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Abstract

We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two
classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both
objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-
complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these
objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play.
For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time,
and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-
payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete,
and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window.

Keywords: two-player games on graphs, quantitative objectives, window mean-payoff, window total-payoff

1. Introduction

Mean-payoff and total-payoff games. Two-player mean-payoff and total-payoff games are played on finite weighted
directed graphs (in which every edge has an integer weight) with two types of vertices: in player-1 vertices, player 1
chooses the successor vertex from the set of outgoing edges; in player-2 vertices, player 2 does likewise. The game
results in an infinite path through the graph, called a play. The mean-payoff (resp. total-payoff) value of a play is the
long-run average (resp. sum) of the edge-weights along the path. While traditionally games on graphs with ω-regular
objectives have been studied for system analysis, research efforts have recently focused on quantitative extensions to
model resource constraints of embedded systems, such as power consumption, or buffer size [1]. Quantitative games,
such as mean-payoff games, are crucial for the formal analysis of resource-constrained reactive systems. For the
analysis of systems with multiple resources, multi-dimension games, where edge weights are integer vectors, provide
the appropriate framework.
Decision problems. The decision problem for mean-payoff and total-payoff games asks, given a starting vertex,
whether player 1 has a strategy that against all strategies of the opponent ensures a play with value at least 0. For
both objectives, memoryless winning strategies exist for both players (where a memoryless strategy is independent of
the past and depends only on the current state) [2, 3]. This ensures that the decision problems belong to NP ∩ coNP;
and they belong to the intriguing class of problems that are in NP ∩ coNP but whether they are in P (deterministic
polynomial time) are long-standing open questions. The study of mean-payoff games has also been extended to
multiple dimensions where the problem is shown to be coNP-complete [4, 5]. While for one dimension all the results
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one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP∩ coNP mem-less coNP-c. / NP∩ coNP infinite mem-less
TP / TP NP∩ coNP mem-less undec. (Thm. 2) - -

WMP: fixed
P-c. (Thm. 9) mem. req.

≤ linear(|S| · lmax)
(Thm. 9)

PSPACE-h. (Thm. 28)
polynomial window EXP-easy (Thm. 28) exponential

WMP: fixed
P(|S|,V, lmax) (Thm. 9) EXP-c. (Thm. 28)

(Thm. 28)
arbitrary window
WMP: bounded

NP∩ coNP (Thm. 19)
mem-less infinite

NPR-h. (Thm. 29) - -
window problem (Thm. 19) (Thm. 19)

Table 1: Complexity of deciding the winner and memory required, with |S| the number of states of the game (vertices
in the graph), V the length of the binary encoding of weights, and lmax the window size. New results in bold (h. for
hard and c. for complete).

for mean-payoff and total-payoff coincide, our first contribution shows that quite unexpectedly (in contrast to multi-
dimensional mean-payoff games) the multi-dimensional total-payoff games are undecidable.
Window objectives. On the one hand, the complexity of single-dimensional mean-payoff and total-payoff games is
a long-standing open problem, and on the other hand, the multi-dimensional problem is undecidable for total-payoff
games. In this work, we propose to study variants of these objectives, namely, bounded window mean-payoff and fixed
window mean-payoff objectives. In a bounded window mean-payoff objective instead of the long-run average along
the whole play we consider payoffs over a local bounded window sliding along a play, and the objective is that the
average weight must be at least zero over every bounded window from some point on. This objective can be seen as a
strengthening of the mean-payoff objective (resp. of the total-payoff objective if we require that the window objective
is satisfied from the beginning of the play rather than from some point on), i.e., winning for the bounded window
mean-payoff objective implies winning for the mean-payoff objective. In the fixed window mean-payoff objective the
window length is fixed and given as a parameter. Observe that winning for the fixed window objective implies winning
for the bounded window objective.
Attractive features for window objectives. First, they are a strengthening of the mean-payoff objectives and hence
provide conservative approximations for mean-payoff objectives. Second, the window variant is very natural to study
in system analysis. Mean-payoff objectives require average to satisfy certain threshold in the long-run (or in the
limit of the infinite path), whereas the window objectives require to provide guarantee on the average, not in the
limit, but within a bounded time, and thus provide better time guarantee than the mean-payoff objectives. Third, the
window parameter provides flexibility, as it can be adjusted specific to applications requirement of strong or weak
time guarantee for system behaviors. Finally, we will establish that our variant in the single dimension is more
computationally tractable, which makes it an attractive alternative to mean-payoff objectives.
Applicability. In the context of ω-regular objectives, the traditional infinitary notion of liveness has been strengthened
to finitary liveness [6], where instead of requiring that good events happen eventually, they are required to happen
within a finite time bound. The notion of finitary parity games was introduced and studied in [7], and a polynomial
time algorithm for finitary parity games was given in [8], and also studied for pushdown games [9]. The notion of
finitary conditions has also been extended to prompt setting where the good events are required to happen as promptly
as possible [10]. Our work extends the study of such finite time frames in the setting of quantitative objectives, and our
window objectives can be viewed as an extension of finitary conditions for mean-payoff and total-payoff objectives.

With regard to applications, our window variants provide a natural framework to reason about quantitative proper-
ties under local finite horizons. To illustrate this point, consider a classical example of application with mean-payoff
aspects, as presented by Bohy et al. in the context of synthesis from LTL specifications enriched with mean-payoff
objectives [11]. Consider the synthesis of a suitable controller for a computer server having to grant requests to differ-
ent types of clients. The LTL specification can express that all grants should eventually be granted. Adding quantities
and a mean-payoff objective helps in defining priorities between requests and associating costs to the delays between
requests and grants, depending of the relative priority of the request. Window objectives are useful for modeling such
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applications. Indeed, it is clear that in a desired controller, requests should not be placed on hold for an arbitrary long
time. Similarly, if we have two types of requests, with different priorities, and we want to ensure guarantees on the
mean waiting time per type of request, it seems natural that an adequate balance between the two types should be
observable within reasonable time frames (which can be defined as part of the specification with our new objectives)
instead of possible great variations that are allowed by the classical mean-payoff objective.
Our contributions. The main contributions of this work (along with the undecidability of multi-dimensional total-
payoff games) are as follows:

1. Single dimension. For the single-dimensional case we present an algorithm for the fixed window problem
that is polynomial in the size of the game graph times the length of the binary encoding of weights times the
size of the fixed window. Thus if the window size is polynomial, we have a polynomial-time algorithm. For
the bounded window problem we show that the decision problem is in NP ∩ coNP, and at least as hard as
solving mean-payoff games. However, winning for mean-payoff games does not imply winning for the bounded
window mean-payoff objective, i.e., the winning sets for mean-payoff games and bounded window mean-payoff
games do not coincide. Moreover, the structure of winning strategies is also very different, e.g., in mean-payoff
games both players have memoryless winning strategies, but in bounded window mean-payoff games we show
that player 2 requires infinite memory. We also show that if player 1 wins the bounded window mean-payoff
objective, then a window of size (|S|−1) · (|S| ·W +1) is sufficient where S is the state space (the set of vertices
of the graph), and W is the largest absolute weight value. Finally, we show that (i) a winning strategy for the
bounded window mean-payoff objective ensures that the mean-payoff is at least 0 regardless of the strategy of
the opponent, and (ii) a strategy that ensures that the mean-payoff is strictly greater than 0 is winning for the
bounded window mean-payoff objective.

2. Multiple dimensions. For multiple dimensions, we show that the fixed window problem is EXPTIME-complete
(both for arbitrary dimensions with weights in {−1,0,1} and for two dimensions with arbitrary weights); and
if the window size is polynomial, then the problem is PSPACE-hard. For the bounded window problem we
show that the problem is non-primitive recursive hard (i.e., there is no primitive recursive algorithm to decide
the problem).

3. Memory requirements. For all the problems for which we prove decidability we also characterize the memory
required by winning strategies.

The relevant results are summarized in Table 1: our results are in bold fonts. In summary, the fixed window problem
provides an attractive approximation of the mean-payoff and total-payoff games that we show have better algorithmic
complexity. In contrast to the long-standing open problem of mean-payoff games, the one-dimension fixed window
problem with polynomial window size can be solved in polynomial time; and in contrast to the undecidability of
multi-dimensional total-payoff games, the multi-dimension fixed window problem is EXPTIME-complete.
Related work. This paper extends the results presented in its preceding conference version [12] and gives a full
presentation of the technical details. Mean-payoff games have been first studied by Ehrenfeucht and Mycielski in [2]
where it is shown that memoryless winning strategies exist for both players. This entails that the decision problem lies
in NP ∩ coNP [13, 14], and it was later shown to belong to UP ∩ coUP [15]. Despite many efforts [16, 14, 17, 18, 19],
no polynomial-time algorithm for the mean-payoff games problem is known so far. Gurvich, Karzanov, Khachivan and
Lebedev [16, 13] provided the first (exponential) algorithm for mean-payoff games, later extended by Pisaruk [17].
The first pseudo-polynomial-time algorithm for mean-payoff games was given in [14] and was improved in [20].
Lifshits and Pavlov [18] propose an algorithm which is polynomial in the encoding of weights but exponential in
the number of vertices of the graph: it is based on a graph decomposition procedure. Bjorklund and Vorobyov [19]
present a randomized algorithm which is both subexponential and pseudo-polynomial. Special cases for mean-payoff
games can also be solved in polynomial time depending on the weight structure [21], and the algorithmic problem
has also been studied for graphs (with one player only) [22, 23]. Extension of the worst-case threshold problem - the
classical decision problem on mean-payoff games - with guarantees on the expected performance faced to a stochastic
adversary has been considered in [24]. While all the above works are for single dimension, multi-dimensional mean-
payoff games have been studied in [4, 5, 25]. One-dimension total-payoff games have been studied in [26] where it is
shown that memoryless winning strategies exist for both players and the decision problem is in UP ∩ coUP.
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2. Preliminaries

We consider two-player turn-based games and denote the two players by P1 and P2.
Multi-weighted two-player game structures. Multi-weighted two-player game structures are weighted graphs G =
(S1,S2,E,k,w) where (i) S1 and S2 resp. denote the finite sets of vertices, called states, belonging to P1 and P2, with
S1∩S2 = /0 and S = S1∪S2; (ii) E ⊆ S×S is the set of edges such that for all s ∈ S, there exists s′ ∈ S with (s,s′) ∈ E;
(iii) k ∈ N is the dimension of the weight vectors; and (iv) w : E → Zk is the multi-weight labeling function. When it
is clear from the context that a game G is one-dimensional (k = 1), we omit k and write it as G = (S1,S2,E,w). The
game structure G is one-player if S2 = /0. We denote by W the largest absolute weight that appears in the game. For
complexity issues, we assume that weights are encoded in binary. Hence we differentiate between pseudo-polynomial
algorithms (polynomial in W ) and truly polynomial algorithms (polynomial in V = dlog2 We, the number of bits
needed to encode the weights).

A play in G from an initial state sinit ∈ S is an infinite sequence of states π = s0s1s2 . . . such that s0 = sinit and
(si,si+1)∈ E for all i≥ 0. The prefix up to the n-th state of π is the finite sequence π(n) = s0s1 . . .sn. Let Last(π(n)) =
sn denote the last state of π(n). A prefix π(n) belongs to Pi, i ∈ {1,2}, if Last(π(n)) ∈ Si. The set of plays of G is
denoted by Plays(G) and the corresponding set of prefixes is denoted by Prefs(G). The set of prefixes that belong to
Pi is denoted by Prefsi(G). The infinite suffix of a play starting in sn is denoted π(n,∞).

The total-payoff of a prefix ρ = s0s1 . . .sn is TP(ρ) =∑
i=n−1
i=0 w(si,si+1), and its mean-payoff is MP(ρ) = 1

n TP(ρ).
This is naturally extended to plays by considering the componentwise limit behavior (i.e., limit taken on each dimen-
sion). The infimum (resp. supremum) total-payoff of a play π is TP(π) = liminfn→∞ TP(π(n)) (resp. TP(π) =
limsupn→∞ TP(π(n))). The infimum (resp. supremum) mean-payoff of π is MP(π) = liminfn→∞ MP(π(n)) (resp.
MP(π) = limsupn→∞ MP(π(n))).
Strategies. A strategy for Pi, i ∈ {1,2}, in G is a function λi : Prefsi(G)→ S such that (Last(ρ),λi(ρ)) ∈ E for
all ρ ∈ Prefsi(G). A strategy λi for Pi has finite-memory if it can be encoded by a deterministic Moore machine
(M,m0,αu,αn) where M is a finite set of states (the memory of the strategy), m0 ∈ M is the initial memory state,
αu : M× S→ M is an update function, and αn : M× Si → S is the next-action function. If the game is in s ∈ Si and
m ∈M is the current memory value, then the strategy chooses s′ = αn(m,s) as the next state of the game. When the
game leaves a state s ∈ S, the memory is updated to αu(m,s). Formally, 〈M,m0,αu,αn〉 defines the strategy λi such
that λi(ρ · s) = αn(α̂u(m0,ρ),s) for all ρ ∈ S∗ and s ∈ Si, where α̂u extends αu to sequences of states as expected. A
strategy is memoryless if |M| = 1, i.e., it does not depend on history but only on the current state of the game. We
resp. denote by Λi,Λ

F
i , and ΛM

i the sets of general (i.e., possibly infinite-memory), finite-memory, and memoryless
strategies for player Pi.

A play π is said to be consistent with a strategy λi of Pi if for all n ≥ 0 such that Last(π(n)) ∈ Si, we have
Last(π(n+1)) = λi(π(n)). Given an initial state sinit ∈ S, and two strategies, λ1 for P1 and λ2 for P2, the unique play
from sinit consistent with both strategies is the outcome of the game, denoted by OutcomeG(sinit,λ1,λ2).

Attractors. The attractor for P1 of a set A ⊆ S in G is denoted by AttrP1
G (A) and computed as the fixed point of the

sequence AttrP1,n+1
G (A) = AttrP1,n

G (A)∪{s∈ S1 |∃(s, t)∈ E, t ∈AttrP1,n
G (A)}∪{s∈ S2 |∀(s, t)∈ E, t ∈AttrP1,n

G (A)},
with AttrP1,0

G (A) = A. The attractor AttrP1
G (A) is exactly the set of states from which P1 can ensure to reach A no

matter what P2 does. The attractor AttrP2
G (A) for P2 is defined symmetrically.

Objectives. An objective for P1 in G is a set of plays φ ⊆Plays(G). A play π ∈Plays(G) is winning for an objective φ

if π ∈ φ . Given a game G and an initial state sinit ∈ S, a strategy λ1 of P1 is winning if OutcomeG(sinit,λ1,λ2) ∈ φ for
all strategies λ2 of P2. Given a rational threshold vector v ∈Qk, we define the infimum (resp. supremum) total-payoff
(resp. mean-payoff) objectives as follows:

• TotalInfG(v) = {π ∈ Plays(G) | TP(π)≥ v}

• TotalSupG(v) =
{

π ∈ Plays(G) | TP(π)≥ v
} • MeanInfG(v) = {π ∈ Plays(G) |MP(π)≥ v}

• MeanSupG(v) =
{

π ∈ Plays(G) |MP(π)≥ v
}

Decision problem. Given a game structure G, an initial state sinit ∈ S, and an inf./sup. total-payoff/mean-payoff
objective φ ⊆ Plays(G), the threshold problem asks to decide if P1 has a winning strategy for this objective. For the
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mean-payoff, the threshold v can be taken equal to {0}k (where {0}k denotes the k-dimension zero vector) w.l.o.g. as
we transform the weight function w to b ·w−a for any threshold a

b , a ∈ Zk, b ∈N0 =N\{0}. For the total-payoff, the
same result can be achieved by adding an initial edge of value −a to the game.

