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44:2 Observation and Distinction

1 Introduction25

Uncertainty is a main concern in strategic interaction. Decisions of agents are based on26

their knowledge about the system state, and that is often limited. The challenge grows in27

dynamical systems, where the state changes over time, and it becomes severe, when the28

dynamics unravels over infinitely many stages. In this context, one fundamental question is29

how to model knowledge and the way it changes as information is acquired along the stages30

of the system run.31

Finite-state automata offer a solid framework for the analysis of systems with infinite32

runs. They allow to reason about infinite state spaces in terms of finite ones – of course, with33

a certain loss. The connection has proved to be extraordinarily successful in the study of34

infinite games on finite graphs, in the particular setting of perfect information assuming that35

players are informed about every move in the play history, which determines the actual state36

of the system. One key insight is that winning strategies, in this setting, can be synthesized37

effectively [6, 23]: for every game described by finite automata, one can describe the set38

of winning strategies by an automaton (over infinite trees) and, moreover, construct an39

automaton (a finite-state Moore machine) that implements a winning strategy.40

In this paper, we discuss two approaches for modelling imperfect information, where, in41

contrast to the perfect-information setting, it is no longer assumed that the decision maker42

is informed about the moves that occurred previously in the play history.43

The first, more standard approach corresponds to viewing information as a result of44

an observation process that may be imperfect in the sense that different moves can yield45

the same observation in a stage of the game. Here, we propose a second approach, which46

corresponds to representing information as a state of knowledge, by describing which histories47

are indistinguishable to the decision maker.48

Concretely, we assume a setting of synchronous games with perfect recall in a partitional49

information model. Plays proceed in infinitely many stages, each of which results in one move50

from a finite range. Histories and plays are thus determined as finite or infinite sequences of51

moves, respectively.52

To represent information partitions, we consider two models based on finite-state automata.53

In the observation-based model, which corresponds to the standard approach in computing54

science and non-cooperative game theory, the automaton is a sequential Mealy machine that55

inputs moves and outputs observations from a finite alphabet. The machine thus describes56

an observation function, which maps any history of moves to a sequence of observations57

that represents its information set. In the indistinguishability-based model, we use two-tape58

automata to describe which pairs of histories belong to the same information set.59

As an immediate insight, we point out that, in the finite-state setting, the standard model60

based on observation functions is less expressive than the one based on indistinguishability61

relations. Intuitively, this is because observation functions can only yield a bounded amount62

of information in each round – limited by the size of the observation alphabet, whereas63

indistinguishability relations can describe situations where the amount of information received64

per round grows unboundedly as the play proceeds.65

We investigate the question whether an information partition represented as (an indis-66

tinguishability relation given by) a two-tape automaton admits a representation as (an67

observation function given by) a Mealy machine. We show that this question is decidable,68

using results from the theory of word-automatic structures. We also present a procedure69

for constructing a Mealy machine that represents a given indistinguishability relation as an70

observation function, whenever this is possible.71
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2 Basic Notions72

2.1 Finite automata73

To represent components of infinite games as finite objects, finite-state automata offer a74

versatile framework (see [13], for a survey). Here, we use automata of two different types,75

which we introduce following the notation of [22, Chapter 2].76

As a common underlying model, a semi-automaton is a tuple A = (Q,Γ, qε, δ) consisting77

of a finite set Q of states, a finite input alphabet Γ, a designated initial state qε ∈ Q, and78

a transition function δ : Q × Γ → Q. We define the size |A| of A to be the number of its79

transitions, that is |Q| · |Γ|. To describe the internal behaviour of the semi-automaton we80

extend the transition function from letters to input words: the extended transition function81

δ : Q× Γ∗ → Q is defined by setting, for every state q ∈ Q,82

δ(q, ε) := q for the empty word ε, and83

δ(q, τc) := δ(δ(q, τ), c), for any word obtained by the concatenation of a word τ ∈ Γ∗ and84

a letter c ∈ Γ.85

On the one hand, we use automata as acceptors of finite words. A deterministic finite86

automaton (for short, dfa) is a tuple A = (Q,Γ, qε, δ, F ) expanding a semi-automaton by87

a designated subset F ⊆ Q of accepting states. We say that a finite input word τ ∈ Γ∗ is88

accepted by A from a state q if δ(q, τ) ∈ F . The set of words in Γ∗ that are accepted by A89

from the initial state qε forms its language, denoted L(A) ⊆ Γ∗.90

Thus, a dfa recognises a set of words. By considering input alphabets over pairs of letters91

from a basis alphabet Γ, the model can be used to recognise synchronous relations over Γ,92

that is, relations between words of the same length. We refer to a dfa over an input alphabet93

Γ× Γ as a two-tape dfa. The relation recognised by such an automaton consists of all pairs94

of words c1c2 . . . c`, c
′
1c
′
2 . . . c

′
` ∈ Γ∗ such that (c1, c

′
1)(c2, c

′
2) . . . (c`, c′`) ∈ L(A). With a slight95

abuse of notation, we also denote this relation by L(A). We say that a synchronous relation96

is regular if it is recognised by a dfa.97

On the other hand, we consider automata with output. A Mealy automaton is a tuple98

(Q,Γ,Σ, qε, δ, λ) where (Q,Γ, qε, δ) is a semi-automaton, Σ is a finite output alphabet, and99

λ : Q×Γ→ Σ is an output function. To describe the external behaviour of such an automaton,100

we define the extended output function λ : Γ∗ × Γ → Σ by setting λ(τ, c) := λ(δ(qε, τ), c)101

for every word τ ∈ Γ∗ and every letter c ∈ Γ. Thus, the external behaviour of a Mealy102

automaton defines a function from the set Γ+ := Γ∗ \ {ε} of nonempty histories to Σ. We103

say that a function on Γ+ is regular, if there exists a Mealy automaton that defines it.104

