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Abstract. We consider two-player games played on weighted directed graphs
with mean-payoff and total-payoff objectives, two classical quantitative objec-
tives. While for single-dimensional games the complexity and memory bounds
for both objectives coincide, we show that in contrast to multi-dimensional mean-
payoff games that are known to be coNP-complete, multi-dimensional total-pay-
off games are undecidable. We introduce conservative approximations of these
objectives, where the payoff is considered over a local finite window sliding
along a play, instead of the whole play. For single dimension, we show that (i) if
the window size is polynomial, deciding the winner takes polynomial time, and
(ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at
least as hard as solving mean-payoff games. For multiple dimensions, we show
that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there
is no primitive-recursive algorithm to decide the existence of a bounded window.

1 Introduction

Mean-payoff and total-payoff games. Two-player mean-payoff and total-payoff ga-
mes are played on finite weighted directed graphs (in which every edge has an integer
weight) with two types of vertices: in player-1 vertices, player 1 chooses the succes-
sor vertex from the set of outgoing edges; in player-2 vertices, player 2 does likewise.
The game results in an infinite path through the graph, called a play. The mean-payoff
(resp. total-payoff) value of a play is the long-run average (resp. sum) of the edge-
weights along the path. While traditionally games on graphs with ω-regular objectives
have been studied for system analysis, research efforts have recently focused on quan-
titative extensions to model resource constraints of embedded systems, such as power
consumption, or buffer size [2]. Quantitative games, such as mean-payoff games, are
crucial for the formal analysis of resource-constrained reactive systems. For the analy-
sis of systems with multiple resources, multi-dimension games, where edge weights are
integer vectors, provide the appropriate framework.
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Decision problems. The decision problem for mean-payoff and total-payoff games
asks, given a starting vertex, whether player 1 has a strategy that against all strategies
of the opponent ensures a play with value at least 0. For both objectives, memoryless
winning strategies exist for both players (where a memoryless strategy is independent
of the past and depends only on the current state) [9,12]. This ensures that the decision
problems belong to NP ∩ coNP; and they belong to the intriguing class of problems that
are in NP ∩ coNP but whether they are in P (deterministic polynomial time) are long-
standing open questions. The study of mean-payoff games has also been extended to
multiple dimensions where the problem is shown to be coNP-complete [21,4]. While for
one dimension all the results for mean-payoff and total-payoff coincide, our first con-
tribution shows that quite unexpectedly (in contrast to multi-dimensional mean-payoff
games) the multi-dimensional total-payoff games are undecidable.

Window objectives. On the one hand, the complexity of single-dimensional mean-
payoff and total-payoff games is a long-standing open problem, and on the other hand,
the multi-dimensional problem is undecidable for total-payoff games. In this work, we
propose to study variants of these objectives, namely, bounded window mean-payoff
and fixed window mean-payoff objectives. In a bounded window mean-payoff objective
instead of the long-run average along the whole play we consider payoffs over a local
bounded window sliding along a play, and the objective is that the average weight must
be at least zero over every bounded window from some point on. This objective can be
seen as a strengthening of the mean-payoff objective (resp. of the total-payoff objective
if we require that the window objective is satisfied from the beginning of the play rather
than from some point on), i.e., winning for the bounded window mean-payoff objective
implies winning for the mean-payoff objective. In the fixed window mean-payoff ob-
jective the window length is fixed and given as a parameter. Observe that winning for
the fixed window objective implies winning for the bounded window objective.

Attractive features for window objectives. First, they are a strengthening of the mean-
payoff objectives and hence provide conservative approximations for mean-payoff ob-
jectives. Second, the window variant is very natural to study in system analysis. Mean-
payoff objectives require average to satisfy certain threshold in the long-run (or in the
limit of the infinite path), whereas the window objectives require to provide guarantee
on the average, not in the limit, but within a bounded time, and thus provide better time
guarantee than the mean-payoff objectives. Third, the window parameter provides flex-
ibility, as it can be adjusted specific to applications requirement of strong or weak time
guarantee for system behaviors. Finally, we will establish that our variant in the single
dimension is more computationally tractable, which makes it an attractive alternative to
mean-payoff objectives.

Our contributions. The main contributions of this work (along with the undecidability
of multi-dimensional total-payoff games) are as follows:

1. Single dimension. For the single-dimensional case we present an algorithm for the
fixed window problem that is polynomial in the size of the game graph times the
length of the binary encoding of weights times the size of the fixed window. Thus
if the window size is polynomial, we have a polynomial-time algorithm. For the
bounded window problem we show that the decision problem is in NP ∩ coNP, and

2



one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP∩ coNP mem-less coNP-c. / NP∩ coNP infinite mem-less
TP / TP NP∩ coNP mem-less undec. (Thm. 1) - -

WMP: fixed P-c. (Thm. 2) mem. req.
≤ linear(|S| · lmax)

(Thm. 2)

PSPACE-h. (Thm. 4)
polynomial window EXP-easy (Thm. 4) exponential

WMP: fixed P(|S|,V, lmax) (Thm. 2) EXP-c. (Thm. 4)
(Thm. 4)

arbitrary window
WMP: bounded NP∩ coNP (Thm. 3)

mem-less infinite NPR-h. (Thm. 5) - -
window problem (Thm. 3) (Thm. 3)