3. Mean-Payoff and Total-Payoff Objectives

In this section, we discuss classical mean-payoff and total-payoff objectives. We show that while they are closely
related in one dimension, this relation breaks in multiple dimensions. Indeed, we establish that the threshold problem
for total-payoff becomes undecidable, both for the infimum and supremum variants.

First, consider one-dimension games. In this case, memoryless strategies exist for both players for both objec-
tives [27, 2, 28, 3] and the sup. and inf. mean-payoff problems coincide (which is not the case for total-payoff).
Threshold problems for mean-payoff and total-payoff are closely related as witnessed by Lemma 1 and both have been
shown to be in NP∩ coNP [14, 26].

Lemma 1. Let G = (S1,S2,E,k,w) be a two-player game structure and sinit ∈ S be an initial state. Let A, B, C and D
resp. denote the following assertions.

A. Player P1 has a winning strategy for MeanSupG({0}k).

B. Player P1 has a winning strategy for MeanInfG({0}k).

C. There exists a threshold v ∈Qk such that P1 has a winning strategy for TotalInfG(v).

D. There exists a threshold v′ ∈Qk such that P1 has a winning strategy for TotalSupG(v′).

For games with one-dimension (k = 1) weights, all four assertions are equivalent. For games with multi-dimension
(k > 1) weights, the only implications that hold are: C⇒ D⇒ A and C⇒ B⇒ A. All other implications are false.

The statement of Lemma 1 is depicted in Fig. 1: the only implications that extend to the multi-dimension case are
depicted by solid arrows.

A : ∃λ A
1 � MeanSupG({0}k) D : ∃v ∈Qk, ∃λ D

1 � TotalSupG(v)

B : ∃λ B
1 � MeanInfG({0}k) C : ∃v′ ∈Qk, ∃λC

1 � TotalInfG(v′)

Figure 1: Equivalence between threshold problems for mean-payoff and total-payoff objectives. Dashed implications
are only valid for one-dimension games.

Proof. Specifically, the implications that remain true in multi-weighted games are the trivial ones: satifaction of the
infimum version of a given objective trivially implies satisfaction of its supremum version, and satisfaction of infimum
(resp. supremum) total-payoff for some finite threshold v ∈ Qk implies satisfaction of infimum (resp. supremum)
mean-payoff for threshold {0}k as from some point on, the corresponding sequence of mean-payoff infima (resp.
suprema) in all dimensions t, 1 ≤ t ≤ k, can be lower-bounded by a sequence of elements of the form v(t)

n with n the
length of the prefix, which tends to zero for an infinite play. That is thanks to the sequence of total-payoffs over prefixes
being a sequence of integers: it always achieves the value of its limit v(t) instead of only tending to it asymptotically
as could a sequence of rationals such as the mean-payoffs. This sums up to C⇒ D⇒ A and C⇒ B⇒ A being true
even in the multi-dimension setting.

In the one-dimension case, all assertions are equivalent. First, we have that infimum and supremum mean-payoff
problems coincide as memoryless strategies suffice for both players. Thus, we add A⇒ B and D⇒ B by transitivity.
Second, consider an optimal strategy for P1 for the mean-payoff objective of threshold 0. This strategy is such that
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all cycles formed in the outcome have non-negative effect, otherwise P1 cannot ensure winning. Thus, the total-
payoff over any outcome that is consistent with the same optimal strategy is at all times bounded from below by
−2 · (|S|− 1) ·W (once for the initial cycle-free prefix, and once for the current cycle being formed). Therefore, we
have that B⇒C, and we obtain all other implications by transitive closure.

s(1,−2) (−2,1)

Figure 2: Satisfaction of supremum TP does not imply
satisfaction of infimum MP.

s1 s2(−1,1,0) (1,−1,0)

(−1,−1,−1)

(−1,−1,−1)

Figure 3: Satisfaction of infimum MP does not imply
satisfaction of supremum TP.

For multi-weighted games, all dashed implications are false. We specifically consider two of them.

1. To show that implication D⇒ B does not hold, consider the one-player game depicted in Fig. 2. Clearly, any
finite vector v ∈ Q2 for the supremum total-payoff objective can be achieved by an infinite memory strategy
consisting in playing both loops successively for longer and longer periods, each time switching after getting
back above the threshold in the considered dimension. However, it is impossible to build any strategy, even with
infinite memory, that provides an infimum mean-payoff of (0,0) as the limit mean-payoff would be at best a
linear combination of the two cycles values, i.e., strictly less than 0 in at least one dimension in any case.

2. Lastly, implication B⇒ D failure in multi-weighted games can be witnessed in Fig. 3. Clearly, the strategy that
plays for n steps in the left cycle, then goes for n steps in the right one, then repeats for n′ > n and so on, is a
winning strategy for the infimum mean-payoff objective of threshold (0,0,0). Nevertheless, for any strategy of
P1, the outcome is such that either (i) it only switches between cycles a finite number of time, in which case the
sum in dimension 1 or 2 will decrease to infinity from some point on, or (ii) it switches infinitely and the sum of
weights in dimension 3 decreases to infinity. In both cases, the supremum total-payoff objective is not satisfied
for any finite vector v ∈Q3.

All other implications are deduced false as they would otherwise contradict the last two cases by transitivity.

In multi-dimension games, recent results have shown that the threshold problem for inf. mean-payoff is coNP-
complete whereas it is in NP∩ coNP for sup. mean-payoff [4, 29]. In both cases, P1 needs infinite memory to win,
and memoryless strategies suffice for P2 [5, 29]. When restricted to finite-memory strategies, the problem is coNP-
complete [5, 29] and requires memory at most exponential for P1 [25].

The case of total-payoff objectives in multi-weighted game structures has never been considered before. Surpris-
ingly, the relation established in Lemma 1 cannot be fully transposed in this context. We show that the threshold
problem indeed becomes undecidable for multi-weighted game structures, even for a fixed number of dimensions.

Theorem 2. The threshold problem for infimum and supremum total-payoff objectives is undecidable in multi-dimen-
sion games, for five dimensions.

Proof. We reduce the halting problem for two-counter machines (2CMs) to the threshold problem for two-player total-
payoff games with five dimensions. From a two-counter machineM, we construct a two-player game G with five di-
mensions and an infimum (equivalently supremum) total-payoff objective such that P1 wins for threshold (0,0,0,0,0)
if and only if the 2CM halts. Counters take values (v1,v2) ∈ N2 along an execution, and can be incremented or decre-
mented (if positive). A counter can be tested for equality to zero, and the machine can branch accordingly. The halting
problem for 2CMs is undecidable [30]. Assume w.l.o.g. that we have a 2CMM such that if it halts, it halts with the
two counters equal to zero. This is w.l.o.g. as it suffices to plug a machine that decreases both counters to zero at the
end of the execution of the considered machine. In the game we construct, P1 has to faithfully simulate the 2CMM.
The role of P2 is to ensure that he does so by retaliating if it is not the case, hence making the outcome losing for the
total-payoff objective.
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The game is built as follows. The states of G are copies of the control states of M (plus some special states
discussed in the following). Edges represent transitions between these states. The payoff function maps edges to
5-dimensional vectors of the form (c1,−c1,c2,−c2,d), that is, two dimensions for the first counter C1, two for the
second counter C2, and one additional dimension. Each increment of counter C1 (resp. C2) in M is implemented
in G as a transition of weight (1,−1,0,0,−1) (resp. (0,0,1,−1,−1). For decrements, we have weights respectively
(−1,1,0,0,−1) and (0,0,−1,1,−1) for C1 and C2. Therefore, the current value of counters (v1,v2) along an execution
of the 2CMM is represented in the game as the current sum of weights, (v1,−v1,v2,−v2,−v3), with v3 the number of
steps of the computation. Hence, along a faithful execution, the 1st and 3rd dimensions are always non-negative, while
the 2nd, 4th and 5th are always non-positive. The two dimensions per counter are used to enforce faithful simulation
of non-negativeness of counters and zero test. The last dimension is decreased by one for every transition, except when
the machine halts, from when it is incremented forever (i.e., the play in G goes to an absorbing state with self-loop
(0,0,0,0,1)). This is used to ensure that a play in G is winning iffM halts.

We now discuss how this game G ensures faithful simulation of the 2CMM by P1.

• Increment and decrement of counter values are easily simulated using the first four dimensions.

• Values of counters may never go below zero. To ensure this, we allow P2 to branch after every step of the 2CM
simulation to two special states, s1

stop neg and s2
stop neg, which are absorbing and with self-loops of respective

weights (0,1,1,1,1) and (1,1,0,1,1). If a negative value is reached on counter C1 (resp. C2), P2 can clearly
win the game by branching to state s1

stop neg (resp. s2
stop neg), as the total-payoff in the dimension corresponding

to the negative counter will always stay strictly negative. On the contrary, if P2 decides to go to s1
stop neg (resp.

s2
stop neg) when the value of C1 (resp. C2) is positive, then P1 wins the game as this dimension will be positive

and the other four will grow boundlessly. So these transitions are only used if P1 cheats.

• Zero tests are correctly executed. In the same spirit, we allow P2 to branch to two absorbing special states
after a zero test, s1

pos zero and s2
pos zero with self-loops of weights (1,0,1,1,1) and (1,1,1,0,1). Such states are

used by P2 if P1 cheats on a zero test (i.e., pass the test with a strictly positive counter value). Indeed, if a
zero test was passed with the value of counter C1 (resp. C2) strictly greater than zero, then the current sum
(v1,−v1,v2,−v2,v3) is such that −v1 (resp. −v2) is strictly negative. By going to s1

pos zero (resp. s2
pos zero), P2

ensures that this sum will remain strictly negative in the considered dimension forever and the play is lost for P1.

Therefore, if P1 does not faithfully simulate M, he is guaranteed to lose in G. On the other hand, if P2 stops
a faithful simulation, P1 is guaranteed to win. It remains to argue that he wins iff the machine halts. Indeed, if the
machineM halts, then P1 simulates its execution faithfully and either he is interrupted and wins, or the simulation
ends in an absorbing state with a self-loop of weight (0,0,0,0,1) and he also wins. Indeed, given that this state can
only be reached with values of counters equal to zero (by hypothesis on the machineM, without loss of generality),
the running sum of weights will reach values (0,0,0,0,n) where n grows to infinity, which ensures satisfaction of the
infimum (and thus supremum) total-payoff objective for threshold (0,0,0,0,0). On the opposite, if the 2CMM does
not halt, P1 has no way to reach the halting state by means of a faithful simulation and the running sum in the fifth
dimension always stays negative, thus inducing a losing play for P1, for both variants of the objective.

Consequently, we have that solving multi-weighted games for either the supremum or the infimum total-payoff
objective is undecidable.

We end this section by noting that in multi-weighted total-payoff games, P1 may need infinite memory to win,
even when all states belong to him (S2 = /0). Consider the game depicted in Fig. 2. As discussed in the proof of
Lemma 1, given any threshold vector v ∈Q2, P1 has a strategy to win the supremum total-payoff objective: it suffices
to alternate between the two loops for longer and longer periods, each time waiting to get back above the threshold in
the considered dimension before switching. This strategy needs infinite memory and actually, there exists no finite-
memory strategy that can achieve a finite threshold vector: the negative amount to compensate grows boundlessly with
each alternation, and thus no amount of finite memory can ensure to go above the threshold infinitely often.
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4. Window Mean-Payoff Objective

In one dimension, no polynomial algorithm is known for mean-payoff and total-payoff, and in multiple dimen-
sions, total-payoff is undecidable. In this section, we introduce the window mean-payoff objective, a conservative
approximation in which local deviations from the threshold must be compensated in a parametrized number of steps.
We consider a window, sliding along a play, within which the compensation must happen. Our approach can be ap-
plied both to mean-payoff and total-payoff objectives. Since we consider finite windows, both versions coincide for
threshold zero. Hence we present our results for mean-payoff.

In Sec. 4.1, we define the objective and discuss its relation with mean-payoff and total-payoff objectives. We then
divide our analysis into two subsections: Sec. 4.2 for one-dimension games and Sec. 4.3 for multi-dimension games.
Both provide thorough analysis of the fixed window problem (the bound on the window size is a parameter) and the
bounded window problem (existence of a bound is the question). We establish solving algorithms, prove complexity
lower bounds, and study the memory requirements of these objectives. In Sec. 4.4, we briefly discuss the extension of
our results to a variant of our objective modeling stronger requirements.

4.1. Definition and comparison

Objectives and decision problems. Given a multi-weighted two-player game G = (S1,S2,E,k,w) and a rational
threshold v ∈Qk, we define the following objectives.

• Given lmax ∈ N0, the good window objective

GWG(v, lmax) =
{

π ∈ Plays(G) | ∀ t, 1≤ t ≤ k, ∃ l ≤ lmax,
1
l

l−1

∑
p=0

w
(

eπ(p, p+1)
)
(t)≥ v(t)

}
, (1)

where eπ(p, p+ 1) is the edge (Last(π(p)),Last(π(p+ 1))), requires that for all dimensions, there exists a
window starting in the first position and bounded by lmax over which the mean-payoff is at least equal to the
threshold.

• Given lmax ∈ N0, the direct fixed window mean-payoff objective

DirFixWMPG(v, lmax) =
{

π ∈ Plays(G) | ∀ j ≥ 0, π( j,∞) ∈ GWG(v, lmax)
}

(2)

requires that good windows bounded by lmax exist in all positions along the play.

• The direct bounded window mean-payoff objective

DirBndWMPG(v) =
{

π ∈ Plays(G) | ∃ lmax > 0, π ∈ DirFixWMPG(v, lmax)
}

(3)

asks that there exists a bound lmax such that the play satisfies the direct fixed objective.

• Given lmax ∈ N0, the fixed window mean-payoff objective

FixWMPG(v, lmax) =
{

π ∈ Plays(G) | ∃ i≥ 0, π(i,∞) ∈ DirFixWMPG(v, lmax)
}

(4)

is the prefix-independent version of the direct fixed window objective: it asks for the existence of a suffix of the
play satisfying it.

• The bounded window mean-payoff objective

BndWMPG(v) =
{

π ∈ Plays(G) | ∃ lmax > 0, π ∈ FixWMPG(v, lmax)
}

(5)

is the prefix-independent version of the direct bounded window objective.
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For any v ∈Qk and lmax ∈ N0, the following inclusions are true:

DirFixWMPG(v, lmax)⊆ FixWMPG(v, lmax)⊆ BndWMPG(v), (6)
DirFixWMPG(v, lmax)⊆ DirBndWMPG(v)⊆ BndWMPG(v). (7)

Similarly to classical objectives, all objectives can be equivalently expressed for threshold v = {0}k by modifying the
weight function. Hence, given any variant of the objective, the associated decision problem is to decide the existence
of a winning strategy for P1 for threshold {0}k. Lastly, for complexity purposes, we make a difference between
polynomial (in the size of the game) and arbitrary (i.e., non-polynomial) window sizes.