2.2 Repeated games with imperfect information105

In our general setup, we consider games played in an infinite sequence of stages. In each106

stage, every player chooses an action from a given set of alternatives, independently and107

simultaneously. As a consequence, this determines a move that is recorded in the play history.108

Then, the game proceeds to the next stage. The outcome of the play is thus an infinite109

sequence of moves.110

Decisions of a player are based on the available information, which we model by a partition111

of the set of play histories into information sets: at the beginning of each stage game, the112

player is informed of the information set to which the actual play history belongs (in the113

partition associated to the player). Accordingly, a strategy for a player is a function from114

information sets to actions. Every strategy profile (that is, a collection of strategies, one for115

each player) determines a play.116

STACS 2020
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Basic questions in this setup concern strategies of an individual player to enforce an117

outcome in a designated set of winning plays or to maximise the value of a given payoff118

function, regardless of the strategy of other players. More advanced issues target joint119

strategies of coalitions among players towards coordinating on a common objective, or120

equilibrium profiles. Scenarios where the available actions depend on the history, or where121

the play might end after finitely many stages, can be captured by adjusting the information122

partition together with the payoff or winning condition.123

For our formal treatment of information structures, we use the model of abstract infinite124

games as introduced by Thomas in his seminal paper on strategy synthesis [26]; the relevant125

questions for more elaborate settings, such as infinite games on finite graphs or concurrent126

game structures can be reduced easily to this abstraction. The underlying model is consistent127

with the classical definition of extensive games with information partitions and perfect recall128

due to von Neumann and Morgenstern [28], in the formulation of Kuhn [15]. For a more129

detailed account on partitional information, we refer to Bacharach [1] and Geanakoplos [11].130

Our formalisation captures the information structures of repeated games with imperfect131

monitoring as studied in non-cooperative game theory (see the survey of Gossner and132

Tomala [12]), and of infinite games with partial observation on finite-state systems as studied133

in computing science (see Reif [25], Lin and Wonham [18], van der Meyden and Wilke [27],134

Chatterjee et al. [7], Berwanger et al. [3]). For background on the modelling of knowledge,135

and the notion of synchronous perfect recall we refer to Chapter 8 in the book of Fagin et136

al. [9].137

2.2.1 Move and information structure138

As a basic object for describing a game, we fix a finite set Γ of moves. A play is an139

infinite sequence of moves π = c1c2 . . . ∈ Γω. A history (of length `) is a finite prefix140

τ = c1c2 . . . c` ∈ Γ∗ of a play; the empty history ε has length zero. The move structure of141

the game is the set Γ∗ of histories equipped with the successor relation, which consists of all142

pairs (τ, τc) for τ ∈ Γ∗ and c ∈ Γ. For convenience, we denote the move structure of a game143

on Γ simply by Γ∗ omitting the (implicitly defined) successor relation.144

The information available to a player is modeled abstractly by a partition U of the set Γ∗145

of histories; the parts of U are called information sets (of the player). The intended meaning146

is that if the actual history belongs to an information set U , then the player considers every147

history in U possible. The particular case where all information sets in the partition are148

singletons characterises the setting of perfect information.149

The information structure (of the player) is the quotient Γ∗/U of the move structure by150

the information partition. That is, the first-order structure on the domain consisting of the151

information sets, with a binary relation connecting two information sets (U,U ′) whenever152

there exists a history τ ∈ U with a successor history τc ∈ U ′. Generally, we assume the153

perspective of just one player, so we simply refer to the information structure of the game.154

Our information model is synchronous, which means, intuitively, that the player always155

knows how many stages have been played. Formally, this amounts to asserting that all156

histories in an information set have the same length; in particular the empty history forms157

a singleton information set. Further, we assume that the player has perfect recall — he158

never forgets what he knew previously. Formally, if an information set contains nonempty159

histories τc and τ ′c′, then the predecessor history τ is in the same information set as τ ′.160

In different terms, an information partition satisfies synchronous perfect recall if whenever161

a pair of histories c1 . . . c` and c′1 . . . c′` belongs to an information set, then for every stage162

t ≤ `, the prefix histories c1 . . . ct and c′1 . . . c′t belong to the same information set. As a direct163
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Figure 1 A Mealy automaton and a two-tape dfa over alphabet Γ = {a, b} describing the same
information partition (the symbol ∗ stands for {a, b})

consequence, the information structures that arise from such partitions are indeed trees.164

I Lemma 1. For every information partition U of perfect synchronous recall, the information165

structure Γ∗/U is a directed tree.166

We will use the term information tree when referring to the information structure167

associated with an information partition with synchronous perfect recall.168

In the following, we discuss two alternative representations of information partitions.169

2.2.2 Observation170

The first alternative consists in describing the information received by the player in each stage.171

To do so, we specify a set Σ of observation symbols and an observation function β : Γ+ → Σ.172

Intuitively, the player observes at every nonempty history τ the symbol β(τ); under the173

assumption of perfect recall, the information available to the player at history τ = c1c2 . . . c`174

is thus represented by the sequence of observations β(c1)β(c1c2) . . . β(c1 . . . c`), which we call175

observation history (at τ); let us denote by β̂ : Γ∗ → Σ∗ the function that returns, for each176

play history, the corresponding observation history.177

The information partition Uβ represented by an observation function β is the collection178

of sets Uη := {τ ∈ Γ∗ | β̂(τ) = η} indexed by observation histories η ∈ β̂(Γ∗). Clearly,179

information partitions described in this way verify the conditions of synchronous perfect recall:180

each information set Uη consists of histories of the same length (as η), and for every pair τ, τ ′181

of histories with different observations β̂(τ) 6= β̂(τ ′), and every pair of moves c, c′ ∈ Γ, the182

observation history of the successors τc and τ ′c′ will also differ β̂(τc) 6= β̂(τ ′c′).183