Table 1: Complexity of deciding the winner and memory required, with |S| the number
of states of the game (vertices in the graph), V the length of the binary encoding of
weights, and lmax the window size. New results in bold (h. for hard and c. for complete).

at least as hard as solving mean-payoff games. However, winning for mean-payoff
games does not imply winning for the bounded window mean-payoff objective, i.e.,
the winning sets for mean-payoff games and bounded window mean-payoff games
do not coincide. Moreover, the structure of winning strategies is also very different,
e.g., in mean-payoff games both players have memoryless winning strategies, but
in bounded window mean-payoff games we show that player 2 requires infinite
memory. We also show that if player 1 wins the bounded window mean-payoff
objective, then a window of size (|S|−1) · (|S| ·W +1) is sufficient where S is the
state space (the set of vertices of the graph), and W is the largest absolute weight
value. Finally, we show that (i) a winning strategy for the bounded window mean-
payoff objective ensures that the mean-payoff is at least 0 regardless of the strategy
of the opponent, and (ii) a strategy that ensures that the mean-payoff is strictly
greater than 0 is winning for the bounded window mean-payoff objective.

2. Multiple dimensions. For multiple dimensions, we show that the fixed window
problem is EXPTIME-complete (both for arbitrary dimensions with weights in
{−1,0,1} and for two dimensions with arbitrary weights); and if the window size is
polynomial, then the problem is PSPACE-hard. For the bounded window problem
we show that the problem is non-primitive recursive hard (i.e., there is no primitive
recursive algorithm to decide the problem).

3. Memory requirements. For all the problems for which we prove decidability we
also characterize the memory required by winning strategies.

The relevant results are summarized in Table 1: our results are in bold fonts. In
summary, the fixed window problem provides an attractive approximation of the mean-
payoff and total-payoff games that we show have better algorithmic complexity. In con-
trast to the long-standing open problem of mean-payoff games, the one-dimension fixed
window problem with polynomial window size can be solved in polynomial time; and
in contrast to the undecidability of multi-dimensional total-payoff games, the multi-
dimension fixed window problem is EXPTIME-complete.
Related works. An extended version of this work, including proofs, can be found in [5].
Mean-payoff games have been first studied by Ehrenfeucht and Mycielski in [9] where
it is shown that memoryless winning strategies exist for both players. This result entails
that the decision problem lies in NP ∩ coNP [17,22], and it was later shown to belong to
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UP ∩ coUP [15]. Despite many efforts [13,22,19,18,14], no polynomial-time algorithm
for the mean-payoff games problem is known so far. Gurvich, Karzanov, Khachivan
and Lebedev [13,17] provided the first (exponential) algorithm for mean-payoff games,
later extended by Pisaruk [19]. The first pseudo-polynomial-time algorithm for mean-
payoff games was given in [22] and was improved in [1]. Lifshits and Pavlov [18]
propose an algorithm which is polynomial in the encoding of weights but exponential
in the number of vertices of the graph: it is based on a graph decomposition procedure.
Bjorklund and Vorobyov [14] present a randomized algorithm which is both subexpo-
nential and pseudo-polynomial. While all the above works are for single dimension,
multi-dimensional mean-payoff games have been studied in [21,4,7]. One-dimension
total-payoff games have been studied in [11] where it is shown that memoryless win-
ning strategies exist for both players and the decision problem is in UP ∩ coUP.

2 Multi-Dimensional Mean-Payoff and Total-Payoff Objectives

We consider two-player turn-based games and denote the two players by P1 and P2.
Multi-weighted two-player game structures. Multi-weighted two-player game struc-
tures are weighted graphs G = (S1,S2,E,k,w) where (i) S1 and S2 resp. denote the finite
sets of vertices, called states, belonging to P1 and P2, with S1∩S2 = /0 and S = S1∪S2;
(ii) E ⊆ S×S is the set of edges such that for all s∈ S, there exists s′ ∈ S with (s,s′)∈ E;
(iii) k∈N is the dimension of the weight vectors; and (iv) w : E→Zk is the multi-weight
labeling function. When it is clear from the context that a game G is one-dimensional
(k = 1), we omit k and write it as G = (S1,S2,E,w). The game structure G is one-
player if S2 = /0. We denote by W the largest absolute weight that appears in the game.
For complexity issues, we assume that weights are encoded in binary. Hence we dif-
ferentiate between pseudo-polynomial algorithms (polynomial in W ) and truly polyno-
mial algorithms (polynomial in V = dlog2 We, the number of bits needed to encode the
weights).

A play in G from an initial state sinit ∈ S is an infinite sequence of states π =
s0s1s2 . . . such that s0 = sinit and (si,si+1) ∈ E for all i ≥ 0. The prefix up to the n-
th state of π is the finite sequence π(n) = s0s1 . . .sn. Let Last(π(n)) = sn denote the
last state of π(n). A prefix π(n) belongs to Pi, i ∈ {1,2}, if Last(π(n)) ∈ Si. The set
of plays of G is denoted by Plays(G) and the corresponding set of prefixes is denoted
by Prefs(G). The set of prefixes that belong to Pi is denoted by Prefsi(G). The infinite
suffix of a play starting in sn is denoted π(n,∞).