Notice that all those objectives define Borel sets. Hence they are determined by Martin’s theorem [31].
Let π = s0s1s2 . . . be a play. Fix any dimension t,1≤ t ≤ k. The window from position j to j′, 0≤ j < j′, is closed

iff there exists j′′, j < j′′ ≤ j′ such that the sum of weights in dimension t over the sequence s j . . .s j′′ is non-negative.
Otherwise the window is open. Given a position j′ in π , a window is still open in j′ iff there exists a position 0≤ j < j′

such that the window from j to j′ is open. Consider any edge (si,si+1) appearing along π . If the edge is non-negative in
dimension t, the window starting in i immediately closes. If not, a window opens that must be closed within lmax steps.
Consider the first position i′ such that this window closes, then we have that all intermediary opened windows also
get closed by i′, that is, for any i′′, i < i′′ ≤ i′, the window starting in i′′ is closed before or when reaching position i′.
Indeed, the sum of weights over the window from i′′ to i′ is strictly greater than the sum over the window from i to i′,
which is non-negative. We call this fact the inductive property of windows.

s1 s2 s3 s4
1 −1

−1

1

Figure 4: Fixed window is satisfied for lmax≥ 2, whereas even
direct bounded window is not.

s1 s2 0

−1

1

Figure 5: Mean-payoff is satisfied but none of the
window objectives is.

Illustration. Consider the game depicted in Fig. 4. It has a unique outcome, and it is winning for the classical mean-
payoff objective of threshold 0, as well as for the infimum (resp. supremum) total-payoff objective of threshold −1
(resp. 0). Consider the fixed window mean-payoff objective for threshold 0. If the size of the window is bounded by 1,
the play is losing.4 However, if the window size is at least 2, the play is winning, as in s3 we close the window in two
steps and in s4 in one step. Notice that by definition of the objective, it is clear that it is also satisfied for all larger
sizes.5 As the fixed window objective is satisfied for size 2, the bounded window objective is also satisfied. On the
other hand, if we restrict the objectives to their direct variants, then none is satisfied, as from s2, no window, no matter
how large it is, gets closed.

Consider the game of Fig. 5. Again, the unique strategy of P1 satisfies the mean-payoff objective for threshold 0. It
also ensures value−1 for the infimum and supremum total-payoffs. Consider the strategy of P2 that takes the self-loop
once on the first visit of s2, twice on the second, and so on. Clearly, it ensures that windows starting in s1 stay open
for longer and longer numbers of steps (we say that P2 delays the closing of the window), hence making the outcome
losing for the bounded window objective (and thus the fixed window objective for any lmax ∈ N0). This illustrates the
added guarantee (compared to mean-payoff) asked by the window objective: in this case, no upper bound can be given
on the time needed for a window to close, i.e., on the time needed to get the local sum back to non-negative. Note that
P2 has to go back to s1 at some point: otherwise, the prefix-independence of the objectives6 allows P1 to wait for P2
to settle on cycling and win. For the direct variants, P2 has a simpler winning strategy consisting in looping forever,
as enforcing one permanently open window is sufficient.

4A window size of one actually requires that all infinitely often visited edges are of non-negative weights.
5The existential quantification on the window size l, bounded by lmax, is indeed crucial in Eq. (1) to ensure monotonicity with increasing

maximal window sizes, a desired behavior of the definition for theoretical properties and intuitive use in specifications.
6Fixed and bounded window mean-payoff objectives are prefix-independent: for all ρ ∈ Prefs(G), π ∈ Plays(G), we have that ρ ·π is winning

if and only if π is winning.
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Relation with classical objectives. We introduce the bounded window objectives as conservative approximations
of mean-payoff and total-payoff in one-dimension games. Indeed, in Lemma 3, we show that winning the bounded
window (resp. direct bounded window) objective implies winning the mean-payoff (resp. total-payoff) objective
while the converse implication is only true if a strictly positive mean-payoff (resp. arbitrary high total-payoff) can be
ensured.

Lemma 3. Given a one-dimension game G = (S1,S2,E,w), the following assertions hold.

(a) If the answer to the bounded window mean-payoff problem is YES, then the answer to the mean-payoff threshold
problem for threshold zero is also YES.

(b) If there exists ε > 0 such that the answer to the mean-payoff threshold problem for threshold ε is YES, then the
answer to the bounded window mean-payoff problem is also YES.

(c) If the answer to the direct bounded window mean-payoff problem is YES, then the answer to the supremum total-
payoff threshold problem for threshold zero is also YES.

(d) If the answer to the supremum total-payoff threshold problem is YES for all integer thresholds (i.e., the total-payoff
value is ∞), then the answer to the direct bounded window mean-payoff problem is also YES.

Assertions (a) and (c) follow from the decomposition of winning plays into bounded windows of non-negative
weights. The key idea for assertions (b) and (d) is that mean-payoff and total-payoff objectives always admit mem-
oryless winning strategies, for which the consistent outcomes can be decomposed into simple cycles (i.e., with no
repeated edge) over which the mean-payoff is at least equal to the threshold and which length is bounded. Hence they
correspond to closing windows. Note that strict equivalence with the classical objectives is not verified, as witnessed
before (Fig. 5).

Proof. Assertion (a). In the one-dimension case, sup. and inf. mean-payoff problems coincide. Let π ∈ Plays(G)
be such that π ∈ BndWMPG(0). There exists i ≥ 0 such that the suffix of π starting in i can be decomposed into
an infinite sequence of bounded segments (i.e., windows) of non-negative weight. Thus, this suffix satisfies the sup.
mean-payoff objective as there are infinitely many positions where the total sum from i is non-negative. Since the
mean-payoff objective is prefix-independent, the play π is itself winning.

Assertion (b). Consider a memoryless winning strategy of P1 for the mean-payoff of threshold ε > 0. Only strictly
positive simple cycles can be induced by such a strategy. Consider any outcome π = s0s1s2 . . . consistent with it.
We claim that for any position j along this play, there exists a position j+ l, with l ≤ lmax = (|S|− 1) · (1+ |S| ·W ),
such that the sum of weights over the sequence ρ = s j . . .s j+l is non-negative. Clearly, if it is the case, then objective
FixWMPG(v, lmax) is satisfied and so is objective BndWMPG(v). Consider the cycle decomposition AC1C2 . . .CnB of
this sequence obtained as follows. We push successively s0,s1, . . . onto a stack, and whenever we push a state that is
already in the stack, a simple cycle is formed that we remove from the stack and append to the cycle decomposition.
The sequence ρ is decomposed into an acyclic part (A∪B), whose length7 is at most (|S|−1) and whose total sum is
at least −(|S|−1) ·W , and simple cycles of total sum at least 1 and length at most |S|. Given the window size lmax, we
have at least (|S|−1) ·W simple cycles in the cycle decomposition. Hence, the total sum over ρ is at least zero, which
proves our point.

Assertion (c). Consider a play π ∈ DirBndWTPG(0). Using the same decomposition argument as for assertion
(a), we have that the sequence of total sums takes infinitely often values at least equal to zero. Thus the limit of this
sequence of moments bounds from below the limit of the sequence of suprema and is at least equal to zero, which
shows that the supremum total-payoff objective is also satisfied by play π .

Assertion (d). In one-dimension games, the value of the total-payoff (i.e., the largest threshold for which P1 has a
winning strategy) is ∞ if and only if the value of mean-payoff is strictly positive [26]. Hence, we apply the argument
of assertion (b), further noticing that the window open in position j is closed in at most lmax steps for any j≥ 0, which
is to say that the direct objective is satisfied.

7The length of a sequence is the number of edges it involves.
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4.2. Games with one dimension
We now study the fixed window mean-payoff and the bounded window mean-payoff objectives in one-dimension

games. For the fixed window problem, we establish an algorithm that runs in time polynomial in the size of the game
and in the size of the window and we show that memory is needed for both players. Note that this is in contrast
to the mean-payoff objective, where P2 is memoryless even in the multi-dimension case (cf. Table 1). Moreover,
the problem is shown to be P-hard even for polynomial window sizes. For the bounded window problem, we show
equivalence with the fixed window problem for size (|S|−1) · (|S| ·W +1), i.e., this window size is sufficient to win if
possible. The bounded window problem is then shown to be in NP∩coNP and at least as hard as mean-payoff games.
Fixed window: algorithm. Given a game G = (S1,S2,E,w) and a window size lmax ∈ N0, we present an iterative
algorithm FWMP (Alg. 1) to compute the winning states of P1 for the objective FixWMPG(0, lmax). Initially, all states
are potentially losing for P1. The algorithm iteratively declares states to be winning, removes them, and continues
the computation on the remaining subgame as follows. In every iteration, i) DirectFWMP computes the set Wd of
states from which P1 can win the direct fixed window objective; ii) it computes the attractor to Wd ; and then proceeds
to the next iteration on the remaining subgame (the restriction of G to a subset of states A ⊆ S is denoted G � A). In
every iteration, the states of the computed set Wd are obviously winning for the fixed window objective. Thanks to the
prefix-independence of the fixed window objective, the attractor to Wd is also winning. Since P2 must avoid entering
this attractor, P2 must restrict his choices to stay in the subgame, and hence we iterate on the remaining subgame.
Thus states removed over all iterations are winning for P1. This sequence of steps is essentially the computation of a
greatest fixed point. The key argument to establish correctness is as follows: when the algorithm stops, the remaining
set of states W is such that P2 can ensure to stay in W and falsify the direct fixed window objective by forcing the
appearance of one open window larger than lmax. Since he stays in W , he can repeatedly use this strategy to falsify the
fixed window objective. Thus the remaining set W is winning for P2, and the correctness of the algorithm follows.

Algorithm 1 FWMP(G, lmax)

Require: G = (S1,S2,E,w) and lmax ∈ N0
Ensure: W is the set of winning states for P1 for FixWMPG(0, lmax)

n := 0 ; W := /0
repeat

W n
d :=DirectFWMP(G, lmax)

W n
attr := AttrP1

G (W n
d ) {attractor for P1}

W :=W ∪W n
attr ; G := G � (S\W ) ; n := n+1

until W = S or W n−1
attr = /0

return W

Algorithm 2 DirectFWMP(G, lmax)

Require: G = (S1,S2,E,w) and lmax ∈ N0
Ensure: Wd is the set of winning states for P1 for the objec-

tive DirFixWMPG(0, lmax)
Wgw := GoodWin(G, lmax)
if Wgw = S or Wgw = /0 then

Wd :=Wgw
else

Wd :=DirectFWMP(G �Wgw, lmax)
return Wd

Algorithm 3 GoodWin(G, lmax)

Require: G = (S1,S2,E,w) and lmax ∈ N0
Ensure: Wgw is the set of winning states for GWG(0, lmax)

for all s ∈ S do
C0(s) := 0

for all i ∈ {1, . . . , lmax} do
for all s ∈ S1 do

Ci(s) := max(s,s′)∈E{w((s,s′))+Ci−1(s′)}
for all s ∈ S2 do

Ci(s) := min(s,s′)∈E{w((s,s′))+Ci−1(s′)}
return Wgw := {s ∈ S |∃ i, 1≤ i≤ lmax,Ci(s)≥ 0}

The main idea of algorithm DirectFWMP (Alg. 2) is that to win the direct fixed window objective, P1 must be
able to repeatedly win the good window objective, which consists in ensuring a non-negative sum in at most lmax
steps. Thus the algorithm consists in computing a least fixed point. A winning strategy of P1 in a state s is a strategy
that enforces a non-negative sum and, as soon as the sum turns non-negative (in some state s′), starts doing the same
from s′. It is important to start again immediately as it ensures that all suffixes along the path from s to s′ also have a
non-negative sum thanks to the inductive property of windows. That is, for any state s′′ in between, the window from s′′
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to s′ is closed. The set of states from which P1 can ensure winning for the good window objective is computed by
subroutine GoodWin (Alg. 3). Intuitively, given a state s ∈ S and a number of steps i≥ 1, the value Ci(s) is computed
iteratively (from Ci−1(s)) and represents the best sum that P1 can ensure from s in exactly i steps:

∀s ∈ S, C0(s) = 0 ∧ Ci≥1(s) =

{
max(s,s′)∈E{w((s,s′))+Ci−1(s′)} if s ∈ S1,

min(s,s′)∈E{w((s,s′))+Ci−1(s′)} if s ∈ S2.

Hence, the set of winning states for P1 is the set of states for which there exists some i, 1≤ i≤ lmax such that Ci(s)≥ 0.
We state the correctness of GoodWin in Lemma 4.

Lemma 4. Algorithm GoodWin computes the set of winning states of P1 for the good window objective in time
O (|E| · lmax ·V ), with V = dlog2 We, the length of the binary encoding of weights.

Proof. LetWg ⊆ S denote the winning states for GWG(0, lmax). We prove that (a) s ∈Wg⇒ s ∈ GoodWin(G, lmax),
and (b) s ∈ GoodWin(G, lmax)⇒ s ∈Wg.

We first consider case (a). From s, there exists a strategy of P1 that enforces a non-negative sum after l steps, for
some l, 1≤ l ≤ lmax. Hence, the value Cl(s) computed by the algorithm is non-negative and s ∈ GoodWin(G, lmax).

Case (b). Assume s∈GoodWin(G, lmax). By definition of the algorithm GoodWin, there exists some l ≤ lmax such
that Cl(s) is positive. Consequently, taking the choice of l edges that achieves the maximum value defines a strategy
for P1 that ensures a positive sum after l steps, hence closing the window started in s. That is, s ∈Wg.

It remains to discuss the complexity of GoodWin. Clearly, it takes a number of elementary arithmetic operations
which is bounded by O (|E| · lmax) to compute the set Wgw as each edge only needs to be visited once at each step i.
Each elementary arithmetic operation takes time linear in the number of bits V of the encoding of weights, that is,
logarithmic in the largest weight W . Hence, the time complexity of GoodWin is O (|E| · lmax ·V ).

Thanks to the previous lemma, we establish the algorithm solving the direct fixed window objective.

Lemma 5. Algorithm DirectFWMP computes the set of winning states of P1 for the direct fixed window mean-payoff
objective in time O (|S| · |E| · lmax ·V ), with V = dlog2 We, the length of the binary encoding of weights.

Proof. LetW be the set of winning states for DirFixWMPG(0, lmax), i.e.,

s ∈W ⇔ ∃ λ1 ∈ Λ1, ∀λ2 ∈ Λ2, OutcomeG(s,λ1,λ2) ∈ DirFixWMPG(0, lmax).

We first prove (a) s ∈ DirectFWMP(G, lmax)⇒ s ∈ W , and then (b) s ∈ W ⇒ s ∈ DirectFWMP(G, lmax). First of
all, notice that DirectFWMP exactly computes the set of states Wd such that a non-negative sum is achievable in at
most lmax steps, using only states from which a non-negative sum can also be achieved in at most lmax steps (hence the
property is defined recursively).

Consider case (a). Let s ∈Wd . Consider the following strategy of P1.

1. Play the strategy prescribed by GoodWin until a non-negative sum is reached. This is guaranteed to be the case
in at most lmax steps. Let s′ be the state that is reached in this manner.