To describe observation functions by a finite-state automaton, we fix a finite set Σ of184

observations and specify a Mealy automatonM = (Q,Γ,Σ, qε, δ, λ), with moves from Γ as185

input and observations from Σ as output. Then, we consider the extended output function186

ofM as an observation function βM : Γ+ → Σ.187

To illustrate, Figure 1a shows a Mealy automaton defining an observation function. The188

input alphabet is the set Γ = {a, b} of moves, and the output alphabet is the set {1, 2} of189

observations. For example, the histories abb and bba map to the same observation sequence,190

STACS 2020
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namely 111, thus they belong to the same information set; the information partition on191

histories of length 2 is {aa, ab, bb}, {ba}.192

This formalism captures the standard approach for describing information in finite-state193

systems (see, e.g., Reif [25], Lin and Wonham [18], Kupferman and Vardi [16], van der194

Meyden and Wilke [27]).195

2.2.3 Indistinguishability196

As a second alternative, we represent information partitions as equivalence relations between197

histories, such that the equivalence classes correspond to information sets. Intuitively, a198

player cannot distinguish between equivalent histories.199

We say that an equivalence relation is an indistinguishability relation if the represented200

information partition satisfies the conditions of synchronous perfect recall. The following201

characterisation simply rephrases the relevant conditions for partitions in terms of equivalence202

relations.203

I Lemma 2. An equivalence relation R ⊆ Γ∗ × Γ∗ is an indistinguishability relation if, and204

only if, it satisfies the following properties:205

(1) For every pair (τ, τ ′) ∈ R, the histories τ, τ ′ are of the same length.206

(2) For every pair of histories τ, τ ′ ∈ R of length `, every pair (ρ, ρ′) of histories of length t ≤ `207

that occur as prefixes of τ, τ ′, respectively, is also related by (ρ, ρ′) ∈ R.208

As a finite-state representation, we will consider indistinguishability relations recognised209

by two-tape automata. To illustrate, Figure 1b shows a two-tape automaton that defines210

the same information partition as the Mealy automaton of Figure 1a. Here and throughout211

the paper, the state qrej represents a rejecting sink state. For example, the pair of words212

τ1, τ2 where τ1 = abb and τ2 = bba is accepted by the automaton (the state q1 is accepting),213

meaning that the two words are indistinguishable.214

Given a two-tape automaton A = (Q,Γ× Γ, qε, δ, F ), the recognised relation L(A) is, by215

definition, synchronous and hence satisfies condition (1) of Lemma 2. To decide whether A216

indeed represents an indistinguishability relation, we can use standard automata-theoretic217

techniques to verify that L(A) is an equivalence relation, and that it satisfies the perfect-recall218

condition (2) of Lemma 2.219

I Lemma 3. The question whether a given two-tape automaton recognises an indistinguishab-220

ility relation with perfect recall is decidable in polynomial (actually, cubic) time.221

The idea of using finite-state automata to describe information constraints of players in222

infinite games has been advanced in a series of work by Maubert and different coauthors [20,223

21, 5, 8], with the aim of extending the classical framework of temporal logic and automata224

for perfect-information games to more expressive structures. In the general setup, the225

formalisism features binary relations between histories that can be asynchronous and may226

not satisfy perfect recall. The setting of synchronous perfect recall is adressed as a particular227

case described by a one-state automaton that compares observation sequences rather than228

move histories. This allows to capture indistinguishability relations that actually correspond229

to regular observation functions in our setup.230

Another approach of relating game histories via automata has been proposed recently231

by Fournier and Lhote [10]. The authors extend our framework to arbitrary synchronous232

relations, which are not necessarily prefix closed – and thus do not satisfy perfect recall.233
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2.2.4 Equivalent representations234

In general, any partition of a set X can be represented either as an equivalence relation235

on X —equating the elements of each part— or as a (complete) invariant function, that236

is a function f : X → Z such that f(x) = f(y) if, and only if, x, y belong to the same237

part. Thus equivalence relations and invariant functions represent different faces of the same238

mathematical object. The correspondence is witnessed by the following canonical maps.239

For every function f : X → Z, the kernel relation ker f := {(x, y) ∈ X×X | f(x) = f(y)}240

is an equivalence. Given an equivalence relation ∼ ⊆ X×X, the quotient map [ · ]∼ : X → 2X ,241

which sends each element x ∈ X to its equivalence class [x]∼ := {y ∈ X | y ∼ x}, is a242

complete invariant function for ∼. Notice that the kernel of the quotient map is just ∼.243

For the case of information partitions with synchronous perfect recall, the above corres-244

pondence relates indistinguishability relations and observation-history functions.245