The total-payoff of a prefix ρ = s0s1 . . .sn is TP(ρ) = ∑
i=n−1
i=0 w(si,si+1), and its

mean-payoff is MP(ρ) = 1
nTP(ρ). This is naturally extended to plays by consider-

ing the componentwise limit behavior (i.e., limit taken on each dimension). The infi-
mum (resp. supremum) total-payoff of a play π is TP(π) = liminfn→∞TP(π(n)) (resp.
TP(π) = limsupn→∞TP(π(n))). The infimum (resp. supremum) mean-payoff of π is
MP(π) = liminfn→∞MP(π(n)) (resp. MP(π) = limsupn→∞MP(π(n))).
Strategies. A strategy for Pi, i ∈ {1,2}, in G is a function λi : Prefsi(G)→ S such that
(Last(ρ),λi(ρ)) ∈ E for all ρ ∈ Prefsi(G). A strategy λi for Pi has finite-memory if it
can be encoded by a deterministic finite state machine with outputs (Moore machine).
It is memoryless if it does not depend on history but only on the current state of the
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game. A play π is said to be consistent with a strategy λi of Pi if for all n≥ 0 such that
Last(π(n)) ∈ Si, we have Last(π(n+1)) = λi(π(n)). Given an initial state sinit ∈ S, and
two strategies, λ1 for P1 and λ2 for P2, the unique play from sinit consistent with both
strategies is the outcome of the game, denoted by OutcomeG(sinit,λ1,λ2).

Attractors. The attractor for P1 of a set A⊆ S in G is denoted by AttrP1
G (A) and com-

puted as the fixed point of the sequence AttrP1,n+1
G (A)=AttrP1,n

G (A)∪{s∈ S1 |∃(s, t)∈
E, t ∈ AttrP1,n

G (A)}∪{s ∈ S2 |∀(s, t) ∈ E, t ∈ AttrP1,n
G (A)}, with AttrP1,0

G (A) = A. The
attractor AttrP1

G (A) is exactly the set of states from which P1 can ensure to reach A no
matter what P2 does. The attractor AttrP2

G (A) for P2 is defined symmetrically.
Objectives. An objective for P1 in G is a set of plays φ ⊆ Plays(G). A play π ∈
Plays(G) is winning for an objective φ if π ∈ φ . Given a game G and an initial state
sinit ∈ S, a strategy λ1 of P1 is winning if OutcomeG(sinit,λ1,λ2) ∈ φ for all strate-
gies λ2 of P2. Given a rational threshold vector v ∈ Qk, we define the infimum (resp.
supremum) total-payoff (resp. mean-payoff) objectives as follows:

– TotalInfG(v) = {π ∈ Plays(G) | TP(π)≥ v}
– TotalSupG(v) =

{
π ∈ Plays(G) | TP(π)≥ v

}
– MeanInfG(v) = {π ∈ Plays(G) |MP(π)≥ v}
– MeanSupG(v) =

{
π ∈ Plays(G) |MP(π)≥ v

}
Decision problem. Given a game structure G, an initial state sinit ∈ S, and an inf./sup.
total-payoff/mean-payoff objective φ ⊆ Plays(G), the threshold problem asks to decide
if P1 has a winning strategy for this objective. In one-dimension games, both mean-
payoff and total-payoff threshold problems lie in NP∩ coNP [11]. In multi-dimension,
the mean-payoff threshold problem lies in coNP [21]. In contrast, we show that multi-
dimension total-payoff games are undecidable.

Theorem 1. The threshold problem for infimum and supremum total-payoff objectives
is undecidable in multi-dimension games, for five dimensions.

We reduce the halting problem for two-counter machines to the threshold problem
for two-player total-payoff games with five dimensions. Counters take values (v1,v2) ∈
N2 along an execution, and can be incremented or decremented (if positive). A counter
can be tested for equality to zero, and the machine can branch accordingly. We build a
game with a sup. (resp. inf.) total-payoff objective of threshold (0,0,0,0,0) for P1, in
which P1 has to faithfully simulate an execution of the machine, and P2 can retaliate
if he does not. We present gadgets by which P2 checks that (a) the counters are always
non-negative, and that (b) a zero test is only passed if the value of the counter is really
zero. The current value of counters (v1,v2) along an execution is encoded as the total
sum of weights since the start of the game, (v1,−v1,v2,−v2,−v3), with v3 being the
number of steps of the computation. Hence, along a faithful execution, the 1st and 3rd
dimensions are always non-negative, while the 2nd, 4th and 5th are always non-positive.
To check that counters never go below zero,P2 is always able to go to an absorbing state
with a self-loop of weight (0,1,1,1,1) (resp. (1,1,0,1,1)). To check that all zero tests
on counter 1 (resp. 2) are faithful, P2 can branch after a test to an absorbing state with a
self-loop of weight (1,0,1,1,1) (resp. (1,1,1,0,1)). Using these gadgets,P2 can punish
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an unfaithful simulation as he ensures that the sum in the dimension on which P1 has
cheated always stays strictly negative and the outcome is thus losing (it is only the case
if P1 cheats, otherwise all dimensions become non-negative). When an execution halts
(with counters equal to zero w.l.o.g.) after a faithful execution, it goes to an absorbing
state with weight (0,0,0,0,1), ensuring a winning outcome for P1 for the total-payoff
objective. If an execution does not halt, the 5th dimension stays strictly negative and the
outcome is losing.

