Note that in a given (two-sided) game G, if player 1 wins



in the setting of player-1 partial and player-2 perfect, then

player 1 wins in the game G as well. Analogously, if player 1
cannot win in the setting of player 1 perfect and player 2
partial, then player 1 does not win in the game G either. In

this sense, the one-sided games are conservative over- and

under-approximations of two-sided games. In the context of

applications in verification and synthesis, the conservative ap-

proximation is that the adversary is all powerful, and hence the

games with player 1 partial and player 2 perfect games provide

the important worst-case analysis of partial-observation games.

Objectives and qualitative problems. In this work we con-

sider partial-observation stochastic games with reachability

objectives where the goal of player 1 is to reach a set of

target states, and games with Büchi objectives where the

goal of player 1 is to visit some target state infinitely often.

The study of partial-observation games is considerably more

complicated than games of perfect observation. For example,

in contrast to perfect-observation games, strategies in partial-

observation games require both randomization and memory

for reachability objectives; and the quantitative problem of

deciding whether there exists a strategy for player 1 to ensure

that the target is reached with probability at least 1

2
can

be decided in NP ∩ coNP for perfect-observation stochastic

games [17], whereas the problem is undecidable even for

partial-observation stochastic games with only one player [32].

Since the quantitative problem is undecidable, we consider

the following qualitative problems: the almost-sure problem

for reachability (resp. Büchi) objectives asks whether there

exists a strategy for player 1 to ensure that the target set is

reached (resp. visited infinitely often) with probability 1; the

positive problem asks the same question, but requires positive

probability instead of probability 1. For Büchi objectives,

the positive problem is undecidable [3], and the almost-

sure problem is polynomially equivalent to the almost-sure

problem for reachability objectives [3]. Therefore, we discuss

reachability objectives, and the results for Büchi objectives

follow.

Classes of strategies. In general, randomized strategies are

necessary to win with probability 1 in a partial-observation

game with reachability objective [16]. However, there exist

two types of randomized strategies where either (i) actions are
visible, the player can observe the action he played [16], [6], or

(ii) actions are invisible, the player may choose a probability

distribution over actions, but the source of randomization

is external and the actual (random) choice of the action

is invisible to the player [25]. The second model is more

general since the qualitative problems of randomized strategies

with actions visible can be reduced in polynomial time to

randomized strategies with actions invisible, by modeling the

visibility of actions using the observations on states.

With actions visible, the almost-sure (resp. positive) prob-

lem was shown to be EXPTIME-complete (resp. PTIME-

complete) for one-sided games with player 1 partial and

player 2 perfect [16], and 2EXPTIME-complete (resp.

EXPTIME-complete) in the two-sided case [6]. For the posi-

tive problem memoryless randomized strategies exist, and for

the almost-sure problem belief-based strategies exist (strate-

gies based on subset construction that consider the possible

current states of the game). It was remarked (without any

proof) in [16, p.4] that these results easily extend to ran-

domized strategies with actions invisible for one-sided games

with player 1 partial and player 2 perfect. It was claimed

in [25] (Theorems 1 & 2) that the almost-sure problem is

2EXPTIME-complete for randomized strategies with actions

invisible for two-sided games, and that belief-based strategies

are sufficient for player 1. Thus it is believed that the two

qualitative problems with actions visible or actions invisible

are essentially equivalent.

Pure strategies and motivation. In this paper, we consider

the class of pure strategies, which do not use randomization

at all. Pure strategies arise naturally in the synthesis of

controllers and processes that do not have access to any

source of randomization, such as synchronizers for lock place-

ment in concurrent programs [8], and controllers for robot

planning [29]. Moreover we will establish deep connections

between the qualitative problems for pure strategies and for

randomized strategies with actions invisible, which on one

hand exhibit major flaws in previous results of the literature

(the remark without proof of [16] and the main results of [25]),

and on the other hand show that the solution for almost-sure

winning randomized strategies with actions invisible (which is

the most general case) can be surprisingly obtained by solving

the problem for pure strategies.

Contributions. The contributions of the paper are as follows.

1) Player 1 partial and player 2 perfect. We show that

both for almost-sure and positive winning, belief-based

pure strategies are not sufficient. This implies that the

classical approaches relying on the belief-based sub-

set construction cannot work for solving the qualitative

problems for pure strategies. However, we present an

optimal exponential upper bound on the memory needed

by pure strategies (the exponential lower bound follows

from the special case of non-stochastic games [7]). By

a reduction to perfect-observation games of exponential

size, we show that both the almost-sure and positive

problems are EXPTIME-complete for one-sided games

with perfect-observation for player 2. In contrast to the

previous proofs of EXPTIME upper bound that rely either

on subset constructions or enumeration of belief-based

strategies, our correctness proof relies on a novel rank-

based argument that works uniformly both for positive

and almost-sure winning. The structure of this construc-

tion also provides symbolic antichain-based algorithms

(see [22] for a survey of the antichain approach) for

solving the qualitative problems that avoids the explicit

exponential construction. Thus for the important special

case of player 1 partial and player 2 perfect we establish

optimal memory bound, complexity bound, and obtain

symbolic algorithmic solutions for the qualitative prob-

lems.



one-sided one-sided
two-sided

player 2 perfect player 1 perfect

Positive Almost-sure Positive Almost-sure Positive Almost-sure

Randomized Memoryless Exponential Memoryless Memoryless Memoryless Exponential

(actions visible) (belief-based) (belief-based)

Randomized Memoryless Exponential Memoryless Memoryless Memoryless Non-elem.