I Lemma 4. If β : Γ∗ → Σ is an observation function, then ker β̂ is an indistinguishability246

relation that describes the same information partition. Conversely, if ∼ is an indistin-247

guishability relation, then the quotient map is an observation function that describes the same248

information partition.249

Accordingly, every information partition given by an indistinguishability relation can be250

alternatively represented by an observation function, and vice versa. However, if we restrict251

to finite-state representations, the correspondence might not be preserved. In particular, as252

the quotient map of any indistinguishability relation on Γ∗ has infinite range (histories of253

different length are always distinguishable), it is not definable by a Mealy automaton, which254

has finite output alphabet.255

3 Observation is Weaker than Distinction256

Firstly, we shall see that for every regular observation function the corresponding indistin-257

guishability relation is also regular.258

I Proposition 5. For every observation function β given by a Mealy automaton of size m, we259

can construct a two-tape dfa of size O(m2) that defines the corresponding indistinguishability260

relation ker β̂.261

Proof. To construct such a two-tape automaton, we run the given Mealy automaton on262

the two input tapes simultaneously, and send it into a rejecting sink state whenever the263

observation output on the first tape differs from the output on the second tape. Accordingly,264

the automaton accepts a pair (τ, τ ′) ∈ (Γ× Γ)∗ of histories, if and only if, their observation265

histories agree β̂(τ) = β̂(τ ′). J266

The statement of Proposition 5 is illustrated in Figure 1 where the structure of the267

two-tape dfa of Figure 1b is obtained as a product of two copies of the Mealy automaton in268

Figure 1a, where q1 = (p1, p1), q2 = (p2, p2), q3 = (p1, p2), and q4 = (p2, p1).269

For the converse direction, however, the model of imperfect information described by270

regular indistinguishability relations is strictly more expressive than the one based on regular271

observation functions.272

I Lemma 6. There exists a regular indistinguishability relation that does not correspond to273

any regular observation function.274

STACS 2020
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q1 q2

q3 ×

× = qrej
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Figure 2 A two-tape dfa defining an indistinguishability relation that does not correspond
to any regular observation function (the symbol = stands for {a

a, b
b, c

c}, the symbol 6= stands for
{x

y ∈ Γ× Γ | x 6= y}, and the symbol ∗ stands for {a, b, c})

Proof. As a simple example, consider a move alphabet with three letters Γ := {a, b, c}, and275

let ∼ ∈ Γ∗ × Γ∗ relate two histories τ, τ ′ whenever they are equal or none of them contains276

the letter c. This is an indistinguishability relation, and it is recognised by the two-tape277

automaton of Figure 2.278

We argue that the induced information tree has unbounded branching. All histories279

of the same length n that do not contain c are indistinguishable, hence Un = {a, b}n is280

an information set. However, for every history w ∈ Un the history wc forms a singleton281

information set. Therefore Un has at least 2n successors, for every n.282

However, for any observation function, the degree of the induced information tree is283

bounded by the size of the observation alphabet. Hence, the information partition described284

by ∼ cannot be represented by an observation function of finite range and so, a fortiori, not285

by any regular observation function. J286

4 Which Distinctions Correspond to Observations287

We have just seen, as a necessary condition for an indistinguishability relation to be repres-288

entable by a regular observation function, that the information tree needs to be of bounded289

branching. In the following, we show that this condition is actually sufficient.290

I Theorem 7. Let Γ be a finite set of moves. A regular indistinguishability relation ∼ admits291

a representation as a regular observation function if, and only if, the information tree Γ∗/∼292

is of bounded branching.293

Proof. The only-if -direction is immediate. If for an indistinguishability relation ∼, there294

exists an observation function β : Γ+ → Σ with finite range (not necessarily regular) such295

that ∼ = ker β̂, then the maximal degree of the information tree Γ∗/∼ is at most |Σ|. Indeed,296

the observation-history function β̂ is a strong homomorphism from the move tree Γ∗ to297

the tree of observation histories β̂(Γ∗) ⊆ Σ∗: it maps every pair (τ, τc) of successive move298

histories to the pair of successive observation histories (β̂(τ), β̂(τ)β(τc)), and conversely, for299

every pair of successive observation histories, there exists a pair of successive move histories300
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that map to it. By the Homomorphism Theorem (in the general formulation of Mal’cev [19]),301

it follows that the information tree Γ∗/∼ = Γ∗/ker β̂ is isomorphic to the image β̂(Γ∗), which,302

as a subtree Σ∗, has degree at most |Σ|.303

To verify the if -direction, consider an indistinguishability relation ∼ over Γ∗, given by a304

dfa R, such that the information tree Γ∗/∼ has branching degree at most n ∈ N.305

Let us fix an arbitrary linear ordering � of Γ. First, we pick as a representative for each306

information set, its least element with respect to the lexicographical order <lex induced by307

�. Then, we order the information sets in Γ∗/∼ according to the lexicographical order of308

their representatives. Next, we define the rank of any nonempty history τc ∈ Γ∗ to be the309

index of its information set [τc]∼ in this order, restricted to successors of [τ ]∼ – this index is310

bounded by n. Let us consider the observation function β that associates to every history311

its rank. We claim that (1) it describes the same information partition as ∼ and (2) it is a312

regular function.313

To prove the first claim, we show that whenever two histories are indistinguishable τ ∼ τ ′,314

they yield the same observation sequence β̂(τ) = β̂(τ ′). The rank of a history is determined315

by its information set. Since τ ∼ τ ′, every pair (ρ, ρ′) of prefix histories of the same length316

are also indistinguishable, and therefore yield the same rank β(ρ) = β(ρ′). By definition of317

β̂, it follows that β̂(τ) = β̂(τ ′). Conversely, to verify that β̂(τ) = β̂(τ ′) implies τ ∼ τ ′, we318

proceed by induction on the length of histories. The basis concerns only the empty history319

and thus holds trivially. For the induction step, suppose β̂(τc) = β̂(τ ′c′). By definition of β̂,320

we have in particular β̂(τ) = β̂(τ ′), which by induction hypothesis implies τ ∼ τ ′. Hence,321

the information sets of the continuations τc and τ ′c′ are successors of the same information322

set [τ ]∼ = [τ ′]∼ in the information tree Γ∗/∼. As we assumed that the histories τc and τ ′c′323

have the same rank, it follows that they indeed belong to the same information set, that is324