In multi-weighted total-payoff games, P1 may need infinite memory. Consider a
game with only one state and two self-loops of weights (1,−2) and (−2,1). For any
threshold v∈Q2, P1 has an infinite-memory strategy to win the sup. total-payoff objec-
tive: alternating between the two loops for longer and longer periods, each time waiting
to get back above the threshold in the considered dimension before switching. There
exists no finite-memory one as the negative amount to compensate grows boundlessly
with each alternation.

3 Window Mean-Payoff: Definition

In one dimension, no polynomial algorithm is known for mean-payoff and total-payoff,
and in multi dimensions, total-payoff is undecidable. We introduce the window mean-
payoff objective, a conservative approximation for which local deviations from the
threshold must be compensated in a parametrized number of steps. We consider a win-
dow, sliding along a play, within which the compensation must happen. Our approach
can be applied to mean-payoff and total-payoff objectives. Since we consider finite
windows, both versions coincide for threshold zero. Hence we present our results for
mean-payoff.
Objectives and decision problems. Given a multi-weighted two-player game G =
(S1,S2,E,k,w) and a rational threshold v ∈Qk, we define the following objectives.5

– Given lmax ∈ N0, the good window objective

GWG(v, lmax) =
{

π | ∀ t, 1≤ t ≤ k, ∃ l ≤ lmax,
1
l

l−1

∑
p=0

w
(

eπ (p, p+1)
)
(t)≥ v(t)

}
, (1)

where eπ(p, p+ 1) is the edge (Last(π(p)),Last(π(p+ 1))), requires that for all
dimensions, there exists a window starting in the first position and bounded by lmax
over which the mean-payoff is at least equal to the threshold.

– Given lmax ∈ N0, the fixed window mean-payoff objective

FixWMPG(v, lmax) =
{

π | ∃ i≥ 0, ∀ j ≥ i, π( j,∞) ∈ GWG(v, lmax)
}

(2)

requires that there exists a position i such that in all subsequent positions, good
windows bounded by lmax exist.

– The bounded window mean-payoff objective

BndWMPG(v) =
{

π | ∃ lmax > 0, π ∈ FixWMPG(v, lmax)
}

(3)

asks that there exists a bound lmax such that the play satisfies the fixed objective.
5 For brevity, we omit that π ∈ Plays(G).
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We define direct versions of the objectives by fixing i = 0 rather than quantifying it
existentially. For any v ∈Qk and lmax ∈ N0, the following inclusions are true:

DirFixWMPG(v, lmax)⊆ FixWMPG(v, lmax)⊆ BndWMPG(v), (4)

DirFixWMPG(v, lmax)⊆DirBndWMPG(v)⊆ BndWMPG(v). (5)

The threshold v can be taken equal to {0}k (where {0}k denotes the k-dimension zero
vector) w.l.o.g. as we can transform the weight function w to b ·w−a for any threshold
a
b , a ∈ Zk, b ∈ N0 = N \ {0}. Hence, given any variant of the objective, the associated
decision problem is to decide the existence of a winning strategy for P1 for threshold
{0}k. Lastly, for complexity purposes, we make a difference between polynomial (in
the size of the game) and arbitrary (i.e., non-polynomial) window sizes.

Let π = s0s1s2 . . . be a play. Fix any dimension t,1 ≤ t ≤ k. The window from
position j to j′, 0 ≤ j < j′, is closed iff there exists j′′, j < j′′ ≤ j′ such that the sum
of weights in dimension t over the sequence s j . . .s j′′ is non-negative. Otherwise the
window is open. Given a position j′ in π , a window is still open in j′ iff there exists
a position 0 ≤ j < j′ such that the window from j to j′ is open. Consider any edge
(si,si+1) appearing along π . If the edge is non-negative in dimension t, the window
starting in i immediately closes. If not, a window opens that must be closed within lmax
steps. Consider the first position i′ such that this window closes, then we have that all
intermediary opened windows also get closed by i′, that is, for any i′′, i < i′′ ≤ i′, the
window starting in i′′ is closed before or when reaching position i′. Indeed, the sum of
weights over the window from i′′ to i′ is strictly greater than the sum over the window
from i to i′, which is non-negative. We call this fact the inductive property of windows.
Illustration. Consider the game depicted in Fig. 1. It has a unique outcome, and it
is winning for the classical mean-payoff objective of threshold 0, as well as for the
infimum (resp. supremum) total-payoff objective of threshold −1 (resp. 0). Consider
the fixed window mean-payoff objective for threshold 0. If the size of the window is
bounded by 1, the play is losing.6 However, if the window size is at least 2, the play is
winning, as in s3 we close the window in two steps and in s4 in one step. Notice that
by definition of the objective, it is clear that it is also satisfied for all larger sizes.7 As
the fixed window objective is satisfied for size 2, the bounded window objective is also
satisfied. On the other hand, if we restrict the objectives to their direct variants, then
none is satisfied, as from s2, no window, no matter how large it is, gets closed.