(actions invisible) (belief is not low. bound

sufficient) Finite

upp. bound

Pure Exponential Exponential Non-elem. Non-elem. Non-elem. Non-elem.

(belief is not (belief is not complete complete low. bound low. bound

sufficient) sufficient) Finite Finite

upp. bound upp. bound

TABLE I
MEMORY REQUIREMENT FOR PLAYER 1 AND REACHABILITY OBJECTIVE.

2) Player 1 perfect and player 2 partial.

a) We show a very surprising result that both for positive

and almost-sure winning, pure strategies for player 1
require memory of non-elementary size (i.e., a tower

of exponentials). This is in sharp contrast with (i) the

case of randomized strategies (with or without actions

visible) where memoryless strategies are sufficient for

positive winning, and with (ii) the previous case where
player 1 has partial observation and player 2 has

perfect observation, where pure strategies for positive

winning require only exponential memory. Surprisingly

and perhaps counter-intuitively when player 1 has

more information and player 2 has less information,

the positive winning strategies for player 1 require

much more memory (non-elementary as compared to

exponential). With more information player 1 can win

from more states, but the winning strategy is much

harder to implement.

b) We present a non-elementary upper bound for the

memory needed by pure strategies for positive winning.

We then show with an example that for almost-sure

winning more memory may be required as compared

to positive winning. Finally, we show how to combine

pure strategies for positive winning in a recharging

scheme to obtain a non-elementary upper bound for

the memory required by pure strategies for almost-sure

winning. Thus we establish non-elementary complete

bounds for pure strategies both for positive and almost-

sure winning.

3) General (two-sided) case. We show that in the gen-

eral case finite memory strategies are sufficient both

for positive and almost-sure winning. The result is ob-

tained essentially by a simple generalization of König’s

Lemma [28]. A non-elementary lower bound for memory

follows from the special case when player 1 has perfect

observation and player 2 has partial observation.

4) Randomized strategies with actions invisible. For random-

ized strategies with actions invisible we give two reduc-

tions to establish connections with pure strategies. First,

we show that the almost-sure problem for randomized

strategies with actions invisible reduces in polynomial

time to the almost-sure problem for pure strategies. The

reduction requires to first establish that finite-memory

randomized strategies are sufficient in two-sided games.

Second, we show that the problem of almost-sure winning

with pure strategies reduces in polynomial time to the

problem of randomized strategies with actions invisible.

For this reduction it is crucial that the actions are not

visible.

Our reductions have deep consequences. They unexpect-

edly imply that the problems of almost-sure winning

with pure strategies or randomized strategies with actions

invisible are polynomial-time equivalent. Moreover, it

follows that even in one-sided games with player 1 partial

and player 2 perfect, belief-based randomized strategies

with actions invisible are not sufficient for almost-sure

winning. This shows that the remark (without proof)

of [16] that the results (such as existence of belief-based

strategies) of randomized strategies with actions visible

carry over to actions invisible is an oversight. However

from our first reduction and our results for pure strategies

it follows that there is an exponential upper bound on

memory and the problem is EXPTIME-complete for one-

sided games with player 1 partial and player 2 perfect.

More importantly, our results exhibit a serious flaw1 in the

main result of [25] which showed that belief-based ran-

domized strategies with actions invisible are sufficient for

almost-sure winning in two-sided games, and concluded

that enumerating over such strategies yields a 2EXPTIME

algorithm for the problem. Our second reduction and

lower bound for pure strategies show that the result is

incorrect, and that the exponential (belief-based) upper

bound is far off. Instead, the lower bound on memory

for almost-sure winning with randomized strategies and

actions invisible is non-elementary. Thus, contrary to the

general belief, there is a sharp contrast for randomized

strategies with or without actions visible: if actions are

visible, then exponential memory is sufficient for almost-

sure winning while if actions are not visible, then memory

of non-elementary size is necessary in general.

The memory requirements are summarized in Table I and

the results of this paper are shown in bold font. We explain

1This flaw was presented in [13] to the authors of [25] and acknowledged
in August 2011.



how the other results of the table follow from results of

the literature. For randomized strategies (with or without

actions visible), if a positive winning strategy exists, then a

memoryless strategy that plays all actions uniformly at random

is also positive winning. Thus the memoryless result for

positive winning strategies follows for all cases of randomized

strategies. The belief-based bound for memory of almost-sure

winning randomized strategies with actions visible follows

from [16], [6]. The memoryless strategies results for almost-

sure winning for one-sided games with player 1 perfect and

player 2 partial are obtained as follows: when actions are

visible, then belief-based strategies coincide with memoryless

strategies as player 1 has perfect observation. If player 1 has

perfect observation, then for memoryless strategies whether

actions are visible or not is irrelevant and thus the memoryless

result also follows for randomized strategies with actions

invisible. Thus we obtain Table I. Proofs omitted due to lack

of space are available in a technical report released in July

2011 [13].