τc ∼ τ ′c′.325

To verify the second claim on the regularity of the observation function β, we first notice326

that the following languages are regular:327

the (synchronous) lexicographical order {(τ, τ ′) ∈ (Γ× Γ)∗ | τ ≤lex τ
′},328

the set of representatives {τ ∈ Γ∗ | τ ≤lex τ
′ for all τ ′ ∼ τ}, and329

the representation relation {(τ, τ ′) ∈ ∼ | τ ′ is a representative}.330

Given automata recognising these languages, we can then construct, for each k ≤ n, an331

automaton Ak that recognises the set of histories of rank at least k: together with the332

representative of the input history, guess the k − 1 representatives that are below in the333

lexicographical order. Finally, we take the synchronous product of the automata A1 . . .Ak334

and equip it with an output function as follows: for every transition in the product automaton335

all components of the target state, up to some index k, are accepting – we define the output336

of the transition to be just this index k. This yields a Mealy automaton that outputs the337

rank of the input history, as desired. J338

For further use, we estimate the size of the Mealy automaton defining the rank function339

as outlined in the proof. Suppose that an indistinguishability relation ∼ ⊆ (Γ× Γ)∗ given340

by a two-tape dfa R of size m gives rise to an information tree Γ∗/L(R) of degree n. The341

lexicographical order is recognisable by a two-tape dfa of size O(|Γ|2), bounded by O(m);342

to recognise the set of representatives we take the product of this automaton with R, and343

apply a projection and a complementation, obtaining a dfa of size bounded by 2O(m2));344

for the representation relation, we take a product of this automaton with R and obtain345

a two-tape dfa of size still bounded by 2O(m2). For every index k ≤ n, the automaton346

Ak can be constructed via projection from a product of n such automata, hence its size347
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bounded is by 22O(nm2) . The Mealy automaton for defining the rank runs all these n automata348

synchronously, so it is of the same order of magnitude 22O(nm2) .349

To decide whether the information tree represented by a regular indistinguishability350

relation has bounded degree, we use a result from the theory of word-automatic structures [14,351

4]. For the purpose of our presentation, we define an automatic presentation of a tree352

T = (V,E) as a triple (AV ,A=,AE) of automata with input alphabet Γ, together with a353

surjective naming map h : L→ V defined on a set of words L ⊆ Γ∗ such that354

L(AV ) = L,355

L(A=) = kerh, and356

L(AE) = {(u, v) ∈ L× L | (h(u), h(v)) ∈ E}.357

In this case, h is an isomorphism between T = (V,E) and the quotient (L,L(AE))/L(A=).358

The size of such an automatic presentation is the added size of the three component automata.359

A tree is automatic if it has an automatic presentation.360

For an information partition given by a indistinguishability relation ∼ defined by a361

two-tape-dfa R on a move alphabet Γ, the information tree Γ∗/∼ admits an automatic362

presentation with the naming map that sends every history τ to its information set [τ ]∼, and363

as domain automaton AV , the one-state automaton accepting all of Γ∗ (of size Γ);364

as the equality automaton A=, the two-tape dfa R, and365

for the edge relation, a two-tape dfa AE that recognises the relation366

{(τ, τ ′c) ∈ Γ∗ × Γ∗ | (τ, τ ′) ∈ L(R)}.367
368

The latter automaton is obtained from R by adding transitions from each accepting state,369

with any move symbol on the first tape and the padding symbol on the second tape, to a370

unique fresh accepting state from which all outgoing transitions lead to the rejecting sink qrej.371

Overall, the size of the presentation will thus be bounded by O(|R|).372

Now, we can apply the following result of Kuske and Lohrey.373

I Proposition 8. ([17, Propositions 2.14–2.15]) The question whether an automatic structure374

has bounded degree is decidable in exponential time. If the degree of an automatic structure375

is bounded, then it is bounded by 22mO(1)

in the size m of the presentation.376

This allows to conclude that the criterion of Theorem 7 characterising regular indistin-377

guishability relations that are representable by regular observation functions is effectively378

decidable. By following the construction for the rank function outlined in the proof of the379

theorem, we obtain a fourfold exponential upper bound for the size of a Mealy automaton380

defining an observation function.381

I Theorem 9. (i) The question whether an indistinguishability relation given as a two-tape382

dfa admits a representation as a regular observation function is decidable in exponential383

time (with respect to the size of the dfa).384

(ii) Whenever this is the case, we can construct a Mealy automaton of fourfold-exponential385

size and with at most doubly exponentially many output symbols that defines a corres-386

ponding observation function.387

5 Improving the Construction of Observation Automata388

Theorem 9 establishes only a crude upper bound on the size of a Mealy automaton cor-389

responding to a given indistinguishability dfa. In this section, we present a more detailed390

analysis that allows to improve the construction by one exponential.391
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Figure 3 A synchronous two-tape automaton with 2k states (here k = 3) for which an equivalent
observation Mealy automaton requires exponential number of states (2k)

Firstly, we point out that an exponential blowup is generally unavoidable, for the size of392

the automaton and for its observation alphabet.393

I Example 10. Figure 3a shows a two-tape dfa that compares histories over a move alphabet394