Consider the game of Fig. 2. Again, the unique strategy of P1 satisfies the mean-
payoff objective for threshold 0. It also ensures value−1 for the infimum and supremum
total-payoffs. Consider the strategy of P2 that takes the self-loop once on the first visit
of s2, twice on the second, and so on. Clearly, it ensures that windows starting in s1
stay open for longer and longer numbers of steps (we say that P2 delays the closing of
the window), hence making the outcome losing for the bounded window objective (and
thus the fixed window objective for any lmax ∈N0). This illustrates the added guarantee

6 A window size of one actually requires that all infinitely often visited edges are of non-negative
weights.

7 The existential quantification on the window size l, bounded by lmax, is indeed crucial in eq.
(1) to ensure monotonicity with increasing maximal window sizes, a desired behavior of the
definition for theoretical properties and intuitive use in specifications.
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s1 s2 s3 s4
1 −1

−1

1

Fig. 1: Fixed window is satisfied for lmax ≥ 2,
whereas even direct bounded window is not.

s1 s2 0

−1

1

Fig. 2: Mean-payoff is satisfied but
none of the window objectives is.

(compared to mean-payoff) asked by the window objective: in this case, no upper bound
can be given on the time needed for a window to close, i.e., on the time needed to get
the local sum back to non-negative. Note that P2 has to go back to s1 at some point:
otherwise, the prefix-independence of the objectives8 allows P1 to wait for P2 to settle
on cycling and win. For the direct variants, P2 has a simpler winning strategy consisting
in looping forever, as enforcing one permanently open window is sufficient.

Relation with classical objectives. We introduce the bounded window objectives as
conservative approximations of mean-payoff and total-payoff in one-dimension games.
Indeed, in Lemma 1, we show that winning the bounded window (resp. direct bounded
window) objective implies winning the mean-payoff (resp. total-payoff) objective while
the reverse implication is only true if a strictly positive mean-payoff (resp. arbitrary high
total-payoff) can be ensured.

Lemma 1. Given a one-dimension game G = (S1,S2,E,w), the following assertions
hold.

(a) If the answer to the bounded window mean-payoff problem is YES, then the answer
to the mean-payoff threshold problem for threshold zero is also YES.

(b) If there exists ε > 0 such that the answer to the mean-payoff threshold problem for
threshold ε is YES, then the answer to the bounded window mean-payoff problem
is also YES.

(c) If the answer to the direct bounded window mean-payoff problem is YES, then the
answer to the supremum total-payoff threshold problem for threshold zero is also
YES.

(d) If the answer to the supremum total-payoff threshold problem is YES for all integer
thresholds (i.e., the total-payoff value is ∞), then the answer to the direct bounded
window mean-payoff problem is also YES.

Assertions (a) and (c) follow from the decomposition of winning plays into bounded
windows of non-negative weights. The key idea for assertions (b) and (d) is that mean-
payoff and total-payoff objectives always admit memoryless winning strategies, for
which the consistent outcomes can be decomposed into simple cycles (i.e., with no
repeated edge) over which the mean-payoff is at least equal to the threshold and which
length is bounded. Hence they correspond to closing windows. Note that strict equiva-
lence with the classical objectives is not verified, as witnessed before (Fig. 2).

8 Fixed and bounded window mean-payoff objectives are prefix-independent: for all ρ ∈
Prefs(G), π ∈ Plays(G), we have that ρ ·π is winning if and only if π is winning.
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4 Window Mean-Payoff: One-Dimension Games

Fixed window. Given a game G = (S1,S2,E,w) and a window size lmax ∈ N0, we
present an iterative algorithm FWMP (Alg. 1) to compute the winning states of P1 for
the objective FixWMPG(0, lmax). Initially, all states are potentially losing for P1. The
algorithm iteratively declares states to be winning, removes them, and continues the
computation on the remaining subgame as follows. In every iteration, i) DirectFWMP
computes the set Wd of states from which P1 can win the direct fixed window objec-
tive; ii) it computes the attractor to Wd ; and then proceeds to the next iteration on the
remaining subgame (the restriction of G to a subset of states A ⊆ S is denoted G � A).
In every iteration, the states of the computed set Wd are obviously winning for the fixed
window objective. Thanks to the prefix-independence of the fixed window objective,
the attractor to Wd is also winning. Since P2 must avoid entering this attractor, P2 must
restrict his choices to stay in the subgame, and hence we iterate on the remaining sub-
game. Thus states removed over all iterations are winning for P1. The key argument to
establish correctness is as follows: when the algorithm stops, the remaining set of states
W is such that P2 can ensure to stay in W and falsify the direct fixed window objec-
tive by forcing the appearance of one open window larger than lmax. Since he stays in
W , he can repeatedly use this strategy to falsify the fixed window objective. Thus the
remaining set W is winning for P2, and the correctness of the algorithm follows.

Algorithm 1 FWMP(G, lmax)

Require: G = (S1,S2,E,w) and lmax ∈ N0
Ensure: W is the set of winning states for P1 for

FixWMPG(0, lmax)
n := 0 ; W := /0
repeat

W n
d :=DirectFWMP(G, lmax)

W n
attr := Attr

P1
G (W n

d ) {attractor for P1}
W :=W ∪W n

attr ; G := G � (S\W ) ; n := n+1
until W = S or W n−1

attr = /0
return W

Algorithm 2 DirectFWMP(G, lmax)

Require: G = (S1,S2,E,w) and lmax ∈ N0
Ensure: Wd is the set of winning states for P1 for

DirFixWMPG(0, lmax)
Wgw := GoodWin(G, lmax)
if Wgw = S or Wgw = /0 then

Wd :=Wgw
else

Wd :=DirectFWMP(G �Wgw, lmax)
return Wd

Algorithm 3 GoodWin(G, lmax)