II. DEFINITIONS

A probability distribution on a finite set S is a function

κ : S → [0, 1] such that
∑

s∈S κ(s) = 1. The support of κ is

the set Supp(κ) = {s ∈ S | κ(s) > 0}. We denote by D(S)
the set of probability distributions on S. Given s ∈ S, the

Dirac distribution on s assigns probability 1 to s.

Games. Given finite alphabets Ai of actions for player i (i =
1, 2), a stochastic game on A1, A2 is a tuple G = 〈Q, q0, δ〉
where Q is a finite set of states, q0 ∈ Q is the initial state,

and δ : Q × A1 × A2 → D(Q) is a probabilistic transition

function that, given a current state q and actions a, b for the

players gives the transition probability δ(q, a, b)(q′) to the next
state q′. The game is called deterministic if δ(q, a, b) is a

Dirac distribution for all (q, a, b) ∈ Q × A1 × A2. A state

q is absorbing if δ(q, a, b) is the Dirac distribution on q for

all (a, b) ∈ A1 × A2. In some examples, we allow an initial

distribution of states. This can be encoded in our game model

by a probabilistic transition from the initial state.

A player-1 state is a state q where δ(q, a, b) = δ(q, a, b′) for
all a ∈ A1 and all b, b′ ∈ A2. We use the notation δ(q, a,−).
Player-2 states are defined analogously. In figures, we use

boxes to emphasize that a state is a player-2 state, and we

represent probabilistic branches using diamonds (which are

not real ‘states’, e.g., as in Fig. 1).

In a (two-sided) partial-observation game, the players have

a partial or incomplete view of the states visited and of the

actions played in the game. This view may be different for

the two players and it is defined by equivalence relations ≈i

on the states and on the actions (i = 1, 2). For player i,

equivalent states (or actions) are indistinguishable. We denote

by Oi ⊆ 2Q (i = 1, 2) the ≈i-equivalence classes of states

which define two partitions of the state space Q, and we call

them observations (for player i). These partitions uniquely

define functions obsi : Q → Oi such that q ∈ obsi(q) for all

q ∈ Q, that map each state q to its observation for player i.

In the case where all states and actions are equivalent (i.e.,

the relation ≈i is the set (Q×Q)∪ (A1 ×A1)∪ (A2 ×A2)),
we say that player i is blind and the actions are invisible.

In this case, we have Oi = {Q} because all states have the

same observation. Note that the case of perfect observation for

player i corresponds to the case Oi = {{q0}, {q1}, . . . , {qn}}
(given Q = {q0, q1, . . . , qn}), and a ≈i b iff a = b, for all

actions a, b.

For s ⊆ Q, a ∈ A1, and b ∈ A2, let Posta,b(s) =⋃
q∈s Supp(δ(q, a, b)) denote the set of possible successors of

q given action a and b, and let Posta,−(s) =
⋃

b∈A2
Posta,b(s).

Plays and observations. Initially, the game starts in the initial

state q0. In each round, player 1 chooses an action a ∈ A1,

player 2 (simultaneously and independently) chooses an action

b ∈ A2, and the successor of the current state q is chosen

according to the probabilistic transition function δ(q, a, b). A
play in G is an infinite sequence ρ = q0 a0b0 q1 a1b1 q2 . . .

such that q0 is the initial state and δ(qj , aj , bj)(qj+1) > 0 for

all j ≥ 0 (the actions aj’s and bj’s are the actions associated

to the play). Its length is |ρ| = ∞. The length of a play

prefix ρ = q0 a0b0 q1 . . . qk is |ρ| = k, and its last element is

Last(ρ) = qk. A state q ∈ Q is reachable if it occurs in some

play. We denote by Plays(G) the set of plays in G, and by

Prefs(G) the set of corresponding finite prefixes. For i = 1, 2,
the observation sequence for player i of a play (prefix) ρ is

the unique (in)finite sequence obsi(ρ) = γ0γ1 . . . such that

γj = obsi(qj) for all 0 ≤ j ≤ |ρ|.
The games with one-sided partial-observation are the spe-

cial case where either ≈1 is equality and hence O1 = {{q} |
q ∈ Q} (player 1 has complete observation) or ≈2 is equality

and hence O2 = {{q} | q ∈ Q} (player 2 has complete

observation). The games with perfect observation are the

special cases where ≈1 and ≈2 are equality, i.e., every state

and action is visible to both players.

Strategies. A pure strategy in G for player 1 is a function

σ : Prefs(G) → A1. A randomized strategy in G for player 1
is a function σ : Prefs(G) → D(A1). A (pure or randomized)

strategy σ for player 1 is observation-based if for all prefixes

ρ = q0 a0b0 q1 . . . and ρ′ = q′0 a′
0b

′
0 q′1 . . ., if aj ≈1 a′

j and

bj ≈1 b′j for all j ≥ 0, and obs1(ρ) = obs1(ρ
′), then σ(ρ) =

σ(ρ′). In the sequel, strategies are meant to be observation-

based in partial-observation games. If for all actions a and b

we have a ≈1 b iff a = b, and a ≈2 b iff a = b (all actions

are distinguishable), then the strategy is action visible, and if

for all actions a and b we have a ≈1 b and a ≈2 b (all actions

are indistinguishable), then the strategy is action invisible. We

say that a play (prefix) ρ = q0 a0b0 q1 . . . is compatible with

a pure (resp., randomized) strategy σ if the associated action

of player 1 in step j is aj = σ(q0 a0b0 . . . qj−1) (resp., aj ∈
Supp(σ(q0 a0b0 . . . qj−1))) for all 0 ≤ j ≤ |ρ|.
We omit analogous definitions of strategies for player 2.