{a, b} with an embargo period of length k. Every pair of histories of length less than k is395

accepted, whereas history pairs of length k and onwards are rejected if, and only if, they are396

different. (The picture illustrates the case for k = 3). A Mealy automaton that describes397

this indistinguishability relation needs to produce, for every different prefix of length k, a398

different observation symbol. To do so, it has to store the first k symbols, which requires 2k399

states and 2k observation symbols (see Figure 3b). J400

5.1 Structural properties of regular indistinguishability relations401

For the following, let us fix a move alphabet Γ and a two-tape dfa R = (Q,Γ× Γ, qε, δ, F )402

defining an indistinguishability relation L(R) = ∼. We assume thatR is a minimal automaton403

in the usual sense that all states are reachable from the initial state, and the languages404

accepted from two different states are different. Let m be the size of R. We usually write405

δ(qε, ττ ′) for δ(q, (τ, τ ′)).406

First, we classify the states according to the behaviour of the automaton when reading407

the same input words on both tapes. On the one hand, we consider the states reachable from408

the initial state on such inputs, which we call reflexive states:409

Ref = {q ∈ Q | ∃τ ∈ Γ∗ : δ(qε, ττ ) = q}.410
411

On the other hand, we consider the states from which it is possible to reach the rejecting412

sink by reading the same input word on both tapes, which we call ambiguous states,413

Amb = {q ∈ Q | ∃τ ∈ Γ∗ : δ(q, ττ ) = qrej}.414
415
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For instance, in the running example of Figure 1, the reflexive states are Ref = {q1, q2} and416

the ambiguous states are Amb = {q3, q4, qrej}.417

Since indistinguishability relations are reflexive, all the reflexive states are accepting and418

by reading any pair of identical words from a reflexive state, we always reach an accepting419

state. Therefore, a reflexive state cannot be ambiguous. Perhaps less obviously, the converse420

also holds: a non-reflexive state must be ambiguous.421

I Lemma 11 (Partition Lemma). Q \ Ref = Amb.422

Proof. The inclusion Amb ⊆ Q\Ref (or, equivalently, that Amb and Ref are disjoint) follows423

from the definitions and the fact that ∼ is a reflexive relation, and thus δ(qε, ττ ) 6= qrej for all424

histories τ .425

426

To show that Q\Ref ⊆ Amb, let us consider an arbitrary state q ∈ Q\Ref. By minimality427

of R, the state q is reachable from qε: there exist histories τ, τ ′ such that δ(qε, ττ ′) = q.428

Let qτ = δ(qε, ττ ) be the state reached after reading τ
τ (see figure). Thus, qτ ∈ Ref and in429

particular qτ 6= q. Again by minimality of R, the languages accepted from q and qτ are430

different. Hence, there exist histories π, π′ such that π
π′ is accepted from q and rejected431

from qτ , or the other way round. In the former case, we have that τπ ∼ τ ′π′ and τπ 6∼ τπ′,432

which by transitivity of ∼, implies τπ′ 6∼ τ ′π′. This means that from state q reading π′

π′ leads433

to qrej, showing that q ∈ Amb, which we wanted to prove. In the latter case, the argument is434

analogous. J435

We say that a pair of histories accepted by R is ambiguous, if, upon reading them,436

the automaton R reaches an ambiguous state other than qrej. Histories τ, τ ′ that form437

an ambiguous pair are thus indistinguishable, so they must map to the same observation.438

However, there exists a suffix π such that the extensions τ ·π and τ ′ ·π become distinguishable.439

Therefore, any observation automaton for R has to reach two different states after reading τ440

and τ ′ since otherwise, the extensions by the suffix π would produce the same observation441

sequence, making τ · π and τ ′ · π wrongly indistinguishable. The argument generalises442

immediately to collections of more than two histories. We call a set of histories that are443

pairwise ambiguous an ambiguous clique.444

We shall see later, in the proof of Lemma 15, that if the size of ambiguous cliques is445

unbounded, then the information tree Γ∗/L(R) has unbounded branching, and therefore there446

exists no Mealy automaton corresponding to R. Now, we show conversely that whenever the447

size of the ambiguous cliques is bounded, we can construct such a Mealy automaton.448

We say that two histories τ, τ ′ ∈ Γ∗ of the same length are interchangeable, denoted by449

τ ≈ τ ′, if δ(qε, τπ ) = δ(qε, τ
′

π
), for all π ∈ Γ∗. Note that ≈ is an equivalence relation and that450

τ ≈ τ ′ implies δ(qε, ττ ′) ∈ Ref. The converse also holds.451

I Lemma 12. For all histories τ, τ ′ ∈ Γ∗, we have δ(qε, ττ ′) ∈ Ref if, and only if, τ ≈ τ ′.452

Proof. One direction, that τ ≈ τ ′ implies δ(qε, ττ ′) ∈ Ref), follows immediately from the453

definitions (take π = τ ′ in the definition of interchangeable histories).454
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For the reverse direction, let us suppose that δ(qε, ττ ′) ∈ Ref. We will show that, for all455

histories τ ′′, the states q1 = δ(qε, ττ ′′) and q2 = δ(qε, τ
′

τ ′′ ) accept the same language. Towards456

this, let π1, π2 be an arbitrary pair of histories such that π1
π2

is accepted from q1. Then,457

τπ1 ∼ τ ′π1, because δ(qε, ττ ′) ∈ Ref, and from a reflexive state reading π1
π1

does not lead458

to qrej (by Lemma 11).459

τπ1 ∼ τ ′′π2, because δ(qε, ττ ′′) = q1 and π1
π2

is accepted from q1.460

By transitivity of ∼, it follows that τ ′π1 ∼ τ ′′π2, hence π1
π2

is accepted from q2 = δ(qε, τ
′

τ ′′ ).461

Accordingly, the language accepted from q1 is included in the language accepted from q2; the462

converse inclusion holds by a symmetric argument. Since the states q1 and q2 accept the463

same languages, and because the automaton R is minimal, it follows that q1 = q2, which464

means that τ and τ ′ are interchangeable. J465

According to Lemma 12 and because qrej 6∈ Ref, all pairs of interchangeable histories466

are also indistinguishable. In other words, the interchangeability relation ≈ refines the467

indistinguishability relation ∼, and thus [τ ]≈ ⊆ [τ ]∼ for all histories τ ∈ Γ∗. In the running468

example (Figure 1), the sets {aa, ab, bb} and {ba} are ∼-equivalence classes, and the sets469