2. By construction of Wd , we have that s′ ∈Wd . Thus, play the strategy prescribed by GoodWin in s′.

3. Continue ad infinitum.

We denote this strategy by λ1 and claim it is winning for the direct fixed window objective, i.e., s ∈ W . Indeed,
consider any strategy of P2 and let π = OutcomeG(s,λ1,λ2). We have π = s1s2 . . .sm1sm1+1 . . .sm2sm2+1 . . . with for
all j≥ 0, s j ∈ S and s1 = sm0 = s, such that all sequences ρ(n) = smn . . .smn+1 are of length at most lmax+1 (lmax steps)
and such that all strict prefixes of ρ(n) are strictly negative and all suffixes of ρ(n) are positive. Indeed, starting in
some state smn , the strategy λ1 keeps a memory of the current sum and tries to reach a non-negative value (using the
strategy prescribed by GoodWin). As soon as such a value is reached in a state smn+1 , the memory of the current sum
kept by the strategy is reset to zero and the process is restarted. That way, for all j, mn ≤ j < mn+1, we have that the
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sum over the sequence from s j to smn+1 is non-negative, hence all intermediate windows are also closed. Thus, the
window property is satisfied everywhere along the play π , starting in s1 = s, which proves that s ∈W .

Case (b). Let λ1 be a winning strategy of P1 for DirFixWMPG(0, lmax). For any strategy λ2 of P2, the outcome is
a play π = s1s2 . . . with s1 = s such that the window property is satisfied from all states. In particular, this implies, that
for all s j, strategy λ1 enforces a positive sum in at most lmax steps, that is, s j ∈ GoodWin(G, lmax). Since it is the case
for all states s j, we have that P1 has a strategy to ensure a positive sum in at most lmax steps using only states from
which this property is ensured. Therefore, we conclude that s ∈Wd .

Again, the number of calls of this algorithm is at most the number of states |S|. Let CGW denote the complexity of
algorithm GoodWin. Then, the complexity of algorithm DirectFWMP is O (|S| ·CGW).

Finally, we prove the correctness of the algorithm for the fixed window problem.

Lemma 6. Algorithm FWMP computes the set of winning states of P1 for the fixed window mean-payoff objective in
time O

(
|S|2 · |E| · lmax ·V

)
, with V = dlog2 We, the length of the binary encoding of weights.

Proof. LetW ⊆ S be the set of states that are winning for FixWMPG(0, lmax), i.e.,

s ∈W ⇔ ∃λ1 ∈ Λ1, ∀λ2 ∈ Λ2, OutcomeG(s,λ1,λ2) ∈ FixWMPG(0, lmax).

Note that since we set the threshold to be 0 (w.l.o.g.), we may ignore the division by the window size l in Eq. (1). We
claim that FWMP(G, lmax) =W . The proof is in two parts: (a) s ∈ FWMP(G, lmax)⇒ s ∈W , and (b) s ∈W ⇒ s ∈
FWMP(G, lmax).

We begin with (a). Let (Wd)
n≥0 and (Wattr)

n≥0 be the finite sequences of sets computed by the algorithm. We have
that FWMP(G, lmax) =

⋃
n≥0 W n

attr. For any n,n′ such that n 6= n′, we have that W n
attr ∩W n′

attr = /0 and W n
d ∩W n′

d = /0.
Moreover, for all n ≥ 0, W n

d ⊆W n
attr. Let s ∈ FWMP(G, lmax). There exists a unique n ≥ 0 such that s ∈W n

attr. By
construction, from s, P1 has a strategy to reach and stay in W n

d ∪W n−1
attr ∪W n−2

attr ∪ . . .W 0
attr and thus s is winning in the

subgame G � (S \W n−1
attr ). However, P2 still has the possibility to leave W n

d and reach the set W n−1
attr ∪W n−2

attr ∪ . . .W 0
attr.

Since the sequence is finite and P2 cannot leave W 0
d , we have that at some point, any outcome is trapped in some set

W m
d , 0≤m≤ n, in which P1 wins the direct fixed window objective. Let x be the length of the finite prefix outside the

set W m
d . The outcome satisfies the fixed window mean-payoff objective for i = x. Therefore, we have that s ∈W .

Now consider (b). Let s ∈ W be a winning state for FixWMPG(0, lmax). We claim that s ∈ FWMP(G, lmax).
Suppose it is not the case and consider the sequences (Wd)

n≥0 and (Wattr)
n≥0 as before. We have that for all n ≥ 0,

s 6∈W n
attr. In particular, P2 can force staying in Strap = S \

⋃
n≥0 W n

attr when starting in s. Since the algorithm has
stopped, we have that DirectFWMP(G � Strap, lmax) = /0. As algorithm DirectFWMP is correct, from all states of
Strap, P2 has a strategy to spoil the direct fixed window game, i.e., P2 can force a sequence of states such that there
exists a position j along it for which the window starting in j stays open for at least (lmax +1) steps, and such that this
sequence remains in Strap. Therefore, P2 can force staying in Strap and seeing infinitely often such sequences, hence
P1 is losing for the fixed window mean-payoff objective, which contradicts the fact that s ∈W .

Finally, consider the complexity of the recursive algorithm FWMP. Notice that at least one state is declared
winning at each iteration. The number of calls is thus at most the number of states |S|. Computing the attractor is
linear in the number of edges |E| ≤ |S|2. The overall complexity is thus O (|S| · (|E|+CDW)), where CDW is the
complexity of the DirectFWMP algorithm.

Fixed window: lower bounds. Thanks to the correctness of algorithm FWMP, we also deduce linear upper bounds
(in |S| · lmax) on the memory needed for both players (Lemma 7). Indeed, let s ∈ S be a winning state for P1. A
winning strategy λ1 for P1 is to (a) reach the set of states W n

d that are winning for the direct fixed window objective
in the subgame restricted to states W n

d \W n−1
attr , then (b) repeatedly play the strategy prescribed by GoodWin in this

subgame (i.e., enforce a non-negative sum in less than lmax steps, see proof of Lemma 5). If P2 leaves for a lower
subgame restricted to W n′

attr, n′ < n, the strategy is to start again part (a) in this subgame. Part (a) is memoryless as it
uses a classical attractor strategy. Part (b) requires to consider, for each state s′ in the set computed by DirectFWMP,
a number of memory states which is bounded by lmax, as the only memory needed is to select the corresponding
successor state that will maximize the Cl(s′) value, for all possible values of l, the number of steps remaining to close
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a window. Similarly, P2 needs to be able to prevent the closing of a window repeatedly, and therefore also possibly
needs lmax memory states for each state of the game.

To illustrate that memory is needed by both players, consider the following examples. First, consider a game
where all states belong to P1 and such that the play starts in a central state s and in s, there are three outgoing edges,
towards three simple cycles C1, C2, and C3. All other states have only one outgoing edge. Cycle C1 is composed of
six edges of successive weights 3,3,5,−1,−1 and −5. Cycle C2 is 7,−1 and −9. Cycle C3 is 5,5 and −11. The
objective is FixWMPG(0, lmax = 4). Clearly, from some point on, a winning strategy of P1 has to infinitely alternate
between cycles in the following way: (C1C2C3)

ω . Any other alternation leads to a bad window appearing infinitely
often: hence, the decision of P1 in s depends on the remaining number of steps to ensure a good window. Second,
consider a similar game but with all states belonging to P2. Again, the initial state is central and there are two cycles
C1 and C2 such that C1 is 1 followed by −1, and C2 is −1,−1 and 2. The objective is FixWMPG(0, lmax = 3). If P2 is
memoryless, both possible strategies induce a winning play for P1. On the other hand, if P2 is allowed to alternate, he
can choose the play (C1C2)

ω which will be losing for P1 as the window −1,−1,−1 will appear infinitely often.

Lemma 7. In one-dimension games with a fixed window mean-payoff objective, memory is needed by both players
and linear memory in the number of states times the window size is sufficient.

Through Lemma 6, we have shown that the fixed window problem admits a polynomial (in |S|, V and lmax)
algorithm. In Lemma 8, we prove that even for window size lmax = 1 and weights {−1,1}, the problem is P-hard. This
is via a reduction from reachability games. By making the target states absorbing with a self-loop of weight 1, and
giving weight −1 on all other edges, we obtain the reduction, as reaching a target state is now the only way to ensure
that windows close.

Lemma 8. In two-player one-dimension games, the fixed window mean-payoff problem is P-hard, even for lmax = 1
and weights {−1,1}.

Proof. Let Gr = (S1,S2,E) be an unweighted game with a reachability objective asking to visit (at least once) a state
of the set R ⊆ S. We build the game G = (S1,S2,E ′,w) by (a) making the target states absorbing with a self-loop of
weight 1, i.e., for all s ∈ R, we have (s,s) ∈ E ′ and w((s,s)) = 1, and (b) putting weight −1 on all other edges, i.e., for
all edge (s, t) ∈ E such that s 6∈ R, we have (s, t) ∈ E ′ and w((s,s)) =−1. We claim that P1 has a winning strategy in
Gr from a state s ∈ S if and only if he has a winning strategy for the objective FixWMPG(0, lmax = 1) in G from s ∈ S.
Indeed, it is clear that any outcome that never reaches the target set is such that all windows stay indefinitely open, and
conversely, an outcome that reaches this set after n steps is winning for the fixed window objective with i = n. Since
deciding the winner in reachability games is P-complete, this concludes our proof.

Fixed window: summary. We sum up the complexity analysis of the fixed window problem in Theorem 9.

Theorem 9. In two-player one-dimension games, (a) the fixed arbitrary window mean-payoff problem is decidable
in time O

(
|S|2 · |E| · lmax ·V

)
, with V = dlog2 We, the length of the binary encoding of weights, and (b) the fixed

polynomial window mean-payoff problem is P-complete. In general, both players require memory, and memory of size
linear in |S| · lmax is sufficient.

Bounded window: algorithm. In the following, we focus on the bounded window mean-payoff problem for two-
player one-dimension games. We start with two technical lemmas related to the classical supremum total-payoff
threshold problem. Using these lemmas, we establish an algorithm to solve the bounded window problem. This
algorithm uses a polynomial number of calls to an oracle solving the total-payoff threshold problem, hence proving
that the bounded window problem is in NP∩ coNP [26]. As a corollary, we get an interesting bound on the window
size needed to win the fixed window problem if possible.

The first technical lemma (Lemma 10) states that if P1 has a strategy to win the supremum total-payoff objective
from some state sinit, then he can force a non-negative sum from this state in at most (|S|−1) · (|S| ·W +1) steps, i.e.,
he wins the good window objective for this window size.

Lemma 10. Let G = (S1,S2,E,w) be a two-player one-dimension game. If P1 has a strategy to win for objective
TotalSupG(0) from initial state sinit ∈ S, thenP1 also has a strategy to win for the good window objective GWG(0, lmax)
from sinit for lmax = (|S|−1) · (|S| ·W +1).
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This result is obtained by considering a memoryless winning strategy of P1 for the total-payoff and the decompo-
sition in simple cycles of any consistent outcome where (a) either simple cycles are strictly positive, or (b) they are of
value zero but preceded by a non-negative prefix.

Proof. Let λ1 ∈ ΛM
1 be a memoryless winning strategy of P1 for TotalSupG(0). Our claim is that for all possible

outcome π consistent with λ1 starting in the initial state sinit, there exists a prefix ρ of π of size at most lmax such
that the total sum of weights over ρ is non-negative. Let π be any outcome consistent with λ1 and ρ1 its prefix of
length (|S|−1) ·(|S| ·W +1). Consider the cycle decomposition (see the proof of Lemma 3) of ρ1: A,C1,C2, . . . ,Cm,B,
with A the prefix before the first cycle and B the suffix after the last cycle in ρ1. The total length of the acyclic part is
|A|+ |B|< |S|−1. We claim that there exists a prefix ρ of ρ1 such that the total sum of weights over ρ is non-negative.
Consider the following arguments:

1. No cycle C in {C1, . . . ,Cm} can be strictly negative. Otherwise, since λ1 is memoryless, P2 could force cycling
in such a cycle forever and the play would be losing for the supremum total-payoff objective, which contradicts
λ1 being a winning strategy.

2. Assume that there exists a cycle C in {C1, . . . ,Cm} such that the sum of weights over this cycle is zero. We define
the high point of a cycle as the first state where the sum from the start of the cycle takes its highest value. Then,
the prefix ρ of ρ1 up to this high point is non-negative and we are done. Indeed, assume it is not the case. Then,
the running sum over the outcome π is strictly negative when reaching the high point, and stays strictly negative
in all positions along the cycle C, by definition of the high point. Therefore, P2 can force cycling forever in C
since λ1 is memoryless and the outcome becomes losing for the total-payoff objective.

3. So assume there are only strictly positive cycles in the cycle decomposition of ρ1, that is, they all have a total
sum of value at least 1. The total sum over C1, . . . ,Cm is at least equal to m. Since each cycle is of length at most
|S| and A∪B is of length at most |S|−1, we have that the number of cycles m in the cycle decomposition of ρ1
is at least ((|S|− 1) · (|S| ·W + 1)− (|S|− 1))/ |S| = (|S|− 1) ·W . Given that the total sum over prefix A is at
least −(|S|−1) ·W , we obtain that ρ =AC1 C2 . . .Cm is the desired prefix with a non-negative total sum, and its
length is bounded by (|S|−1) · (|S| ·W +1).

This concludes our proof.

The second technical lemma (Lemma 11) shows that if P2 has a strategy to ensure that the supremum total-payoff
from some state sinit is strictly negative, then he has a memoryless strategy to do so and any outcome π starting in sinit
and consistent with this strategy is such that the direct bounded window mean-payoff objective is not satisfied.

Lemma 11. Let G = (S1,S2,E,w) be a two-player one-dimension game. If P2 has a spoiling strategy for objective
TotalSupG(0) from initial state sinit ∈ S, then P2 has a strategy λ2 ∈ ΛM

2 to ensure that for all possible outcome
π = s0s1 . . . consistent with λ2 starting in s0 = sinit, there exists a position i ≥ 0 such that for all window sizes l ≥ 1,
the total sum of weights on the window from si to si+l is strictly negative.

Proof. By contradiction. Let λ2 ∈ ΛM
2 be a memoryless spoiling strategy for objective TotalSupG(0) from sinit ∈ S.

Let π be a consistent outcome and assume that it does not respect the lemma, i.e., for all positions i ≥ 0, there exists
a window size l ≥ 1 such that the window from si to si+l is non-negative. Then the play π can be decomposed as a
sequence of finite windows of non-negative weights. Hence, the total sum from s0 = sinit takes infinitely often values at
least equal to zero and the limit of its suprema is non-negative. This is in contradiction to λ2 being a winning strategy
for P2.

Thanks to Lemma 10 and Lemma 11, we are now able to establish an algorithm (Alg. 4) to solve the bounded
window mean-payoff problem on two-player one-dimension games, and to deduce NP∩ coNP-membership of the
problem. Lemma 12 states its correctness.

Algorithm BoundedProblem (Alg. 4) computes via a subroutine UnbOpenWindow the set of states from which
P2 can force the visit of a position such that the window opening in this position never closes. Clearly, to prevent P1
from winning the bounded window problem, P2 must be able to do so repeatedly as the prefix-independence of the
objective otherwise gives the possibility to wait that all such bad positions are encountered before taking the windows
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Algorithm 4 BoundedProblem(G)

Require: Game G = (S1,S2,E,w)
Ensure: Wbp is the set of winning states for P1 for the bounded

window mean-payoff problem
Wbp := /0
L := UnbOpenWindow(G)
while L 6= S\Wbp do

Wbp := AttrP1
G (S\L)

L := UnbOpenWindow
(

G � (S\Wbp)
)

return Wbp

Algorithm 5 UnbOpenWindow(G)

Require: Game G = (S1,S2,E,w)
Ensure: L is the set of states from which P2 can force a position for

which the window never closes
p := 0 ; L0 := /0
repeat

Lp+1 := Lp ∪AttrP2
G�(S\Lp)

(
NegSupTP

(
G � (S\Lp)

))
p := p+1

until Lp = Lp−1
return L := Lp

into account. Therefore, the states that are not in UnbOpenWindow(G), as well as their attractor, are winning for P1.
Since the choices of P2 are reduced because of the attractor of P1 being declared winning, we compute in several
steps, adding new states to the set of winning states for P1 up to stabilization.