Require: G = (S1,S2,E,w) and lmax ∈ N0
Ensure: Wgw is the set of winning states for GWG(0, lmax)

for all s ∈ S do
C0(s) := 0

for all i ∈ {1, . . . , lmax} do
for all s ∈ S1 do

Ci(s) := max(s,s′)∈E{w((s,s′))+Ci−1(s′)}
for all s ∈ S2 do

Ci(s) := min(s,s′)∈E{w((s,s′))+Ci−1(s′)}
return Wgw := {s ∈ S |∃ i, 1≤ i≤ lmax,Ci(s)≥ 0}

The main idea of algorithm DirectFWMP (Alg. 2) is that to win the direct fixed
window objective, P1 must be able to repeatedly win the good window objective, which
consists in ensuring a non-negative sum in at most lmax steps. A winning strategy of P1
in a state s is thus a strategy that enforces a non-negative sum and, as soon as the sum
turns non-negative (in some state s′), starts doing the same from s′. It is important to
start again immediately as it ensures that all suffixes along the path from s to s′ also
have a non-negative sum thanks to the inductive property. The states from which P1
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can win the good window objective are computed by subroutine GoodWin (Alg. 3):
given a state s ∈ S and a number of steps i ≥ 1, the value Ci(s) is computed iteratively
(from Ci−1(s)) and represents the best sum that P1 can ensure from s in exactly i steps.
Hence, the set of winning states for P1 is the set of states for which there exists some i,
1≤ i≤ lmax such that Ci(s)≥ 0. The construction implies linear bounds (in |S| · lmax) on
the memory needed for both players. We show that the fixed window problem is P-hard
even for lmax = 1 and weights {−1,1} via a simple reduction from reachability games.

Theorem 2. In two-player one-dimension games, (a) the fixed arbitrary window mean-
payoff problem is decidable in timeO

(
|S|3 · |E| · lmax ·V

)
, with V = dlog2 We, the length

of the binary encoding of weights, and (b) the fixed polynomial window mean-payoff
problem is P-complete. In general, both players require memory, and memory of size
linear in |S| · lmax is sufficient.

Bounded window. We establish a NP∩ coNP algorithm for bounded window mean-
payoff objective using two intermediate results. First, ifP1 has a strategy to win the sup.
total-payoff objective, then he wins the good window objective for lmax = (|S|−1) ·(|S| ·
W +1). Second, if P2 has a memoryless strategy to ensure that the sup. total-payoff is
strictly negative, then all consistent outcomes violate the direct bounded window mean-
payoff objective. As a corollary, we obtain that the sets of winning states coincide for
objectives FixWMPG(0, lmax = (|S|−1) · (|S| ·W +1)) and BndWMPG(0).

Algorithm 4 BoundedProblem(G)

Require: Game G = (S1,S2,E,w)
Ensure: Wbp is the set of winning states for P1 for the

bounded window mean-payoff problem
Wbp := /0
L := UnbOpenWindow(G)
while L 6= S\Wbp do

Wbp := Attr
P1
G (S\L)

L := UnbOpenWindow
(

G � (S\Wbp)
)

return Wbp

Algorithm 5 UnbOpenWindow(G)

Require: Game G = (S1,S2,E,w)
Ensure: L is the set of states from which P2 can force a po-

sition for which the window never closes
p := 0 ; L0 := /0
repeat

Lp+1 := Lp∪Attr
P2
G�(S\Lp)

(
NegSupTP

(
G � (S\Lp)

))
p := p+1

until Lp = Lp−1
return L := Lp

Algorithm BoundedProblem (Alg. 4) computes via subroutine UnbOpenWindow
the states from which P2 can force the visit of a position such that the window opening
in this position never closes. To preventP1 from winning the bounded window problem,
P2 must be able to do so repeatedly as the prefix-independence of the objective other-
wise gives the possibility to wait that all such bad positions are encountered before tak-
ing the windows into account. Thus, the states that are not in UnbOpenWindow(G),
as well as their attractor, are winning for P1. Since the choices of P2 are reduced
because of the attractor of P1 being declared winning, we compute in several steps,
adding new states to the set of winning states for P1 up to stabilization. Subroutine
UnbOpenWindow (Alg. 5) computes the attractor for P2 of the set of states from which
P2 can enforce a strictly negative supremum total-payoff. Routine NegSupTP returns
this set in NP∩ coNP complexity [11]. Again, we compute the fixed point of the se-
quence as at each iteration, the choices of P1 are reduced. The main idea of the correct-
ness proof is that from all states in Wbp, P2 has an infinite-memory winning strategy
which is played in rounds, and in round n ensures an open window of size at least n
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by playing the total-payoff strategy of P2 for at most n · |S| steps, and then proceeds to
round (n+ 1) to ensure an open window of size (n+ 1), and so on. Hence, windows
stay open for arbitrary large periods and the bounded window objective is falsified.

The algorithm gives memoryless winning strategies for P1. The game of Fig. 2
shows that infinite memory is necessary for P2: he needs to cycle in the zero loop for
longer and longer. Mean-payoff games reduce polynomially to bounded window games
by simply modifying the weight structure.

Theorem 3. In two-player one-dimension games, the bounded window mean-payoff
problem is in NP∩coNP and at least as hard as mean-payoff games. Memoryless strate-
gies suffice for P1 and infinite-memory strategies are required for P2 in general.