We denote by ΣG, ΣO
G, ΣP

G, ΠG, ΠO
G, and ΠP

G the set of all

player-1 strategies, the set of all observation-based player-1
strategies, the set of all pure player-1 strategies, the set of

all player-2 strategies in G, the set of all observation-based



player-2 strategies, and the set of all pure player-2 strategies,

respectively.

Remark 1. The model of games with partial observation

on both actions and states can be encoded in a model of

games with actions invisible and observations on states only:

when actions are invisible, we can use the state space to keep

track of the last action played, and reveal information about

the last action played using observations on the states [25].

Therefore, in the sequel we assume that the actions are

invisible to the players with partial observation. A play is

then viewed as a sequence of states only, and the definition

of strategies is updated accordingly. Note that a player with

perfect observation has actions and states visible (and the

equivalence relation ≈i is equality).

Remark 2. The important special case of partial-observation

Markov decision processes (POMDP) corresponds to the

case where either all states in the game are player-1 states

(player-1 POMDP) or all states are player-2 states (player-2

POMDP). For POMDP it is known that randomization is not

necessary, and pure strategies are as powerful as randomized

strategies [14].

Finite-memory strategies. A player-1 strategy uses finite-

memory if it can be encoded by a deterministic transducer

〈Mem, m0, αu, αn〉 where Mem is a finite set (the memory

of the strategy), m0 ∈ Mem is the initial memory value,

αu : Mem × O1 → Mem is an update function, and

αn : Mem × O1 → D(A1) is a next-move function. The

size of the strategy is the number |Mem| of memory values. If

the current observation is o, and the current memory value is

m, then the strategy chooses the next action according to the

probability distribution αn(m, o), and the memory is updated

to αu(m, o). Formally, 〈Mem, m0, αu, αn〉 defines the strategy
σ such that σ(ρ · q) = αn(α̂u(m0, obs1(ρ)), obs1(q)) for all

ρ ∈ Q∗ and q ∈ Q, where α̂u extends αu to sequences of

observations as expected. This definition extends to infinite-

memory strategies by dropping the assumption that the set

Mem is finite. A strategy is memoryless if |Mem| = 1.

Objectives and winning modes. An objective (for player 1)
in G is a set ϕ ⊆ Plays(G) of plays. A play ρ ∈ Plays(G)
satisfies the objective ϕ, denoted ρ |= ϕ, if ρ ∈ ϕ. Objectives

are generally Borel measurable: a Borel objective is a Borel set

in the Cantor topology [27]. Given strategies σ and π for the

two players, the probabilities of a measurable objective ϕ is

uniquely defined [44]. We denote by Prσ,π
q0

(ϕ) the probability

that ϕ is satisfied by the play obtained from the starting state

q0 when the strategies σ and π are used.

We specifically consider the following well-known objec-

tives. Given a set T ⊆ Q of target states, the reachability

objective requires that the play visit the set T : Reach(T ) =
{q0a0b0q1 . . . ∈ Plays(G) | ∃i ≥ 0 : qi ∈ T }, and the Büchi

objective requires that the play visit the set T infinitely often,

Büchi(T ) = {q0a0b0q1 . . . ∈ Plays(G) | ∀i ≥ 0 · ∃j ≥ i : qj ∈
T }. Our solution for reachability objectives will also use the

dual notion of safety objectives that require the play to stay

q0

q1

q2

,

−, a

−, b

b,−

a,−

a,−

b,−

1/2

1/2

1/2

1/2

Fig. 1. Belief-based pure strategies are not sufficient for positive and almost-
sure reachability.

within the set T : Safe(T ) = {q0a0b0q1 . . . ∈ Plays(G) | ∀i ≥
0 : qi ∈ T }. In figures, the target states in T are double-lined

and labeled by ,.

Given a game structure G and a state q, an observation-

based strategy σ for player 1 is almost-sure winning (resp.

positive winning) for the objective ϕ from q if for all

observation-based randomized strategies π for player 2, we
have Prσ,π

q (ϕ) = 1 (resp. Prσ,π
q (ϕ) > 0). The strategy σ is

sure winning if all plays compatible with σ satisfy ϕ. We also

say that the state q is almost-sure (or positive, or sure) winning

for player 1.

Positive and almost-sure winning problems. We are interested

in the problems of deciding, given a game structure G, a

state q, and an objective ϕ, whether there exists a {pure,
randomized} strategy which is {almost-sure, positive} winning
from q for the objective ϕ. For safety objectives almost-sure

winning coincides with sure winning, however for reachability

objectives they are different. The sure winning problem for

the objectives we consider has been studied in [36], [16],

[12]. The almost-sure winning problem for Büchi objectives

can be easily reduced to the almost-sure winning problem for

reachability objectives [3]. The positive winning problem for

Büchi objectives is undecidable even for POMDPs [3]. Hence

in this paper we mostly focus on reachability objectives.