Now consider the subroutine UnbOpenWindow (Alg. 5). Its correctness is based on Lemma 11. Indeed, it com-
putes the set of states from which P2 can force a position for which the window never closes. To do so, it suffices
to compute the attractor for P2 of the set of states from which P2 can enforce a strictly negative supremum total-
payoff. Routine NegSupTP denotes a call to an oracle solving the total-payoff problem, which is known to belong to
NP∩ coNP [26]. Precisely,

NegSupTP(G) =
{

s ∈ S | ∃λ2 ∈ Λ2, ∀λ1 ∈ Λ1, ∀π ∈ OutcomeG(s,λ1,λ2), TP(π)< 0
}
.

Again, we compute the fixed point of the sequence as the choices of P1 are reduced at each iteration.
The main idea of the correctness proof is that from all states in Wbp, P2 has an infinite-memory winning strategy

which is played in rounds, and in round n ensures an open window of size at least n by playing the total-payoff strategy
of P2 for at most n · |S| steps, and then proceeds to round (n+1) to ensure an open window of size (n+1), and so on.
Hence, windows stay open for arbitrary large periods and the bounded window objective is falsified.

Lemma 12. Given a two-player one-dimension game G=(S1,S2,E,w), the algorithm BoundedProblem computes the
set of winning states for P1 for the bounded window mean-payoff objective of threshold 0 in time O(|S|2 · (|E|+C)),
where C is the complexity of algorithm NegSupTP, i.e., the complexity of computing the set of winning states in a
two-player one-dimension supremum total-payoff game. Thus, algorithm BoundedProblem is in NP∩ coNP.

Proof. It suffices to show that for all states in Wbp = BoundedProblem(G), there exists a winning strategy of P1,
whereas for all states in S\Wbp, there exists one of P2.

Consider a state s∈Wbp. Consider (Lm)0≤m≤n, the finite sequence of sets L that are computed by BoundedProblem,
with L0 = UnbOpenWindow(G); and (W m

bp)0≤m≤n, the corresponding finite sequence of sets Wbp where W 0
bp = /0 is

empty and W n
bp = Wbp is the returned set of winning states. For all m′,m, 0 ≤ m′ < m ≤ n, we have that W m

bp ⊃W m′
bp

and Lm ⊂ Lm′ . By construction, there exists m, 1 ≤ m ≤ n such that s ∈W m
bp = AttrP1

G (S \ Lm−1). In the subgame
G � ((S \Lm−1)\W m−1

bp ), P1 has a memoryless [3] winning strategy for the supremum total-payoff objective. Hence,
consider the strategy λ1 of P1 which is to reach the set (S\Lm−1) (in at most |S| steps) and then play the memoryless
total-payoff strategy in the subgame. It is possible for P2 to force leaving this subgame for a lower subset W m′

bp ⊂W m
bp

with m′ < m but since the sequence is finite, any outcome is ultimately trapped in some subgame G � ((S\Lm′′)\W m′′
bp ).

Therefore, repeating the strategy λ1 in each subgame ensures that after a finite number of steps (and hence a finite
number of positions for which windows never close), a bottom subgame G � ((S \ Lm′′) \W m′′

bp ) is reached and, by
Lemma 10, strategy λ1 ensures satisfaction of the good window objective for lmax = (|S| − 1) · (|S| ·W + 1) in this
subgame. Moreover, since this strategy never visits states out of the bottom subgame, it ensures an inductive window
from every state, regardless of the past. Hence, all intermediate windows are also closed and this strategy is winning
for FixWMPG(0, lmax) ⊆ BndWMPG(0) from the initial state s. The states that are only visited finitely often before
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reaching the bottom subgame have no consequence thanks to the prefix-independence of the bounded window mean-
payoff objective.

As for P2, consider a state s ∈ S \Wbp. Consider (Lp)0≤p≤q, the finite sequence of sets L that are computed in the
last call to UnbOpenWindow by BoundedProblem, with L0 = /0. We define the sequences (Np)1≤p≤q and (Ap)1≤p≤q as
Np = NegSupTP(G � (S\Lp−1)) and Ap = Lp \Lp−1 = AttrP2

G�(S\Lp−1)
(Np). We have that s ∈ Lp for some p between 1

and q. An infinite memory winning strategy for P2 is played in rounds. In round n, P2 acts as follows. (a) If the
current state is in Ap, play the attractor to Np and then play the optimal strategy for the supremum total-payoff in Np
to ensure that no window will have a non-negative sum for n steps. (b) P1 can leave the set Ap for some lower set Ap′ ,
1≤ p′ < p. If so, play the attractor to Np′ and continue. Ultimately, any outcome is trapped in some set Np′′ \Ap′′−1,
with 1 ≤ p′′ ≤ q and A0 = /0, as in N1, P1 cannot leave. There P1 cannot prevent the window being strictly negative
for n steps. When such a window has been enforced for n steps, move to round n+ 1 and start again. This strategy
ensures that the bounded window problem is not satisfied as, infinitely often, windows stay open for arbitrary large
periods along any outcome.

Finally, we discuss the complexity of algorithm BoundedProblem. Let C be the complexity of routine NegSupTP,
that is, the complexity of solving a one-dimension supremum total-payoff game. The total complexity of subalgorithm
UnbOpenWindow is O(|S| · (|E|+C)) as the sequence of computations is of length at most |S| and each computation
takes time O(|E|+C). The overall complexity of BoundedProblem is thus O(C+ |S| · (|E|+ |S| · (|E|+C))) =
O(|S|2 · (|E|+C)).

An interesting corollary of Lemma 10 and Lemma 12 is that the sets of winning states coincide for objectives
FixWMPG(0, lmax = (|S| − 1) · (|S| ·W + 1)) and BndWMPG(0), therefore proving NP∩ coNP-membership for the
subset of fixed window problems with window size at least lmax (hence an algorithm independent of the window size
whereas Lemma 5 gives an algorithm which is polynomial in the window size).

Corollary 13. In two-player one-dimension games, the fixed window mean-payoff problem is in NP∩coNP for window
size at least equal to (|S|−1) · (|S| ·W +1).

Bounded window: lower bounds. Algorithm BoundedProblem (Lemma 12) provides memoryless winning strategies
for P1 (attractor + memoryless strategy for total-payoff) and infinite-memory winning strategies for P2 (delaying the
closing of windows for increasing number of steps each round) in one-dimension bounded window mean-payoff
games. Lemma 14 states that infinite memory is necessary for P2, as discussed in Section 4.1: P2 cannot use the zero
cycle forever, but he must cycle long enough to defeat any finite window. Hence, its strategy needs to cycle for longer
and longer, which requires infinite memory.

Lemma 14. In one-dimension games with a bounded window mean-payoff objective, (a) memoryless strategies suffice
for P1, and (b) infinite-memory strategies are needed for P2 in general.

In Lemma 17, we give a polynomial reduction from mean-payoff games to bounded window mean-payoff games,
therefore showing that a polynomial algorithm for the bounded window problem would solve the long-standing ques-
tion of the P-membership of the mean-payoff threshold problem. The proof relies on technical lemmas providing
intermediary reductions. First, we prove that given a game G, deciding if P1 has a strategy to ensure a non-negative
mean-payoff can be reduced to deciding if P1 has a strategy to ensure a strictly positive mean-payoff when weights are
shifted positively by a sufficiently small ε (Lemma 15). Second, we apply Lemma 3 on the shifted game to prove that
winning this objective implies winning the bounded window problem. This gives one direction of the reduction. For
the other one, we show that given a game G, if P1 has a strategy to win the bounded window problem when weights
are shifted positively by a sufficiently small ε , he has one to win the mean-payoff threshold problem in G.

We define the following notation: given a two-player one-dimension game G = (S1,S2,E,w) and ε ∈Q, let G+ε =
(S1,S2,E,w+ε) be the game obtained by shifting all weights by ε , that is, for all e ∈ E, w+ε(e) = w(e)+ ε .8

Lemma 15. For all one-dimension game G = (S1,S2,E,w) with integer weights, for all ε , 0 < ε < 1/|S|, for all initial
state s ∈ S, P1 has a strategy to ensure a non-negative mean-payoff in G if and only if P1 has a strategy to ensure a
strictly positive mean-payoff in G+ε .

8Note that w+ε can be transformed into an integer valued function without changing the answers to the considered decision problems.
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Proof. Consider a memoryless winning strategy of P1 in G from initial state s ∈ S. All simple cycles in consistent
outcomes have a sum of weights at least equal to zero. Hence, the corresponding outcome in G+ε is such that all
simple cycles of length n have sums at least equal to n · ε > 0, which proves that the strategy is also winning in G+ε .

Consider a memoryless winning strategy of P2 in G from initial state s ∈ S. All simple cycles in consistent
outcomes have a strictly negative sum of weights, that is the sum is at most equal to −1. Hence, the corresponding
outcome in G+ε is such that all simple cycles of length n have sums at most equal to −1+ n · ε . Since n ≤ |S| and
ε < 1/|S|, we have that the sum is strictly negative, which proves that the strategy is also winning in G+ε .

By determinacy of mean-payoff games, we obtain the claim.

Lemma 16. For all one-dimension game G = (S1,S2,E,w) with integer weights, for all ε , 0 < ε < 1/|S|, for all initial
state s ∈ S, if P1 has a strategy to win the bounded window mean-payoff problem in G+ε , then P1 has a strategy to
win the mean-payoff threshold problem in G.

Proof. Assume there exists a winning strategy of P1 for the bounded window mean-payoff problem in G+ε from
initial state s ∈ S. By Lemma 3, assertion (a), we have that this strategy ensures a non-negative mean-payoff in G+ε .
By shifting weights by −ε , this can be equivalently expressed as (Prop. A) the existence of a strategy of P1 ensuring
a mean-payoff at least equal to −ε in the game G.

For sufficiently small values of ε , that is for 0 < ε < 1/|S|, we claim that (Prop. A) implies that (Prop. B) P1 has a
strategy to ensure a non-negative mean-payoff in G. By contradiction, assume this implication is false, that is we have
that (Prop. A) is true and (Prop. B) is not. It implies the following.

• (Prop. A) is true: P1 has a memoryless strategy to ensure that the mean-payoff is at least equal to −ε , i.e.,
strictly greater than −1/|S|.

• (Prop. B) is false: P2 has a memoryless strategy to ensure that all simple cycles in consistent outcomes have a
sum of weights at most −1. Hence, this strategy ensures a mean-payoff at most equal to −1/|S|.

Obviously, it is not possible to have both (Prop. A) true and (Prop. B) false for any initial state s ∈ S, hence proving
our claim.

Lemma 17. The one-dimension mean-payoff problem reduces in polynomial time to the bounded window mean-payoff
problem.

Proof. Let G = (S1,S2,E,w) be a game with integer weights, and sinit ∈ S be the initial state. Let ε be any rational
value such that 0 < ε < 1/|S|. We claim that the answer to the mean-payoff threshold problem in G is YES if and only
if the answer to the bounded window mean-payoff problem in G+ε is YES.

The left-to-right implication is proved in two steps. Assume the answer to the mean-payoff threshold problem in G
is YES. First, by Lemma 15, we have that P1 has a strategy to ensure a strictly positive mean-payoff in G+ε . Second,
by Lemma 3, assertion (b), this implies that the answer to the bounded window mean-payoff problem in G+ε is YES.

The right-to-left implication is straightforward application of Lemma 16.

Remark 18. The reduction established in Lemma 17 cannot be reversed in order to solve bounded window mean-
payoff games via classical mean-payoff games. Indeed, the reduction relies on the absence of simple cycles of value
zero in the game G+ε , which is not verified in general if the reduction starts from arbitrary bounded window mean-
payoff games. Indeed it does not suffice to shift the weights symmetrically by−ε to obtain an equivalent mean-payoff
game, as witnessed by Fig. 4, for which any negative shift gives a game losing for the mean-payoff threshold problem,
while the bounded window problem on the original game is satisfied.

Bounded window: summary. We close our study of two-player one-dimension games with Theorem 19.

Theorem 19. In two-player one-dimension games, the bounded window mean-payoff problem is in NP∩coNP and at
least as hard as mean-payoff games. Memoryless strategies suffice for P1 and infinite-memory strategies are required
for P2 in general.
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4.3. Games with k dimensions
In this section, we address the case of two-player games with multi-dimension weights. For the fixed window

mean-payoff problem, we first present an EXPTIME algorithm that computes the winning states of P1. We also
establish lower bounds on the complexity of the fixed window problem: we show that the problem is EXPTIME-hard
(both in the case of fixed weights and arbitrary dimensions, and in the case of a fixed number of dimensions and
arbitrary weights) for arbitrary window sizes, whereas it is PSPACE-hard for polynomial window sizes. We show that
exponential memory is both sufficient and necessary in general for both players, even for polynomial window sizes.
For the bounded window mean-payoff problem, we prove non-primitive recursive hardness.
Fixed window: algorithm. We start by providing an EXPTIME algorithm via a reduction from a fixed window mean-
payoff game G = (S1,S2,E,k,w) to an exponentially larger unweighted co-Büchi game Gc (where the objective of P1
is to avoid visiting a set of bad states infinitely often).

Lemma 20. The fixed window mean-payoff problem over a multi-weighted game G reduces in exponential time to the
co-Büchi problem on an exponentially larger game Gc.

Recall that a winning play is such that, starting in some position i ≥ 0, in all dimensions, all opening windows
are closed in at most lmax steps. We keep a counter of the sum over the sequence of edges and as soon as it turns
non-negative (in at most lmax steps), we reset the sum counter and start a new sequence (which also must become
non-negative in at most lmax steps). Hence, the reduction is based on accounting for each dimension the current
negative sum of weights since the last reset, and the number of steps that remain to achieve a non-negative sum. This
accounting is encoded in the states of Gc = (Sc

1,S
c
2,E

c), as from the original state space S, we go to the extended state
space S× ({−lmax ·W, . . . ,0}×{1, . . . , lmax})k: states of Gc are tuples representing a state of G and the current status
of open windows in all dimensions (sum and remaining steps). We add states reached whenever a window reaches
its maximum size lmax without closing. We label those as bad states. We have one bad state for every state of G.
Transitions in Gc are built in order to accurately model the effect of transitions of G on open windows. Clearly, a
play is winning for the fixed window problem if and only if the corresponding play in Gc is winning for the co-Büchi
objective that asks that the set of bad states is not visited infinitely often, as that means that from some point on, all
windows close in the required number of steps.

Proof. Let G = (S1,S2,E,k,w) be a game with objective FixWMPG({0}k, lmax ∈ N0) and initial state sinit ∈ S. Let
W denote the maximal absolute value of any edge in E. We construct the unweighted game Gc = (Sc

1,S
c
2,E

c) in the
following way.