5 Window Mean-Payoff: Multi-Dimension Games

Fixed window. Given G = (S1,S2,E,k,w) and lmax ∈ N0, the fixed window problem is
solved in timeO(|S|2 ·(lmax)

4·k ·W 2·k) via reduction to an exponentially larger co-Büchi
game (where the objective of P1 is to avoid visiting a set of bad states infinitely often).
Co-Büchi games are solvable in quadratic time [6]. A winning play is such that, starting
in some position i≥ 0, in all dimensions, all opening windows are closed in at most lmax
steps. We keep a counter of the sum over the sequence of edges and as soon as it turns
non-negative, we reset the sum counter and start a new sequence. Hence, the reduction
is based on accounting for each dimension the current negative sum of weights since
the last reset, and the number of steps that remain to achieve a non-negative sum. This
accounting is encoded in the states of Gc = (Sc

1,S
c
2,E

c), as from the original state space
S, we go to S×({−lmax ·W, . . . ,0}×{1, . . . , lmax})k: states of Gc are tuples representing
a state of G and the current status of open windows in all dimensions (sum and remain-
ing steps). We add states reached whenever a window reaches its maximum size lmax
without closing. We label those as bad states. We have one bad state for every state of G.
Transitions in Gc are built in order to accurately model the effect of transitions of G on
open windows: each time a transition (s,s′) in the original game G is taken, the game Gc

is updated to a state (s′,(σ1,τ1), . . . ,(σ k,τk)) such that (a) if the current sum becomes
positive in some dimension, the corresponding sum counter is reset to zero and the step
counter is reset to its maximum value, lmax, (b) if the sum is still strictly negative in
some dimension and the window for this dimension is not at its maximal size, the sum
is updated and the step counter is decreased, and (c) if the sum stays strictly negative
and the maximal size is reached in any dimension, the game visits the corresponding
bad state and then, all counters are reset for all dimensions and the game continues
from the corresponding state (s′,(0, lmax), . . . ,(0, lmax)). Clearly, a play is winning for
the fixed window problem if and only if the corresponding play in Gc is winning for the
co-Büchi objective that asks that the set of bad states is not visited infinitely often, as
that means that from some point on, all windows close in the required number of steps.

We prove that the fixed arbitrary window problem is EXPTIME-hard for {−1,0,1}
weights and arbitrary dimensions via a reduction from the membership problem for al-
ternating polynomial space Turing machines (APTMs) [3]. Given an APTMM and a
word ζ ∈ {0,1}∗, such that the tape contains at most p(|ζ |) cells, where p is a polyno-
mial function, the membership problem asks to decide ifM accepts ζ . We build a fixed
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arbitrary window game G so that P1 has to simulate the run ofM on ζ , and P1 has a
winning strategy in G iff the word is accepted. For each tape cell h ∈ {1,2, . . . , p(|ζ |)},
we have two dimensions, (h,0) and (h,1) such that a sum of weights of value −1 (i.e.,
an open window) in dimension (h, i), i∈ {0,1} encodes that in the current configuration
ofM, tape cell h contains a bit of value i. In each step of the simulation (Fig. 3), P1 has
to disclose the symbol under the tape head: if in position h, P1 discloses a 0 (resp. a 1),
he obtains a reward 1 in dimension (h,0) (resp. (h,1)). To ensure that P1 was faithful,
P2 is then given the choice to either let the simulation continue, or assign a reward 1 in
all dimensions except (h,0) and (h,1) and then restart the game after looping in a zero
self-loop for an arbitrary long time. If P1 cheats by not disclosing the correct symbol
under tape cell h, P2 can punish him by branching to the restart state and ensuring a
sufficiently long open window in the corresponding dimension before restarting (as in
Fig. 2). But if P1 discloses the correct symbol and P2 still branches, all windows close.
In the accepting state, all windows are closed and the game is restarted. The window
size lmax of the game is function of the existing bound on the length of an accepting run.
To force P1 to go to the accepting state, we add an additional dimension, with weight
−1 on the initial edge of the game and weight 1 on reaching the accepting state.

We also prove EXPTIME-hardness for two dimensions and arbitrary weights by es-
tablishing a reduction from countdown games [16]. A countdown game C consists of
a weighted graph (S,T ), with S the set of states and T ⊆ S ×N0×S the transition
relation. Configurations are of the form (s,c), s ∈ S , c ∈ N. The game starts in an ini-
tial configuration (sinit,c0) and transitions from a configuration (s,c) are performed as
follows: first P1 chooses a duration d, 0 < d ≤ c such that there exists t = (s,d,s′) ∈ T
for some s′ ∈ S, second P2 chooses a state s′ ∈ S such that t = (s,d,s′) ∈ T . Then, the
game advances to (s′,c− d). Terminal configurations are reached whenever no legiti-
mate move is available. If such a configuration is of the form (s,0), P1 wins the play.
Otherwise, P2 wins the play. Deciding the winner in countdown games given an initial
configuration (sinit,c0) is EXPTIME-complete [16]. Given a countdown game C and an
initial configuration (sinit,c0), we create a game G = (S1,S2,E,k,w) with k = 2 and a
fixed window objective for lmax = 2 · c0 + 2. The two dimensions are used to store the
value of the countdown counter and its opposite. Each time a duration d is chosen, an
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edge of value of value (−d,d) is taken. The game simulates the moves available in C:
a strict alternation between states of P1 (representing states of S) and states of P2 (rep-
resenting transitions available from a state of S once a duration has been chosen). On
states of P1, we add the possibility to branch to a state srestart of P2, in which P2 can
either take a zero cycle, or go back to the initial state and force a restart of the game. By
placing weights (0,−c0) on the initial edge, and (c0,0) on the edge branching to srestart,
we ensure that the only way to win for P1 is to accumulate a value exactly equal to c0
in the game before switching to srestart. This is possible if and only if P1 can reach a
configuration of value zero in C.