Remark 3. (Almost-sure Büchi to almost-sure reachabil-

ity [3]). The reduction of almost-sure Büchi to almost-sure

reachability is as follows: given a two-sided stochastic game

with Büchi objective Büchi(T ), we add a new absorbing state

qT , make qT the target state for the reachability objective,

and from every state q ∈ T we add positive probability

transitions to qT (details and correctness proof follow from [3,

Lemma 13]).

III. ONE-SIDED GAMES: PLAYER 1 PARTIAL AND

PLAYER 2 PERFECT

In Sections III and IV, we consider one-sided games with

partial observation: one player has perfect observation, and the

other player has partial observation. The player with perfect

observation sees the states visited and the actions played in

the game. We present the results for positive and almost-sure
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Fig. 2. Belief-based randomized action-invisible strategies are not sufficient
for almost-sure reachability.

winning for reachability objectives along with examples that

illustrate key elements of the problem such as the memory

required for winning strategies.

Note that the case of player 1 partial and player 2 perfect

is important in the context of controller synthesis as it is a

conservative approximation of two-sided games for player 1
(if player 1 wins in the one-sided game, then he also wins in

the two-sided game). In the following example we show that

for pure strategies belief-based strategies are not sufficient for

positive as well as almost-sure winning. A strategy is belief-

based if its memory relies only on the subset construction,

i.e., the strategy plays only depending on the set of possible

current states of the game which is called belief.

Example 1. Belief is not sufficient for positive (as well as

almost-sure) reachability. Consider the game in Fig. 1 where

player 1 is blind (all states have the same observation except

the target state, and actions are invisible) and player 2 has

perfect observation. Initially, player 2 chooses the state q1 or

q2 (which player 1 does not see). The belief of player 1 is thus

the set {q1, q2} (see Fig. 3). We claim that the belief is not a

sufficient information to win with a pure strategy for player 1
because the belief-based subset construction in Fig. 3 suggests

that playing always the same action (say a) when the belief

is {q1, q2} is an almost-sure winning strategy. However, in

the original game this is not even a positive winning strategy

(the counter strategy of player 2 is to choose q2 initially). A

winning strategy for player 1 is to alternate between a and

b when the belief is {q1, q2}, showing that remembering the

belief is not sufficient. �

We present reductions of the almost-sure and positive win-

ning problem for reachability objective to the problem of sure-

winning in a game of perfect observation with Büchi objective,

and reachability objective respectively. The two reductions are

based on the same construction of a game where the state space

L = {(s, o) | o ⊆ s ⊆ Q} contains the subset construction s

enriched with obligation sets o ⊆ s which ensure that from all

q0 q1, q2 ,
−, a

−, b

a,−

b,−

1/2

1/2

Fig. 3. A belief-based subset construction for the reachability game of Fig. 1.

states in s, the target set T is reached with positive probability.

The Büchi (resp. reachability) objective is to visit the empty

obligation set infinitely often (resp. at least once). Instead of

a naive solution which would keep track of all successors of

probabilistic choices, we use a rank-based argument on the

obligation set to show correctness of the construction. The

key argument considers arbitrary (possibly infinite-memory)

almost-sure winning strategy σ, and proves the existence of

a finite ranking in the infinite tree obtained from σ such that

target states have rank 0, the rank is strictly decreasing for

non-target states, and the root gets a finite rank.

The construction is as follows. Given G = 〈Q, q0, δ〉
over alphabets A1, A2 and observation set O1 for player 1,
with reachability objective Reach(T ), we construct the fol-

lowing (deterministic) game of perfect observation H =
〈L, ℓ0, δH〉 over alphabets A′

1, A
′
2 such that player 1 has a

pure observation-based almost-sure (resp., positive) winning

strategy in G from q0 if and only if player 1 has a sure

winning strategy in H from ℓ0 for the objective Büchi(α)
(resp., Reach(α)) defined by α ⊆ L where:

• L = {(s, o) | o ⊆ s ⊆ Q}. Intuitively, s is the belief of

player 1 and o is a set of obligation states that “owe” a

visit to T with positive probability.

• ℓ0 = ({q0}, {q0}) if q0 6∈ T , and ℓ0 = (∅, ∅) if q0 ∈ T ;

• A′
1 = A1 × 2Q. In a pair (a, u) ∈ A′

1, we call a the

action, and u the witness set;

• A′
2 = O1. In the game H , player 2 simulate player 2’s

choice in game G, as well as resolves the probabilistic

choices. This amounts to choosing a possible successor

state, and revealing its observation;

• α = {(s, ∅) ∈ L};
• δH is defined as follows. First, the state (∅, ∅) is absorb-

ing. Second, in every other state (s, o) ∈ L the function

δH ensures that (i) player 1 chooses a pair (a, u) such

that Supp(δ(q, a, b))∩u 6= ∅ for all q ∈ o and b ∈ A2, and

(ii) player 2 chooses an observation γ ∈ O1 such that

Posta,−(s)∩γ 6= ∅. If a player violates this, then a losing

absorbing state is reached with probability 1. Assuming

the above condition on (a, u) and γ is satisfied, define

δH((s, o), (a, u), γ) as the Dirac distribution on the state

(s′, o′) such that:

– s′ = (Posta,−(s) ∩ γ) \ T ;

– o′ = s′ if o = ∅; and o′ = (Posta,−(o) ∩ γ ∩ u) \ T if

o 6= ∅.