{aa, bb}, {ab}, and {ba} are ≈-equivalence classes.470

Let us lift the lexicographical order ≤lex to sets of histories of the same length by comparing471

the smallest word of each set: we write S ≤ S′ if minS ≤lex minS′. This allows us to rank472

the ≈-equivalence classes contained in a ∼-equivalence class, in increasing order. In the473

running example, if we consider the ∼-equivalence class {aa, ab, bb}, {aa, bb} gets rank 1,474

and {ab} gets rank 2 because {aa, bb} ≤ {ab}. On the other hand, the ∼-equivalence class475

{ba}, as a singleton, gets rank 1.476

Now, we denote by idx(τ) the rank of the ≈-equivalence class containing τ . For example,477

idx(bb) = 1 and idx(ab) = 2. Further, we denote by mat(τ) the square matrix of dimension478

n = maxτ ′∈[τ ]∼ idx(τ ′) where we associate to each coordinate i = 1, . . . , n the i-th ≈-479

equivalence class Ci contained in [τ ]∼. The (i, j)-entry of mat(τ) is the state qij = δ(qε, τi
τj

)480

where τi ∈ Ci and τj ∈ Cj . Thanks to interchangeability, the state qij is well defined being481

independent of the choice of τi and τj .482

It is easy to see that diagonal entries in such matrices are reflexive states (Lemma 12).483

We can show conversely that non-diagonal entries are ambiguous states.484

I Lemma 13. For all histories τ , the non-diagonal entries in mat(τ) are ambiguous states.485

Proof. Non-diagonal entries in mat(τ) correspond to pair of histories that are not ≈-486

equivalent, therefore those entries are not reflexive states (Lemma 12), hence they must be487

ambiguous states (Lemma 11). J488

Finally, we can define a successor operation on matrix-index pairs and moves to obtain a489

homomorphic image of Γ∗.490

I Lemma 14. For every move c ∈ Γ, we can define a function succc such that for all histories491

τ ∈ Γ∗, if (M, i) = (mat(τ), idx(τ)), then succc(M, i) = (mat(τc), idx(τc)).492

5.2 Construction493

For the remainder of the paper, let us assume that the branching degree of the information494

tree Γ∗/L(R) is bounded.495

We define a Mealy automaton F = (P,Γ,Σ, pε, δ, λ) over the input alphabet Γ and an496

output alphabet Σ in two phases: first, we define the semi-automaton F0 = (P,Γ, pε, δ)497

and then we construct the output alphabet Σ and the output function λ. To define the498

semi-automaton F0, we set:499
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P := {(M, i) |M = mat(τ) and i = idx(τ) for some history τ},500

pε := (qε, 1),501

for every state (M, i) ∈ P and every move c ∈ Γ, let δ((M, i), c) = succc(M, i).502

The construction of the Mealy automaton for the two-tape dfa of Figure 1b is shown503

in Figure 4a. The variables x, y, z, r, s, t, u, v represent the observation values of the output504

function. We determine the value of the variables by considering pairs of histories in the505

automaton, and in the Mealy automaton. For example, for τ = a and τ ′ = b, we have τ ∼ τ ′506

(according to the dfa), and therefore we derive the constraint x = y in the Mealy automaton.507

We can show that the constraints are satisfiable and that every satisfying assignment describes508

an output function λ : P × Γ→ Σ such that (P,Γ,Σ, pε, δ, λ) is an observation automaton509

equivalent to the dfa (see Figure 4b for the running example).510

According to Lemma 14, the state space P is the closure of {pε} under the c-successor511

operation, for all c ∈ Γ. It remains to show that P is finite. The key is to bound the512

dimension of the largest matrix in P , which is the size of the largest ambiguous clique.513

I Lemma 15. If the branching degree of the information tree Γ∗/L(R) is bounded, then the514

largest ambiguous clique contains at most a doubly-exponential number of histories (with515

respect to the size of R).516

Proof. First we show by contradiction that the size of the ambiguous cliques is bounded. Since517

the number of ambiguous states in R is finite, if there exists an arbitrarily large ambiguous518

clique, then by Ramsey’s theorem [24], there exists an arbitrarily large set {τ1, τ2, . . . , τk}519

of histories and a state q ∈ Amb \ {qrej} such that δ(qε, τi
τj

) = q for all 1 ≤ i < j ≤ k. By520

definition of Amb, there exists a nonempty history τc such that δ(q, τcτc) = qrej. Consider such521

a history τc of minimal length. The histories τiτ (i = 1, . . . , k) are in the same ∼-equivalence522

class, but the equivalence classes [τiτc]∼ are pairwise distinct. Therefore, the number of523

successors of [τiτ ]∼ is at least k, thus arbitrarily large, in contradiction with the assumption524

that the branching degree the information tree Γ∗/L(R) is bounded.525

Note that the size of the largest ambiguous clique corresponds to the maximum number526

of ≈-equivalence classes contained in an ∼-equivalence class (Lemma 13). We show that this527

number is at most doubly-exponential. Similarly to the proof of Theorem 7, we notice that the528

set of ≈-representatives defined by {τ ∈ Γ∗ | τ ≤lex τ
′ for all τ ′ ≈ τ} is regular, and therefore529