• Sc
1 =

(
S1× ({−W · lmax, . . . ,0}×{1, . . . , lmax})k

)
∪ {ς1, . . . ,ς|S|}. States ς1, . . . ,ς|S| denote special added bad

states, one for each of the original states s1, . . . ,s|S| ∈ S. The other states are built as tuples that represent (a) a
visited state in G, (b) for each dimension, a couple modeling (b.1) the current sum of weights since the last time
the sum in this dimension was non-negative, and (b.2) the number of steps that remain to reach a non-negative
sum in this dimension (i.e., before reaching the maximum window size).

• Sc
2 = S2× ({−W · lmax, . . . ,0}×{1, . . . , lmax})k.

• We construct the edges ((sa,(σ
1
a ,τ

1
a ), . . . ,(σ

k
a ,τ

k
a)),(sb,(σ

1
b ,τ

1
b ), . . . ,(σ

k
b ,τ

k
b)) of Ec as follows. For all (sa,sb) ∈

E, let we = w((sa,sb)), we have

– ((sa,(σ
1
a ,τ

1
a ), . . . ,(σ

k
a ,τ

k
a)),ςb) ∈ Ec, with ςb the bad state associated to state sb, iff ∃ t, 1≤ t ≤ k such that

τ t
a = 1 and σ t

a +we(t)< 0,

– ((sa,(σ
1
a ,τ

1
a ), . . . ,(σ

k
a ,τ

k
a)),(sb,(σ

1
b ,τ

1
b ), . . . ,(σ

k
b ,τ

k
b)) ∈ Ec iff ∀ t, 1≤ t ≤ k, we have

∗ if σ t
a +we(t)≥ 0 then σ t

b = 0,τ t
b = lmax,

∗ if σ t
a +we(t)< 0 ∧ τ t

a > 1 then σ t
b = σ t

a +we(t),τ t
b = τ t

a−1,

and we add edges (ςi,(si,(0, lmax, . . . ,(0, lmax)) to Ec for all states si ∈ S.

19



Intuitively, the game Gc is built by unfolding the game G and integrating the current sum of weights in the states
of Gc, as well as the number of steps that remain to close a window, both for each dimension separately. The game Gc

starts in the initial state (sinit,(0, lmax), . . . ,(0, lmax)), and each time a transition (s,s′) in the original game G is taken,
the game Gc is updated to a state (s′,(σ1,τ1), . . . ,(σ k,τk)) such that (a) if the current sum becomes positive in a
dimension t, the corresponding sum counter is reset to zero and the step counter is reset to its maximum value, lmax,
(b) if the sum is still strictly negative in a dimension t and the window for this dimension is not at its maximal size,
the sum is updated and the step counter is decreased, and (c) if the sum stays strictly negative and the maximal
size is reached in any dimension, the game visits the corresponding bad state and then, all counters are reset for all
dimensions.

We argue that a play π in G is winning for the fixed window mean-payoff objective if and only if the corresponding
play πc in Gc is winning for the co-Büchi objective asking not to visit the set Sς = {ς1, . . . ,ς|S|} infinitely often. Indeed,
consider a play π winning for objective FixWMPG({0}k, lmax). By Eq. (4), this play only sees a finite number of bad
windows (windows that are not closed in lmax steps in some dimension). By construction of Gc, the corresponding
play πc only visits the set Sς a finite number of times, hence it is winning for the co-Büchi objective. Now, let πc be
a winning play for the co-Büchi objective. By definition, there exists a position i in πc such that all states appearing
after position i belong to S \ Sς . It remains to prove that for any position j ≥ i, for any dimension t, 1 ≤ t ≤ k, there
is a valid window of size at most lmax. Again we use the inductive property of windows. We know by construction
that a reset of the sum happens in at most lmax steps, otherwise we go to a bad state. Assume j is a position with
a sum counter of zero in some dimension t, and j′ is the next such position. Since resets are done as soon as the
sum becomes non-negative, all suffixes of the sequence from j to j′ are non-negative. Hence, it is clear that for all
position j′′, j < j′′ < j′, the window from j′′ to j′ in dimension t is closed. Consequently, the corresponding play π

in G is winning for the fixed window mean-payoff objective of threshold 0 and window size lmax.

As a direct corollary of this reduction, we obtain an EXPTIME algorithm to solve the fixed window mean-payoff
problem on multi-dimension games, as solving co-Büchi games takes quadratic time in the size of the game [32].

Corollary 21. Given a two-player multi-dimension game G = (S1,S2,E,k,w) and a window size lmax ∈ N0, the fixed
window mean-payoff problem can be solved in time O(|S|2 · (lmax)

4·k ·W 2·k) via a reduction to co-Büchi games.

Proof. Lemma 20 uses a co-Büchi game whose state space is of size∣∣∣S× ({−W · lmax, . . . ,0}×{1, . . . , lmax}
)k
∣∣∣+ |S|=O(|S| · (lmax)

2·k ·W k
)
.

The quadratic algorithm for co-Büchi games described in [32] implies the result.

A natural question is whether a distinct algorithm is useful in the one-dimension case. Remark 22 notes that it is.

Remark 22. The multi-dimension algorithm described in Corollary 21 yields a procedure which is polynomial in the
size of the state space, the window size, and the largest weight for the subclass of one-dimension games, hence only
pseudo-polynomial (i.e., exponential in V , the length of the encoding of weights), whereas Lemma 6 gives a truly
polynomial algorithm.

Fixed window: lower bounds. We first consider the fixed arbitrary window mean-payoff problem for which we
show (i) in Lemma 23, EXPTIME-hardness for {−1,0,1} weights and arbitrary dimensions via a reduction from
the membership problem for alternating polynomial-space Turing machines (APTMs) [33], and (ii) in Lemma 24,
EXPTIME-hardness for two dimensions and arbitrary weights via a reduction from countdown games [34].

Given an APTMM and a word ζ ∈{0,1}∗, such that the tape contains at most p(|ζ |) cells, where p is a polynomial
function, the membership problem asks to decide if M accepts ζ . We build a fixed arbitrary window mean-payoff
game G so that P1 has to simulate the run of M on ζ , and P1 has a winning strategy in G if and only if the word
is accepted by the machine. For each tape cell h ∈ {1,2, . . . , p(|ζ |)}, we have two dimensions, (h,0) and (h,1) such
that a sum of weights of value −1 (i.e., an open window) in dimension (h, i), i ∈ {0,1} encodes that in the current
configuration of M, tape cell h contains a bit of value i. In each step of the simulation (Fig. 6), P1 has to disclose
the symbol under the tape head: if in position h, P1 discloses a 0 (resp. a 1), he obtains a reward 1 in dimension
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(h,0) (resp. (h,1)). To ensure that P1 was faithful, P2 is then given the choice to either let the simulation continue,
or assign a reward 1 in all dimensions except (h,0) and (h,1) and then restart the game after looping in a zero self-
loop for an arbitrary long time. If P1 cheats by not disclosing the correct symbol under tape cell h, P2 can punish
him by branching to the restart state and ensuring a sufficiently long open window in the corresponding dimension
before restarting (as in Fig. 5). But if P1 discloses the correct symbol and P2 still branches, all windows close. In
the accepting state, all windows are closed and the game is restarted. The window size lmax of the game is function of
the existing bound on the length of an accepting run. To force P1 to go to the accepting state, we add an additional
dimension, with weight −1 on the initial edge of the game and weight 1 on reaching the accepting state.

(q,h)

(q,h,0)check

(q,h,1)check

(q,h)branch qrestart

(q,h,0)

(q,h,1)

Transitions of (q,0)

Transitions of (q,1)

Figure 6: Gadget ensuring a correct simulation of the APTM on tape cell h.

Lemma 23. The fixed arbitrary window mean-payoff problem is EXPTIME-hard in multi-dimension games with
{−1,0,1} weights and arbitrary dimensions.

Proof. An alternating Turing machine (ATM) [33] is a tupleM= (Q,q0,Σin,δ ,qacc) where:

• Q is the finite set of control states with a partition (Q∨,Q∧) of Q into existential and universal states;

• q0 ∈ Q is the initial state;

• Σin = {0,1} is the input alphabet and Σtape = Σin∪{#} the tape alphabet, with # the blank symbol;

• δ ⊆ Q×Σtape×Q×Σtape×{−1,1} is a transition relation;

• there is a special accepting state qacc ∈ Q∨ (without loss of generality).

We say that M is a polynomial-space alternating Turing machine (APTM) if for some polynomial function p, the
space used byM on any input word ζ ∈ Σ∗in is bounded by p(|ζ |).

We define the AND-OR graph of the APTM (M, p) on the input word ζ ∈ Σ∗in as G(M, p) = 〈S∨,S∧,s0,∆,R〉
where

• S∨ = {(q,h, t) |q ∈ Q∨, 1≤ h≤ p(|ζ |) and t ∈ Σ
p(|ζ |)
tape };

• S∧ = {(q,h, t) |q ∈ Q∧, 1≤ h≤ p(|ζ |) and t ∈ Σ
p(|ζ |)
tape };

• s0 = (q0,1, t) where t = ζ ·#p(|ζ |)−|ζ |;

• ((q1,h1, t1),(q2,h2, t2)) ∈ ∆ iff there exists (q1, t1(h1),q,γ,d) ∈ δ such that q2 = q, h2 = h1 +d, t2(h1) = γ and
t2(h) = t1(h) for all h 6= h1;

• R = {(q,h, t) ∈ S∨ |q = qacc}.

Intuitively, states of the graph correspond to configurations (q,h, t) where q is a control state of the machine, h the
position of the tape head, and t the current word written on the tape. Given a state q of the machine M, tape head
on cell h and a word t on the tape, a transition from (q,h, t) to (q′,h′, t ′) exists in the graph G(M, p) if the transition
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relation δ of the machine M admits a transition that given this configuration, updates the content of cell h to the
symbol t ′(h), such that the tape now contains the word t ′, and then goes to control state q′ and moves the tape head to
an adjacent cell h′.

A word ζ ∈Σ∗in is accepted by an APTM (M, p) if there exists a run tree (obtained by choosing a child in existential
nodes and keeping all children in universal nodes) ofM on ζ such that all leafs are accepting configurations. That is,
a word is accepted if and only if, in the two-player game defined by G(M, p), player P∨ has a strategy to reach the set
of accepting states R. Deciding the acceptance of a word by an APTM is an EXPTIME-complete problem, known as
the membership problem [33].

We construct a fixed window mean-payoff game G = (S1,S2,E,k,w) simulating the machine (M, p) as follows.
Let k = 2 · p(|ζ |)+ 1: there is a dimension for each pair (h,0) and (h,1), for all 1 ≤ h ≤ p(|ζ |), and one additional
dimension. The set of states S of the game is

S ={qrestart}∪{qin}∪{q̂acc}∪{(q,h) |q ∈ Q, 1≤ h≤ p(|ζ |)}∪{(q,h, i)check |q ∈ Q, 1≤ h≤ p(|ζ |), i ∈ {0,1}}
∪{(q,h)branch |q ∈ Q, 1≤ h≤ p(|ζ |)}∪{(q,h, i) |q ∈ Q, 1≤ h≤ p(|ζ |), i ∈ {0,1}}.

States of the form (q,h) belong to P1. States of the form (q,h, i) belong to P1 if q ∈ Q∨ in the machineM. All other
states belong to P2. The initial state is qrestart. It has two outgoing edges with weights zero in all dimensions: one
self-loop, and one edge to qin. The latter is assigned the following weights: −1 for dimension (h, i) if the letter at
position h of ζ is i, −1 in the very last dimension (2 · p(|ζ |)+1), and zero everywhere else. From qin, the game goes
to (q0,1) and the simulation ofM begins.

The game mimics runs ofM, and it is ensured that if the current state of the game is (q,h) and the cell content
is i, then the sum of weights since the last visit of qin in dimension (h, i) is −1. We refer to the segment of play since
the last visit of qin as the current round. We depict a step of the simulation in Fig. 6. At state (q,h), P1 has the choice
between states (q,h,0)check and (q,h,1)check, resp. corresponding to declaring a content 0 or 1 of the tape cell h. The
reward for dimension (h, i), i ∈ {0,1} is 1 on state (q,h, i)check. At state (q,h, i)check, a state of P2, P2 checks whether
P1 has correctly revealed the tape content as follows: (i) Player P2 can choose to go to state (q,h)branch, in which all
dimensions other than (h,0) and (h,1), including the very last, are increased by 1, and then go to qrestart on which P2
will be able to delay the play; (ii) Player P2 can choose to proceed and continue the simulation: the game then goes
to state (q,h, i). State (q,h, i) is either a state of P1 or P2, depending on the affiliation of state q in the APTM. Such a
gadget ensures that if P1 cheats by not disclosing the correct symbol, P2 can force an open window of arbitrary length
in the current round by looping on qrestart for some time, and then restarting the game. On the other hand, if P1 is
faithful and P2 still decides to branch to (q,h)branch, then all windows will be closed for the current round.

If P1 does not cheat and P2 acknowledges it by not branching, the game advances to a state of the form (q,h, i).
At such a state, we add transitions as follows: if there exists a transition from (q,h, i) to (q′,h′, i′) inM, then we add
an edge from (q,h, i) to (q′,h′) in the game G, and assign weight −1 in dimension (h, i′), as the tape cell at position h
contains i′ and we ensure that the sum in dimension (h, i′) in the current round is −1. At the accepting states (qacc,h),
all dimensions are assigned reward 1, and the next state is q̂acc. State q̂acc is followed by qrestart. Again there is no risk
in looping as all dimensions are now non-negative.

Formally, blank symbols need to be added. For brevity and simplicity of the presentation, we omit these technical
details.

We fix the window size lmax equal to three times the size of the configuration graph (bound on the length of a
run) plus three, and we argue that the game G is a faithful simulation of the machineM, that is, P1 wins the fixed
window mean-payoff game if and only if the word ζ is accepted byM. Notice that the construction ensures that if
P1 cheats in the current round, P2 can make this round losing, as discussed before. Similarly, if P1 does not cheat
but does not reach the accepting state, dimension 2 · p(|ζ |)+ 1 will remain negative when arriving in qrestart and P2
will be able to cycle long enough to make the round losing as the window in the last dimension will remain open for
lmax steps. Clearly, P1 cannot see losing rounds infinitely often otherwise the play is losing. Assume the word ζ is
accepted by the machine. Then there is an accepting run tree, and the winning strategy of P1 is to follow this run tree
and always reveal the correct symbol. This way, either P2 restarts and the round is winning because all dimensions are
non-negative, or P2 does not restart and an accepting state (qacc,h) is reached within the maximum allowed window
size. Indeed, in the APTM, there is a strategy to reach the accepting state in a number of steps bounded by the size of
the configuration graph. In that case, the round is also winning. Conversely, assume that the word ζ is not accepted
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by the APTM. Consider any strategy λ1 of P1. Clearly, P1 cannot cheat as otherwise, he loses. So assume he does not
cheat. Then there is a path in the run tree obtained from playing the strategy λ1 inM such that the path never reaches
an accepting state. Hence, the strategy λ2 of P2 that follows this path in the game G ensures that the sum in dimension
2 · p(|ζ |)+1 is always strictly negative, and after waiting till the bound lmax on the window size is met, P2 has made
the round losing and he can restart the game safely. Acting this way infinitely often, P2 can violate the fixed window
objective for P1. It follows that P1 wins in G if and only if the word ζ is accepted by the APTMM.