Lemma 1. Given a one-sided partial-observation stochastic

game G with player 1 partial and player 2 perfect with a

reachability objective for player 1, we can construct in time



exponential in the size of the game and polynomial in the

size of action sets a perfect-information deterministic game

H with a Büchi objective (resp. reachability objective) such

that player 1 has a pure almost-sure (resp. positive) winning

strategy in G iff player 1 has a sure-winning strategy in H .

It follows from the construction in the proof of Lemma 1

that pure strategies with exponential memory are sufficient for

positive (as well as almost-sure) winning, and the exponential

lower bound follows from the special case of non-stochastic

games [7]. Lemma 1 also gives EXPTIME upper bound for the

problem since perfect-observation Büchi games can be solved

in polynomial time [42]. The EXPTIME-hardness follows

from the sure winning problem for non-stochastic games [37],

where pure almost-sure (positive) winning strategies coincide

with sure winning strategies. Theorem 1 summarizes the

results, and note that by Remark 3 all the results of the theorem

for almost-sure winning also hold for Büchi objectives.

Theorem 1. Given one-sided partial-observation stochastic

games with player 1 partial and player 2 perfect, the following

assertions hold for reachability objectives for player 1:

1) (Memory bound). Belief-based pure strategies are not

sufficient both for positive and almost-sure winning;

exponential memory is necessary and sufficient both for

positive (memory of size
∑

γ∈O1
2|γ| is sufficient) and

almost-sure winning (memory of size
∑

γ∈O1
3|γ| is suf-

ficient) for pure strategies, where |γ| is the cardinality of
γ.

2) (Algorithm). The problems of deciding the existence of

a pure almost-sure and a pure positive winning strategy

can be solved in time exponential in the state space of

the game and polynomial in the size of the action sets.

3) (Complexity). The problems of deciding the existence of

a pure almost-sure and a pure positive winning strategy

are EXPTIME-complete.

Symbolic algorithms. The exponential Büchi (or reachability)

game constructed in the proof of Lemma 1 can be solved

by computing classical fixpoint formulas [23]. However, it

is not necessary to construct the exponential game structure

explicitly. Instead, we can exploit the structure induced by

the pre-order � defined by (s, o) � (s′, o′) if (i) s ⊆ s′,

(ii) o ⊆ o′, and (iii) o = ∅ iff o′ = ∅. Intuitively,

if a state (s′, o′) is winning for player 1, then all states

(s, o) � (s′, o′) are also winning because they correspond to a

better belief and a looser obligation. Hence all sets computed

by the fixpoint algorithm are downward-closed and thus they

can be represented symbolically by the antichain of their

maximal elements (see [16] for details related to antichain

algorithms). This technique provides a symbolic algorithm

without explicitly constructing the exponential game.

IV. ONE-SIDED GAMES: PLAYER 1 PERFECT AND

PLAYER 2 PARTIAL

Recall that we are interested in finding a pure winning

strategy for player 1. We present the key ideas of the main

three results for one-sided games with player 1 perfect and

player 2 partial.

Lower bound on memory. We present a family of games

where player 1 needs memory of non-elementary size to satisfy

both almost-sure and positive reachability. The key idea is that

player 1 needs to remember not only the possible current states

of the game (belief of player 2), but also how many paths that

player 2 cannot distinguish end up in each state. Then we show

that player 1 needs to simulate a counter system where the

operations on counters are increment and division by 2 (with

round down) which requires to store non-elementary values

of the counters in the worst case. The key challenge is to

construct a polynomial-size game to simulate non-elementary

counter values. We show how to use the partial observation of

player 2 to achieve this. This establishes the surprising non-

elementary lower bound. See [13, Theorem 2] for details.

Upper bound for positive reachability with almost-sure

safety. We show a matching non-elementary upper bound

for pure strategies to ensure positive reachability along with

almost-sure safety. We obtain the solution for positive reach-

ability as a special case and on the other hand it will be

required for solving almost-sure reachability. The result is

achieved in the following steps. First, we compute the set

of states from which player 1 can satisfy the objective with

a randomized action-visible strategy. Second, we show how

pure strategies can simulate randomized strategies by using the

stochasticity of the transition relation and the fact that player 2

cannot distinguish observationally-equivalent paths. This is the

main novel idea behind this proof. Finally, we show that if

the number of indistinguishable paths is non-elementary, then

player 1 achieves the full power of randomized action-visible

strategies and is winning using the computation of the first

step. The crux of the final step is to analyze a new class of

counter systems (with division by a constant and increment)

and show that counters with non-elementary value suffice.

See [13, Theorem 3] for details.