For the case of polynomial windows, we prove PSPACE-hardness via a reduction
from generalized reachability games [10]. Filling the gap with the EXPTIME mem-
bership is an open problem. The generalized reachability objective is a conjunction
of reachability objectives: a winning play has to visit a state of each of a series of
k reachability sets. If P1 has a winning strategy in a generalized reachability game
Gr = (Sr

1,S
r
2,E

r), then he has one that guarantees visit of all sets within k · |Sr| steps.
We create a modified weighted version of the game, G = (S1,S2,E,k,w), such that the
weights are k-dimension vectors. The game starts by opening a window in all dimen-
sions and the only way for P1 to close the window in dimension t, 1≤ t ≤ k is to reach
a state of the t-th reachability set. We modify the game by giving P2 the ability to close
all open windows and restart the game such that the prefix-independence of the fixed
window objective cannot help P1 to win without reaching the target sets. Then, a play
is winning in G for the fixed window objective of size lmax = 2 · k · |Sr| if and only if it
is winning for the generalized reachability objective in Gr. This reduction also provides
exponential lower bounds on memory for both players, while exponential upper bounds
follow from the reduction to co-Büchi games.

Theorem 4. In two-player multi-dimension games, the fixed arbitrary window mean-
payoff problem is EXPTIME-complete, and the fixed polynomial window mean-payoff
problem is PSPACE-hard. For both players, exponential memory is sufficient and is
required in general.

Bounded window. We show non-primitive recursive hardness through a reduction from
the problem of deciding the existence of an infinite execution in a marked reset net, also
known as the termination problem. Hence, there is no hope for efficient algorithms on
the complete class of two-player multi-weighted games. A marked reset net [8] is a
Petri net with reset arcs together with an initial marking of its places. Reset arcs are
special arcs that reset a place (i.e., empty it of all its tokens). The termination problem
for reset nets is decidable but non-primitive recursive hard (as follows from [20]).

Given a reset net N with an initial marking m0 ∈ N|P| (where P is the set of places
of the net), we build a two-player multi-weighted game G with k = |P|+3 dimensions
such that P1 wins the bounded window objective for threshold {0}k if and only if N
does not have an infinite execution from m0. A high level description of our reduction
is as follows. The structure of the game (Fig. 5) is based on the alternance between two
gadgets simulating the net (Fig. 4).9 Edges are labeled by k-dimension weight vectors

9 1 = (1, . . . ,1), 0 = (0, . . . ,0), and, for a,b ∈ Z, p ∈ P, the vector ap→b represents the vector
(a, . . . ,a,b,a, . . . ,a) which has value b in dimension p and a in the other dimensions.
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such that the first |P| dimensions are used to encode the number of tokens in each place.
In each gadget, P2 chooses transitions to simulate an execution of the net. During a
faithful simulation, there is always a running open window in all the first |P| dimen-
sions: if place p contains n tokens then the negative sum from the start of the simulation
is −(n+1). This is achieved as follows: if a transition t consumes I(t)(p) tokens from
p, then this value is added on the corresponding dimension, and if t produces O(t)(p)
tokens in p, then O(t)(p) is removed from the corresponding dimension. When a place
p is reset, a gadget ensures that dimension p reaches value −1 (the coding of zero to-
kens). This is thanks to the monotonicity property of reset nets: if P1 does not simulate
a full reset, then the situation gets easier for P2 as it leaves him more tokens available.
If all executions terminate, P2 has to choose an unfireable transition at some point,
consuming unavailable tokens from some place p ∈ P. If so, the window in dimension
p closes. After each transition choice of P2, P1 can either continue the simulation or
branch out of the gadget to close all windows, except in some dimension p of his choice.
Then P2 can arbitrarily extend any still open window in the first (|P|+ 1) dimensions
and restart the game afterwards. Dimension (|P|+1) prevents P1 from staying forever
in a gadget. If an infinite execution exists, P2 simulates it and never has to choose an
unfireable transition. Hence, when P1 branches out, the window in some dimension p
stays open. The last two dimensions force him to alternate between gadgets so that he
cannot take profit of the prefix-independence to win after a faithful simulation. So, P2
can delay the closing of the open window for longer and longer, thus winning the game.

Theorem 5. In two-player multi-dimension games, the bounded window mean-payoff
problem is non-primitive recursive hard.

The decidability of the bounded window mean-payoff problem remains open.

6 Conclusion

The strong relation between mean-payoff and total-payoff breaks in multi-weighted
games as the total-payoff threshold problem becomes undecidable. Window objectives
provide conservative approximations with timing guarantees. Some variants prove to be
more computationally tractable than the corresponding classical objectives.
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