We now prove EXPTIME-hardness for two dimensions and arbitrary weights via a reduction from countdown
games. A countdown game C consists of a weighted graph (S,T ), with S the set of states and T ⊆ S ×N0×S the
transition relation. Configurations are of the form (s,c), s ∈ S, c ∈ N. The game starts in an initial configuration
(sinit,c0) and transitions from a configuration (s,c) are performed as follows: first P1 chooses a duration d, 0 < d ≤ c
such that there exists t = (s,d,s′) ∈ T for some s′ ∈ S , second P2 chooses a state s′ ∈ S such that t = (s,d,s′) ∈ T .
Then, the game advances to (s′,c−d). Terminal configurations are reached whenever no legitimate move is available.
If such a configuration is of the form (s,0), P1 wins the play. Otherwise, P2 wins the play. Deciding the winner in
countdown games given an initial configuration (sinit,c0) is EXPTIME-complete [34].

Given a countdown game C and an initial configuration (sinit,c0), we create a game G = (S1,S2,E,k,w) with k = 2
and a fixed window objective for lmax = 2 · c0 + 2. The two dimensions are used to store the value of the countdown
counter and its opposite. Each time a duration d is chosen, an edge of value (−d,d) is taken. The game simulates the
moves available in C: a strict alternation between states of P1 (representing states of S) and states of P2 (representing
transitions available from a state of S once a duration has been chosen). On states of P1, we add the possibility to
branch to a state srestart of P2, in which P2 can either take a zero cycle, or go back to the initial state and force a restart
of the game. By placing weights (0,−c0) on the initial edge, and (c0,0) on the edge branching to srestart, we ensure
that the only way to win for P1 is to accumulate a value exactly equal to c0 in the game before switching to srestart.
This is possible if and only if P1 can reach a configuration of value zero in C.

Lemma 24. The fixed arbitrary window mean-payoff problem is EXPTIME-hard in multi-dimension games with two
dimensions and arbitrary weights.

Proof. We establish a polynomial-time reduction from the countdown game problem to the fixed arbitrary window
problem. Let C = (S,T ) be a countdown game [34], with initial configuration (sinit,c0). We create a corresponding
game G = (S1,S2,E,k,w) as follows.

• S1 = S.

• Let ST ⊆ S ×N0 be the subset of pairs (s,d) such that there exists a transition (s,d,s′) ∈ T . Then, S2 =
ST ∪{srestart}. State srestart is the initial state of game G.

• For each transition (s,d,s′)∈ T , we add edges (s,(s,d)), with s∈ S1 and (s,d)∈ S2, and ((s,d),s′), with s′ ∈ S1,
to the set of edges E. Edge (s,(s,d)) has weight (−d,d) and edge ((s,d),s′) has weight (0,0).

• For all s ∈ S1, we add an edge (s,srestart) of weight (c0,0).

• From srestart, we add an edge (srestart,sinit) of value (0,−c0).

• On srestart, we add a self-loop (srestart,srestart) of weight (0,0).

We fix the window size lmax = 2 · c0 + 2, and we claim that P1 wins the fixed window problem if and only if he
wins the countdown game. Recall that to win a countdown game, P1 must be able to reach a configuration (s,0) in
the game C. The key idea to our construction is that in the game G, the only way to avoid seeing infinitely often
open windows of size larger than lmax is to accumulate exactly c0 before restarting, which is equivalent to reaching a
configuration of value 0 in C.

Notice that the game G starts by visiting an edge of value (0,−c0) and afterwards, all edges from states of P1 have
a value (−d,d) corresponding to the duration he chooses in the countdown game. All except the edge he can decide
to take to go to srestart, which value is (c0,0). Clearly, if P1 decides to go in srestart, he has to close all windows, as
otherwise P2 can use the self-loop to delay the play long enough and provoke a sufficiently long bad window, which
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if done repeatedly, induces a losing play. On the other hand, if P1 decides to never go towards srestart, he will keep
accumulating negative values in the first dimension and he is guaranteed to lose. So obviously the behavior of P1
should be to play as in the countdown game to accumulate exactly c0 in dimension 2 (and −c0 in dimension 1) before
switching to srestart, so that P2 can do no harm by delaying the play as all windows will be closed. The accumulated
value has to be exactly c0 as (a) if it is less than c0, dimension 2 will remain negative, and (b) if it is more than c0,
dimension 1 will stay negative (i.e., the edge (s,srestart) will not suffice to get it back above zero). Since the minimal
increase is of 1 every two edges by construction, the allowed window size lmax is sufficient to enforce such a behavior,
if possible. This shows that P1 wins the fixed window problem from initial state srestart in G if and only if he also wins
the countdown game C from (sinit,c0), as accumulating c0 in G is equivalent to reaching a configuration of value zero
in C.

For the case of polynomial windows, Lemma 25 proves PSPACE-hardness via a reduction from generalized reach-
ability games [35]. Filling the gap with the EXPTIME-membership given by Corollary 21 is an open problem. The
generalized reachability objective is a conjunction of reachability objectives: a winning play has to visit a state of each
of a series of k reachability sets. If P1 has a winning strategy in a generalized reachability game Gr = (Sr

1,S
r
2,E

r),
then he has one that guarantees visit of all sets within k · |Sr| steps. We create a modified weighted version of the
game, G = (S1,S2,E,k,w), such that the weights are k-dimension vectors. The game starts by opening a window in
all dimensions and the only way for P1 to close the window in dimension t, 1 ≤ t ≤ k is to reach a state of the t-th
reachability set. We modify the game by giving P2 the ability to close all open windows and restart the game such
that the prefix-independence of the fixed window objective cannot help P1 to win without reaching the target sets.
Then, a play is winning in G for the fixed window objective of size lmax = 2 · k · |Sr| if and only if it is winning for the
generalized reachability objective in Gr.

Lemma 25. The fixed polynomial window mean-payoff problem is PSPACE-hard.

Proof. We show the PSPACE-hardness by a reduction from the generalized reachability problem [35]. Given a game
graph Gr = (Sr

1,S
r
2,E

r), a series of reachability sets Rt ⊆ Sr, for 1≤ t ≤ k, with k ≤ |Sr|, and an initial state sr
init ∈ Sr,

the generalized reachability problem asks if there exists a strategy of P1 such that any consistent outcome starting in
sr
init visits a state of each set Rt at least once. It is known that if such a strategy exists, then there exists one which

ensures reaching all sets in at most k · |Sr| steps.
We build a k-dimension fixed window mean-payoff game G = (S1,S2,E,k,w) as follows. We define Sbranch ⊂ S2,

a set of additional states belonging to P2 and of the form bs,s′ , one for each (s,s′) ∈ Er. Let S1 = Sr
1 and S2 =

Sr
2∪Sbranch∪{srestart}. Let E be the set of edges such that for all (s,s′) ∈ Er, we have that (s,bs,s′) ∈ E, (bs,s′ ,s′) ∈ E,
(bs,s′ ,srestart) ∈ E, and such that (srestart,sr

init) ∈ E. That is, we introduce in all edges of Er a state of P2 that let him
branch to an added state srestart or continue as in Gr. The new initial state in G is srestart, and there is an edge from
srestart to the old initial state sr

init. The weights are as follows: all edges from states bs,s′ to srestart have value 1 in all
dimensions. The edge from srestart to sr

init has value −1 in all dimensions. All other edges of the game have value zero,
except edges entering a state that belongs to a reachability set Rt , which have value 1 in dimension t and 0 in the other
dimensions. If a state belongs to several sets, then all corresponding dimensions get a 1.

We claim that P1 has a winning strategy for FixWMPG({0}k, lmax = 2 · k · |Sr|) if and only if he has a winning
strategy for the generalized reachability objective in Gr. Consider the game G. The only edge involving negative
values is (srestart,sr

init), which value is (−1, . . . ,−1). Therefore, a losing play for Eq. (4) should see this edge infinitely
often, as it is the starting position of all open windows. Notice that on the other hand, going from a state bs,s′ to srestart
involves an edge of value (1, . . . ,1), hence if the open window starting in srestart comes back in srestart before hitting its
maximal size, the window will close. So the strategy of P2 should be to wait for lmax = 2 ·k · |Sr| steps before forcing a
restart. Now, consider a winning strategy λ1 of P1 in G. Because of the strategy of P2, λ1 has to ensure obtaining +1
in all dimensions by only using transitions entering in states of Sr. By construction, this implies that λ1 enforces
a visit of all reachability sets, and thus is winning for the generalized reachability problem. Consider the converse
implication. Let λ r

1 be a winning strategy in Gr. There exists such a strategy that ensures seeing all reachability sets
(thus closing all windows) in at most lmax = 2 · k · |Sr| steps if P2 does not branch to srestart. On the other hand, if P2
does branch before lmax steps, all windows also close, as branching edges have value (1, . . . ,1). Hence, this strategy is
also winning for FixWMPG({0}k, lmax). This shows the correctness of the reduction and concludes our proof.
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Figure 7: Family of multi-dimension games requiring exponential memory for P1, for the fixed window objective.

We conclude our study of the multi-dimension fixed window problem by considering memory bounds. A direct
corollary of Lemma 20 is the existence of winning strategies of at most exponential size for both players, as memory-
less strategies are sufficient in co-Büchi games [36]. A corollary of the reduction from generalized reachability games
to the fixed polynomial window problem used to prove Lemma 25 and the results of [35, Lemma 2] (showing expo-
nential lower bounds on memory for generalized reachability objectives) is that such memory is needed in general,
again for both players.

Another example of a family of games in which P1 requires exponential memory (in the number of dimensions) is
given by the family defined in [25, Lemma 8] (Fig. 7), introduced in the context of multi energy games.

Example 26. We define a family of games (G(K))K≥1 which is an assembly of k = 2 ·K gadgets, the first K belonging
to P2, and the remaining K belonging to P1 (Fig. 7). Precisely, we have |S1| = |S2| = 3 ·K, |S| = |E| = 6 ·K = 3 · k
(linear in k), k = 2 ·K, and w defined as:

∀1≤ i≤ K,w((◦,si)) = w((◦, ti)) = (0, . . . ,0),
w((si,si,L)) =−w((si,si,R)) = w((ti, ti,L)) =−w((ti, ti,R)),

∀1≤ j ≤ k, w((si,si,L))( j) =


1 if j = 2 · i−1
−1 if j = 2 · i
0 otherwise

,

where ◦ denotes any valid predecessor state.
Essentially, in each state si, P2 can open a window on either dimension 2 · i−1 or dimension 2 · i by choosing the

corresponding edge. In this game, P1 wins objective FixWMPG({0}k, lmax = |S|/2) only if he is able to make in ti
the opposite choice of P2 in si, as this ensures closure of the corresponding window. This requires a strategy encoded
as a Moore machine with at least 2k/2 states. Indeed, if P1 cannot differentiate between the exponential number of
histories from si up to ti, he is not able to enforce closure of the needed windows.

Lemma 27. In multi-dimension games with a fixed window mean-payoff objective, exponential memory is both suffi-
cient and necessary for both players in general, even for polynomial window sizes.

Fixed window: summary. We summarize the complexity of the fixed window problem in Theorem 28.

Theorem 28. In two-player multi-dimension games, the fixed arbitrary window mean-payoff problem is EXPTIME-
complete, and the fixed polynomial window mean-payoff problem is PSPACE-hard. For both players, exponential
memory is sufficient and is required in general.
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Bounded window. Unlike the one-dimension case, in which it is easier to decide the bounded problem than the fixed
arbitrary one (i.e., the problem becomes easier when the fixed window size is sufficiently large), we prove that the
complexity of the bounded window problem in multi-weighted games is at least non-primitive recursive.9 Hence,
there is no hope for efficient algorithms on the complete class of two-player multi-weighted games. This result is
obtained by reduction from the problem of deciding the existence of an infinite execution in a marked reset net, also
known as the termination problem. A marked reset net [38] is a Petri net with reset arcs together with an initial
marking of its places. Reset arcs are special arcs that reset a place (i.e., empty it of all its tokens). The termination
problem for reset nets is decidable but non-primitive recursive hard (as follows from [39], also discussed in [40]).

testt

fire

testt

fire

closep delay

closepdelay

(1p→0,1,1,−1) (0,0,1,1)

(1p→0,1,−1,1)(0,0,1,1)

(−m0−1,0,0,0)
restart

(−m0−1,0,0,0)
restart

place p

place p

Figure 8: Careful alternation between gadgets is needed in order for P1 to win.

Given a reset netN with an initial marking m0 ∈N|P| (where P is the set of places of the net), we build a two-player
multi-weighted game G with k = |P|+ 3 dimensions such that P1 wins the bounded window objective for threshold
{0}k if and only if N does not have an infinite execution from m0.

A high level description of our reduction is as follows. The structure of the game (Fig. 8) is based on the alternance
between two gadgets simulating the net (Fig. 9). Edges are labeled by k-dimension weight vectors such that the first
|P| dimensions are used to encode the number of tokens in each place. In each gadget, P2 chooses transitions to
simulate an execution of the net. During a faithful simulation, there is always a running open window in all the first
|P| dimensions: if place p contains n tokens then the negative sum from the start of the simulation is −(n+1). This
is achieved as follows: if a transition t consumes I(t)(p) tokens from p, then this value is added on the corresponding
dimension, and if t produces O(t)(p) tokens in p, then O(t)(p) is removed from the corresponding dimension. When
a place p is reset, a gadget ensures that dimension p reaches value −1 (the coding of zero tokens). This is thanks to
the monotonicity property of reset nets: if P1 does not simulate a full reset, then the situation gets easier for P2 as it
leaves him more tokens available. If all executions terminate, P2 has to choose an unfireable transition at some point,
consuming unavailable tokens from some place p ∈ P. If so, the window in dimension p closes. After each transition
choice of P2, P1 can either continue the simulation or branch out of the gadget to close all windows, except in some
dimension p of his choice. Then P2 can arbitrarily extend any still open window in the first (|P|+1) dimensions and
restart the game afterwards. Dimension (|P|+1) prevents P1 from staying forever in a gadget. If an infinite execution
exists, P2 simulates it and never has to choose an unfireable transition. Hence, when P1 branches out, the window in
some dimension p stays open. The last two dimensions force him to alternate between gadgets so that he cannot take
profit of the prefix-independence to win after a faithful simulation. So, P2 can delay the closing of the open window
for longer and longer, thus winning the game.

9That is, there exists no primitive recursive function that computes the answer to the bounded window problem. A well-known example of a
decidable but non-primitive recursive function is the Ackermann function [37].
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Figure 9: Gadget simulating an execution of the reset net.

Theorem 29. In two-player multi-dimension games, the bounded window mean-payoff problem is non-primitive re-
cursive hard.

Proof. We prove a reduction from the termination problem on reset nets to the bounded window problem on two-player
multi-weighted games. The former is known to be non-primitive recursive hard [39, 40].

Let N = 〈P,T,I,O,r〉 be a reset net such that

• P = {p1, p2, . . . , p|P|} is the set of places;

• T = {t1, t2, . . . , t|T |} is the set of transitions;

• I : T → N|P| is the input function, such that for each transition t ∈ T , I(t) is a |P|-dimension vector such that
for all dimension p ∈ {1, . . . , |P|}, I(t)(p) specifies the number of tokens from place p consumed by the transi-
tion t;10

• O : T → N|P| is the output function, such that for each transition t ∈ T , O(t) is a |P|-dimension vector such that
for all dimension p∈ {1, . . . , |P|}, O(t)(p) specifies the number of tokens produced in place p by the transition t;

• r : T → P is the reset function, such that for all transition t ∈ T , r(t) specifies the unique place (w.l.o.g.) which
is reset by transition t.