Upper bound for almost-sure reachability. We show an ex-

ample of a game where memoryless positive winning strategies

exist, but almost-sure winning strategies require memory [13,

Example 4]. We then present a construction of a pure almost-

sure winning strategy (when such a strategy exists) by repeat-

edly playing a strategy for positive reachability along with

almost-sure safety in a recharging scheme. As a consequence

we obtain a non-elementary upper bound on the memory size

of almost-sure winning strategies. Let QB be the set of states

such that if the belief of player 2 is a state in QB , then

against all strategies of player 1, player 2 can ensure that

with positive probability the target is not reached. Hence an

almost-sure winning strategy must ensure almost-sure safety

for the set QG = Q \QB . From QG player 1 can ensure both

positive reachability to the target as well as safety for the set

QG. We show that repeatedly playing a strategy for positive

reachability along with almost-sure safety is an almost-sure

winning strategy for the reachability objective (details in [13,

Theorem 4]). By Remark 3, the results of Theorem 2 and



Corollary 1 for almost-sure winning also hold for Büchi

objectives.

Theorem 2. In one-sided partial-observation stochastic

games with player 1 perfect and player 2 partial, the following

assertions hold:

1) Both pure almost-sure and pure positive winning strate-

gies for reachability objectives for player 1 require mem-

ory of non-elementary size in general.

2) Non-elementary size memory is sufficient for pure strate-

gies to ensure positive probability reachability along

with almost-sure safety for player 1; and hence for pure

positive winning strategies for reachability objectives for

player 1 non-elementary memory bound is optimal.

3) Non-elementary size memory is sufficient for pure strate-

gies to ensure almost-sure reachability for player 1; and

hence for pure almost-sure winning strategies for reach-

ability objectives for player 1 non-elementary memory

bound is optimal.

Corollary 1. In one-sided partial-observation stochastic

games with player 1 perfect and player 2 partial, the problem

of deciding the existence of pure almost-sure and positive

winning strategies for reachability objectives for player 1 can

be solved in non-elementary time complexity.

Discussion about the surprising non-elementary memory

bound. We now discuss the surprising non-elementary mem-

ory bound for positive winning with reachability objectives for

pure strategies in player-1 perfect player-2 partial stochastic

games, comparing it with other related questions. We consider

four related questions: two are related to stochasticity in

transitions and strategies, and the other two are related to the

information of the players (see also Fig. 4).

1) Question 1. If we consider player-1 perfect player-2

partial deterministic games with reachability objective,

then for positive winning pure memoryless strategies are

sufficient. This follows from the results of [36] because

in deterministic games positive winning coincides with

sure winning, and the results of [36] shows (see [16] for

an explicit proof) that for sure winning the observation

of player 2 is irrelevant. Hence the problem is same as

sure winning in perfect-information deterministic games

with reachability objective for which pure memoryless

strategies exist.

2) Question 2. If we consider player-1 perfect player-2

partial stochastic games with reachability objective, but

instead of pure strategies consider randomized strate-

gies, then memoryless strategies are sufficient. It follows

from [6] that if there is a randomized strategy to ensure

reachability with positive probability, then the random-

ized memoryless strategy that plays all actions uniformly

at random is also a positive winning strategy.

3) Question 3. If we consider perfect-information stochas-

tic games (both players have perfect information) with

reachability objective, then for positive winning pure

memoryless strategies are sufficient. This follows from

a more general result of [17] that in perfect-information

stochastic games with reachability objective, pure mem-

oryless optimal strategies exist.

4) Question 4. If we consider player-1 partial player-2

perfect stochastic games with reachability objective, then

for positive winning exponential memory pure strategies

are sufficient (by Theorem 1).

Observe that the question we study is a natural extension of

the above questions: (1) adding stochasticity to the transition

as compared to question 1; (2) restricting strategies to pure

strategies as compared to randomized strategies of question 2;

(3) player 2 is less informed as compared to question 3; and

(4) player 1 is more informed and player 2 is less informed as

compared to question 4. Our results show the natural variant

of question 1 and question 2 obtained by adding stochasticity

to transitions or removing stochasticity from strategies, and

the variant of question 3 and question 4 by making player 1

most well informed lead to a sunrising memory bound for

strategies (non-elementary complete memory bound, whereas

for all the related questions memoryless or exponential-size

memory strategies are sufficient). See also Fig. 4.

V. TWO-SIDED GAMES

We show the existence of finite-memory pure strategies for

positive and almost-sure winning in two-sided games.

Positive reachability with almost-sure safety. We show that

to ensure positive reachability along with almost-sure safety,

finite-memory strategies suffice. The proof is in two parts:

(1) we show that if there is an infinite-memory strategy σ,

then the strategy ensures positive reachability within a finite

number N of steps and almost-sure safety (the result is shown

by a simple extension of König’s Lemma [28]), and (2) then

a finite-memory strategy plays like σ for N steps and then

switches to a strategy for almost-sure safety (and for almost-

sure safety finite-memory strategies suffice [12]). See [13,

Theorem 5] for details.

Almost-sure reachability. The proof to show that finite-

memory strategies suffice for almost-sure winning is analogous

to the proof of the previous section for player 1 perfect and

player 2 partial, where an almost-sure winning strategy is con-

structed by repeatedly playing finite-memory strategies (of [13,

Theorem 5]) for positive reachability along with almost-sure

safety in a recharging scheme. See [13, Theorem 6] for details.

Theorem 3. In two-sided partial-observation stochastic

games finite memory is sufficient (and non-elementary memory

is required in general) for pure strategies both for positive and

almost-sure winning for reachability objectives for player 1.