the representation relation {(τ, τ ′) ∈ ∼ | τ ′ is a ≈-representative} is also regular. Using a530

result of Weber [29, Theorem 2.1], there is a bound on the number of ≈-representatives531

that a history can have that is exponential in the size ` of the two-tape dfa recognising the532

representation relation, namely O(`)`, and ` is bounded by 2O(m2) by the same argument as533

in the proof of Theorem 7 (where m is the size of R). This provides a doubly-exponential534

bound 22O(m2) on the size of the ambiguous cliques. J535

According to Lemma 15, the dimension k of the largest matrix in P is at most doubly536

exponential in |R|. The number of matrices of a fixed dimension d is at most |Q|d2 . Overall537

the number of matrices that appear in P is therefore bounded by k · |Q|k2 , and as the index538

is at most k, it follows that the number of states in P is bounded by k2 · |Q|k2 , that is539

exponential in k and triply exponential in the size of R.540

I Theorem 16. For every indistinguishability relation given by a two-tape dfa R such that541

the information tree Γ∗/L(R) is of bounded branching, we can construct a Mealy automaton of542

size triply exponential (with respect to the size of R) that defines a corresponding observation543

function.544
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Figure 4 Construction of the Mealy automaton from the two-tape dfa of Figure 1b

6 Conclusion545

The question of how to model information in infinite games is fundamental to defining546

their strategy space. As the decisions of each player are based on the available information,547

strategies are functions from information sets to actions. Accordingly, the information548

structure of a player in a game defines the support of her strategy space.549

The assumption of synchronous perfect recall gives rise to trees as information structures550

(Lemma 1). In the case of observation functions with a finite range Σ, these trees are subtrees551

of the complete |Σ|-branching tree Σ∗ – on which ω-tree automata can work (see [26, 13]552

for surveys on such techniques). Concretely, every strategy based on observations can be553

represented as a labelling of the tree Σ∗ with actions; the set of all strategies for a given game554

forms a regular (that is, automata-recognisable) set of trees. Moreover, when considering555

winning conditions that are also regular, Rabin’s Theorem [23] allows to conclude that winning556

strategies also form a regular set. Indeed, we can construct effectively a tree automaton that557

recognises the set of strategies – for an individual player – that enforce a regular condition and,558

if this set is non-empty, we can also synthesise a Mealy automaton that defines one of these559

strategies. In summary, the interpretation of strategies as observation-directed trees allows560

us to search the set of all strategies systematically for winning ones using tree-automatic561

methods.562

In contrast, when setting out with indistinguishability relations, we obtain more complic-563

ated tree structures that do not offer a direct grip to classical tree-automata techniques. As564

the example of Lemma 6 shows, there are cases where the information tree of a game is not565

regular, and so the set of all strategies is not recognisable by a tree automaton. Accordingly,566

the automata-theoretic approach to strategy synthesis via Rabin’s Theorem cannot be applied567

to solve, for instance, the basic problem of constructing a finite-state strategy for one player568

to enforce a given regular winning condition.569

On the other hand, modelling information with indistinguishability relations allows for570

significantly more expressiveness than observation functions. This covers notably settings571

where a player can receive an unbounded amount of information in one round. For instance,572

models with causal memory where one player may communicate his entire observation573
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history to another player in one round can be captured with regular indistinguishability574

relation, but not with observation functions of any finite range. Even when an information575

partition that can be represented by finite-state observation functions, the representation by576

an indistinguishability relation may be considerably more succinct. For instance, a player577

that observes the move history perfectly, but with a delay of d rounds can be described578

by a two-tape dfa with O(d) many states, whereas any Mealy automaton would require579

exponentially more states to define the corresponding observation function.580

At the bottom line, as a finite-state model of information, indistinguishability relations are581

strictly more expressive and can be (at least exponentially) more succinct than observation582

functions. In exchange, the observation-based model is directly accessible to automata-583

theoretic methods, whereas the indistinguishability-based model is not. Our result in584

Theorem 9 allows to identify effectively the instances of indistinguishability relations for585

which this gap can be bridged. That is, we may take advantage of the expressiveness586

and succinctness of indistinguishability relations to describe a game problem and use the587

procedure to obtain, whenever possible, a reformulation in terms of observation functions588

towards solving the initial problem with automata-theoretic methods.589

This initial study opens several exciting research directions. One immediate question590

is whether the fundamental finite-state methods on strategy synthesis for games with591

imperfect information can be extended from the observation-based model to the one based592

on indistinguishability relations. Is it decidable, given a game for one player with a regular593

winning condition against Nature, whether there exist a winning strategy ? Can the set of594

all winning strategies be described by finite-state automata ? In case this set is non-empty,595

does it contain a strategy defined by a finite-state automaton ?596

Another, more technical, question concerns the automata-theoretic foundations of games.597

The standard models are laid out for representations of games and strategies as trees of a598

fixed branching degree. How can these automata models be extended to trees with unboun-599

ded branching towards capturing strategies constrained by indistinguishability relations ?600

Likewise, the automatic structures that arise as information quotients of indistinguishability601

relations form a particular class of trees, where both the successor and the descendant relation602

(that is, the transitive closure) are regular. On the one hand, this particularity may allow603

to decide properties about games (viz. their information trees) that are undecidable when604

considering general automatic trees, notably regarding bisimulation or other forms of game605

equivalence.606

Finally, in a more application-oriented perspective, it will be worthwhile to explore607

indistinguishability relations as a model for games where players can communicate via608

messages of arbitrary length. In particular this will allow to extend the framework of infinite609

games on finite graphs to systems with causal memory considered in the area of distributed610

computing.611
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