Given an initial marking of the places (i.e., an initial number of tokens in each place) m0 ∈ N|P|, the termination
problem asks if there exists an infinite execution of the net, that is, if there exists an infinite sequence of transitions
that can be fired from m0. A transition t is fireable from marking m ∈ N|P| if for all place p ∈ P, I(t)(p) ≤ m(p).
An execution terminates if no transition can be fired because the necessary tokens are unavailable. We first note an
important monotonicity property of reset nets: for all reset netN = 〈P,T,I,O,r〉, for all markings m,n ∈N|P|, if m≤ n
and ρ ∈ T ω is an infinite sequence of transitions fireable from m, then ρ is also fireable from n. This property is used
later on.

We claim that given a reset net N and an initial marking m0, we can build in polynomial time a multi-weighted
game G in which P1 has a winning strategy for objective BndWMPG(0) if and only if there exists no infinite execution
of the net N from m0.

We build the game G = (S1,S2,E,k,w) with k = |P|+ 3 as represented in Fig. 8 and Fig. 9. Unlabeled edges
have value zero in all dimensions. For clarity, we define the following |P|-dimension integer vectors: 1 = (1, . . . ,1)

10For simplicity, we use p to refer to a place p ∈ P and to the number i ∈ {1, . . . , |P|} such that pi = p, that is p indistinctly refers to the place and
the corresponding dimension in the weight vectors.
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is the unit vector, 0 = (0, . . . ,0) is the zero vector, and, for a,b ∈ Z, p ∈ P, the vector ap→b represents the vector
(a, . . . ,a,b,a, . . . ,a) which has value b in dimension p and a in the other dimensions. The first |P| dimensions of the
game are used to encode the tokens present in each place, whereas the last three are used to compel P1 to act fairly.
Our construction will ensure that at all times along a valid execution of the net in a gadget, if a place p ∈ P possess n
tokens, then the running sum of weights over the largest open window has value (−n−1) in dimension p.

The states and edges of the game are built as follows.

• Inside a gadget, we have a state fire belonging toP2, with |T | outgoing edges corresponding to the |T | transitions
of the net. Each transition t is encoded as follows:

– an edge from fire to a state testt belonging to P1, of value (I(t),−1,0,0), such that the running sum is
updated to accurately encode the consumption of tokens;

– in state testt , (|P|+1) outgoing edges, giving P1 the possibility to either branch out of the gadget, going
to the state closep corresponding to the dimension p of his choice, or continuing via an edge of value
(0,−1,0,0) to the resetq state, a state of P1 such that q = r(t) is the unique place reset by transition t;

– a self-loop of value (0q→1,−1,0,0) on the resetq state;

– an edge from resetq to outt of value (0q→−1,−1,0,0) which purpose is to ensure that in dimension q, there
is a new open window of sum −1 after a full reset (i.e., it encodes that the number of tokens in place q is
zero);

– an edge from outt back to fire of value (−O(t),−1,0,0), producing tokens according to the output of
transition t.

• Branching from the left gadget leads to a state closeleft
p of P1 with a self-loop of weight (1p→0,1,1,−1) and an

outgoing edge to state delayleft of P2.

• State delayleft possess a self-loop of value (0,0,1,1) and an edge going to the right gadget with value (−m0−
1,0,0,0).

• The right gadget is constructed symmetrically, the only change being that the self-loop on states closeright
p of P1

now has value (1p→0,1,−1,1).

The game starts in the left gadget with an initial edge of value (−m0−1,0,0,0) corresponding to the initial marking
of the net.

We claim that (i) if there exists no infinite execution ρ ∈ T ω of the net N , then P1 has a winning strategy in G
for the bounded window objective, and (ii) if there exists such an execution, then P2 has a winning strategy in G. By
determinacy, proving both claims will conclude our proof.

Case (i). Assume that there exists no infinite execution ρ ∈ T ω of the net. Then there exists a bound b ∈ N on the
length of any valid execution. Hence, P2 can only simulate the net faithfully for b steps, so after at most (b+1) steps,
he needs to use an unfireable transition. That is, the next chosen transition requires more tokens than available in some
place p ∈ P. We define a winning strategy λ1 ∈ Λ1 of P1 in G as follows:

1. In a state testt , if the last transition t was valid (i.e., all first |P| dimensions have a negative running sum), go to
the corresponding resetq state. Otherwise, there exists a dimension p in which the sum has become non-negative
and all windows are closed: exit the gadget and go to the corresponding state closep.

2. In a state resetq, cycle until the sum in dimension q takes value 0, then go to state outt .

3. In a state closep, take the loop exactly f (b) times before going to state delay, where f : N→ N is a well-chosen
function that we define below (hence f (b) is constant along the play).

We claim that it is possible to define f (b) sufficiently large to ensure that this strategy is winning. Let M ∈ N be the
largest number of tokens produced as output of any transition of the net, on any place. We consider the value of the
negative sum in any of the first (|P|+ 1) dimensions at the moment when P1 decides to exit the gadget according to
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the strategy λ1. Notice that for any dimension p ∈ {1, . . . , |P|}, this sum is bounded by x = (−m0(p)− 1− b ·M).
Hence, the number of loops taken on any visit of state resetq is bounded by x. The sum in dimension (|P|+ 1) is
thus bounded by (b · (4+ x)+1), which we define as f (b). The last two dimensions are not modified inside a gadget.
Now clearly, looping in state closep for f (b) steps is sufficient to close all windows in all dimensions corresponding
to places (recall that dimension p is closed by P2 cheating on place p), as well as in dimension (|P|+ 1). However,
this loop opens a window in one of the last two dimensions (the last for the left gadget, and the second to last for the
right gadget). As the delay state of P2 has a positive effect in those dimensions, if P2 decides to delay the play for
f (b) steps, all windows will be closed. If he does not delay, the play will proceed to the next gadget, in which P2 is
also forced to cheat before (b+ 1) transitions. Hence after looping for f (b) steps in the corresponding closep state,
the open window will close (and another will open in the other dimension which will in turn be closed after the next
gadget). By keeping this behavior, P1 can thus enforce that any open window along the play will close in at most
(4 · f (b)+4) steps. Thus the outcome is winning for the bounded window objective.

Case (ii). Assume that there exists an infinite execution ρ ∈ T ω of the net. We define a winning strategy λ2 ∈ Λ2
of P2 as follows. The strategy is played in rounds, with the initial round being round 1.

1. Every time a gadget is entered, start playing in state fire according to the infinite execution ρ , that is, choose
transitions in order to obtain the same trace.

2. When a state delay is visited during round n, take the self-loop n times then continue to state fire and start round
n+1.

Notice that this strategy requires infinite memory. We claim that any consistent outcome of the game is winning
for P2, that is, it does not belong to BndWMPG(0). First, P1 cannot stay forever in a gadget, thanks to dimension
(|P|+1): he has to branch at some point otherwise the play is lost. Second, if in state resetq, P1 decides to cycle for
less than necessary for a full reset, the situation gets better for P2 by the monotonicity property of the reset net (as
P2 gets to continue with more tokens than expected). Notice that P1 cannot accumulate positive values in the sum,
as the next edge will restart a new window and all accumulation will be forgotten with regard to the objective. Third,
if P1 branches and exits the gadget to go to some state closep, then all dimensions corresponding to places, including
dimension p, have a running open window (dimension p has a strictly negative value since P2 does not cheat). Hence,
no matter how long P1 chooses the self-loop, the window in dimension p will stay open (and P1 cannot stay here
forever because of the last two dimensions). Fourth, when the play reaches a state delay with an open window in
dimension p ∈ {1, . . . , |P|}, the strategy λ2 prescribes that P2 will loop for longer and longer periods of time, thus
enforcing open windows of constantly growing length. As a consequence, any consistent outcome is such that the
bounded window objective is not satisfied, which proves our point and further concludes our proof.

Remark 30. Theorem 29 establishes that the bounded window mean-payoff problem is non-primitive recursive hard,
and the decidability of the problem remains open. Note that Theorem 29 also implies that P1 may require a window
size of non-primitive recursive length to win a multi-dimension bounded window mean-payoff game (in contrast to the
pseudo-polynomial bound of the one-dimension case given in Corollary 13). The main motivation to study window
objectives as a strengthening and approximation of the original objectives is to ensure the objectives in every sliding
window of reasonable size. A prohibitively large window size of non-primitive recursive length suggests that the
decidability of the bounded window problem is purely of theoretical interest, and the fixed window problem is the
more relevant question.

4.4. On direct objectives
Through this paper, we have studied the prefix-independent versions of the objectives defined in Sec. 4.1. In

this section, we briefly argue that similar complexity results are obtained for the direct variants (Table 2), by slight
modifications of the presented proofs. Notice that memory requirements however change, as it is now sufficient to
force one sufficiently long (for the fixed problem) or never closing (for the bounded problem) window to make an
outcome losing.
One-dimension direct fixed window problem. The polynomial algorithm in the size of the game and the size of
the window is given by Lemma 5. For polynomial windows, we obtain P-hardness using the proof of Lemma 8 and
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one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

direct fixed
P-c.

PSPACE-h.

exponential
polynomial window mem. req. EXP-easy

direct fixed
P(|S|,V, lmax)

≤ linear(|S| · lmax)
EXP-c.

arbitrary window
direct bounded

NP∩ coNP mem-less linear NPR-h. - -
window problem

Table 2: Complexities and memory requirements for the direct objectives. Differences with the prefix-independent
objectives are in bold.

window size lmax = 2 · |S|, as if P1 can win the reachability game, he has a strategy to do it in at most |S| steps.
Lemma 7 extends to direct objectives, and provides linear upper bounds on memory with the same arguments. In
particular, the provided examples of games require memory for both players when the direct fixed window objective
is considered.
One-dimension direct bounded window problem. We obtain a NP∩coNP algorithm for the direct bounded problem
by simplifying BoundedProblem (Lemma 12) as follows: BoundedProblem(G) = S\UnbOpenWindow(G). Indeed,
as the objective is no longer prefix-independent, it is sufficient for P2 to force one window that never closes to make
the play losing. Hence, the attractor of the set S\L in algorithm BoundedProblem cannot be declared winning for P1.
While memoryless strategies still suffice for P1 (applying the arguments of Lemma 12), winning strategies for P2 do
not need infinite memory anymore, but at most linear memory. Indeed, a winning strategy of P2 is the one described in
the proof of Lemma 12, but without taking rounds into account (i.e., the play stays forever in round one). To illustrate
that memoryless strategies still do not suffice for P2, consider a variation of Fig. 5, with the initial state being s2.
Clearly, P2 must first take the cycle to s1 then loop forever on s2 to ensure a never closing window. Corollary 13
extends in the direct case and gives the same bound on the window size. Finally, the reduction of mean-payoff games
developed in Lemma 17 carries over to the direct bounded window objective, as the game with shifted weights is such
that the mean-payoff is strictly positive. In which case, the supremum total-payoff is infinite and Lemma 3 applies,
implying the result.
Multi-dimension direct fixed window problem. The following results extend to the direct case.

• EXPTIME algorithm. Lemma 20 presents a reduction from fixed window games to exponentially larger co-
Büchi games. It is easy to obtain a similar reduction from direct fixed window games by considering a safety
objective for P1 (i.e., reachability for the set of bad states for P2). This also implies an exponential-time
algorithm.

• EXPTIME-hardness of the arbitrary window problem for weights {−1,0,1} and arbitrary dimensions. The
reduction of the membership problem for polynomial space alternating Turing machines immediately yields the
result for the direct objective. Indeed, the strategies proposed in the proof stay winning for this objective. Note
that actually the strategy of P2 may be simpler, as he may cycle forever on srestart after branching to punish an
unfaithful symbol disclosure by keeping a window indefinitely open.

• EXPTIME-hardness of the arbitrary window problem for two dimensions and arbitrary weights. The reduction
from countdown games established in Lemma 24 extends straightforwardly to direct objectives, and P2 can use
a simpler winning strategy consisting in looping forever in its zero cycle.

• PSPACE-hardness of the polynomial window problem. The reduction of generalized reachablity games also
holds without modification for the direct fixed polynomial window objective.

• Exponential memory bounds. Exponential upper bounds follow from the modified Lemma 20, using safety
games. Lower bounds witnessed by Lemma 27 are also verified in the presented game as well as from the
reduction of generalized reachablity games.
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Multi-dimension direct bounded window problem. Non-primitive recursive hardness (Theorem 29) extends to the
direct objective with a simpler construction. Indeed, it is sufficient to consider the game using only the first (|P|+1)
dimensions, and consisting of only one gadget, with the branching out of the gadget now going to an absorbing state
with a self-loop of weight 1p→0 such that when P1 decides to branch, all windows get closed eventually, except in the
dimension p of his choice, for which the window is only closed if P2 cheats and stays open forever otherwise.

5. Discussion

Conclusion. The strong relation between mean-payoff and total-payoff in single dimension breaks in multi-weighted
games as the total-payoff threshold problem becomes undecidable. We introduced the concept of window objectives,
which provide conservative approximations with timing guarantees. We believe that window objectives are interest-
ing on the standpoint of expressiveness, as they permit to consider quantitative objectives in a time frame context.
Furthermore, window objectives constitute an attractive alternative in terms of tractability.

We provided algorithms and optimal complexity bounds for one-dimension games. We notably showed that the
fixed window variant can be solved in polynomial time, which is not known to be the case for the mean-payoff and
total-payoff objectives [14, 15, 26, 20].

In multi-dimensions, fixed window games hold an interesting position. While the associated decision problem
is easier to solve than the mean-payoff threshold problem in one-dimension (P instead of NP∩ coNP), it becomes
comparatively harder in multi-dimension (PSPACE-hard even for polynomial windows instead of coNP). However,
it remains EXPTIME-complete for arbitrary windows, in contrast to the total-payoff which becomes undecidable.
In terms of complexity, the problem stands in an interesting middle ground between mean-payoff and total-payoff
objectives. For the specific case of polynomial windows, there remains a gap between our exponential-time algorithm
and the PSPACE lower bound. Whether we can obtain PSPACE-membership or EXPTIME-hardness for the fixed
polynomial window problem in multi-dimension games is an open question.

We also established a prohibitive lower bound on the complexity of multi-dimension bounded window games:
they are at least non-primitive recursive hard. It would still be of theoretical interest to know if those games are
decidable or not. Techniques used for the undecidability proof of multi-dimension total-payoff games (Thm. 2) cannot
be extended easily to the bounded window setting. In particular, our reduction to two-counter machines requires to
“memorize” sums of weights both negatively and positively. In the window context, such sums can only be memorized
negatively (i.e., while windows stay open), as positive windows are closed and forgotten immediately (this corresponds
to so-called resets in Sect. 4.3).
Future work. We mention two interesting questions to investigate. First, in the multi-dimension setting, our defini-
tions of window objectives (Sect. 4.1) are asynchronous: windows on different dimensions are not required to close
simultaneously. Synchronous variants may be interesting to study but some useful properties are lost in that setting,
such as the inductive property on windows. Hence our techniques cannot be extended straightforwardly. Second,
conjunction of window objectives with a parity objective would be interesting to consider. Indeed, a similar notion
of time bounds on liveness properties was studied by Chatterjee et al. through the concept of finitary winning [7, 8].
Combining a similar approach with our window objectives seems natural.
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