VI. EQUIVALENCE OF RANDOMIZED ACTION-INVISIBLE

AND PURE STRATEGIES

In this section, we show that for two-sided partial-

observation games, the problem of almost-sure winning with

randomized action-invisible strategies is inter-reducible with

the problem of almost-sure winning with pure strategies. The

reductions are polynomial in the number of states in the
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Fig. 4. The surprising non-elementary bound for memory of pure strategies in one-sided partial-observation stochastic games for player 1 perfect and player 2

partial for positive winning with reachability objectives (Theorem 2).

game (the reduction from randomized to pure strategies is

exponential in the number of actions).

Reduction of randomized action-invisible strategies to pure

strategies. We give a reduction for almost-sure winning for

randomized action-invisible strategies to pure strategies. Given

a stochastic game G we will construct another stochastic game

H such that there is a randomized action-invisible almost-sure

winning strategy in G iff there is a pure almost-sure winning

strategy in H . The idea of the reduction is as follows: in the

game H , player 1 can choose a non-empty subset A ⊆ A1

of actions, and the probabilistic transition function in H is

as follows: for q ∈ Q, A ⊆ A1 and b ∈ A2, we have

δH(q, A, b)(q′) = 1

|A| ·
∑

a∈A δ(q, a, b)(q′). The observation

mapping is same as in G. Further details in [13, Section 6.1]

establish the following theorem and corollary.

Theorem 4. Given a two-sided (resp. one-sided) partial-

observation stochastic game G with a reachability objective

we can construct in time polynomial in the size of the game

and exponential in the size of the action sets a two-sided (resp.

one-sided) partial-observation stochastic game H such that

there exists a randomized action-invisible almost-sure winning

strategy in G iff there exists a pure almost-sure winning

strategy in H .

For positive winning, randomized memoryless strategies are

sufficient (both for action-visible and action-invisible) and the

problem is PTIME-complete for one-sided and EXPTIME-

complete for two-sided [6]. The above theorem along with

Theorem 1 gives us the following corollary.

Corollary 2. Given one-sided partial-observation stochastic

games with player 1 partial and player 2 perfect, the follow-

ing assertions hold for reachability objectives for player 1.

(1) Exponential memory is sufficient for randomized action-

invisible strategies for almost-sure winning. (2) The existence

of a randomized action-invisible almost-sure winning strategy

can be decided in time exponential in the state space of the

game and exponential in the size of the action sets. (3) The

problem of deciding the existence of a randomized action-

invisible almost-sure winning strategy is EXPTIME-complete.

Reduction of pure strategies to randomized action-invisible

strategies. We present a reduction for almost-sure winning

with pure strategies to randomized action-invisible strategies.

Given a stochastic game G we construct another stochastic

game H such that there exists a pure almost-sure winning

strategy in G iff there exists a randomized almost-sure winning

strategy in H . The idea of the reduction is to force player 1
to play a pure strategy in H . The game H simulates G and

requires player 1 to repeat each action played (i.e., to play

each action two times). Then, if player 1 uses randomization,

he has to repeat the actions chosen randomly in the previous

step. Since the actions are invisible, this can be achieved only

if the support of the randomized actions is a singleton, i.e., the

strategy is pure. Note that the reduction works for randomized

strategies with actions invisible, and not when the actions are

visible (details in [13, Section 6.2]).

Theorem 5. Given a two-sided partial-observation stochastic

game G with a reachability objective we can construct in time

polynomial in the size of the game and size of the action

sets a two-sided partial-observation stochastic game H such

that there exists a pure almost-sure winning strategy in G iff

there exists a randomized action-invisible almost-sure winning

strategy in H .

Belief-based strategies are not sufficient. We illustrate our

reduction with the following example that shows belief-based

(belief-only) randomized action-invisible strategies are not

sufficient for almost-sure reachability in one-sided partial-

observation games (player 1 partial and player 2 perfect),



showing that a remark (without proof) of [16, p.4] and the

result and construction of [25, Theorem 1] are wrong.

Example 2. We illustrate the reduction on the example of

Fig. 1. The result of the reduction is given in Fig. 2. Remember

that Example 1 showed that belief-based pure strategies are

not sufficient for almost-sure winning. We show that belief-

based randomized strategies are not sufficient for almost-sure

winning in the game of Fig. 2. First, in {q1, q2} player 1 has to

play pure since he has to be able to repeat the same action to

avoid reaching a sink state / with positive probability. Now,

the argument is the same as in Example 1: playing always

the same action (either a or b) in {q1, q2} is not even positive

winning as player 2 can choose either q2 or q1. �

Note that our reduction preserves the structure and memory

of almost-sure winning strategies, hence the non-elementary

lower bound given in Theorem 3 for pure strategies also holds

for randomized action-invisible strategies.

Corollary 3. For one-sided partial-observation stochastic

games, with player 1 partial and player 2 perfect, belief-

based randomized action-invisible strategies are not sufficient

for almost-sure winning for reachability objectives. For two-

sided partial-observation stochastic games, memory of non-

elementary size is necessary in general for almost-sure win-

ning for randomized action-invisible strategies for reachability

objectives.
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